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Marr’s three levels

Computation
“What is the goal of the computation, why is it 
appropriate, and what is the logic of the strategy by 
which it can be carried out?”

Representation and algorithm
“What is the representation for the input and output, 
and the algorithm for the transformation?”

Implementation
“How can the representation and algorithm be realized 
physically?”



Marr on the computational level

…an algorithm is likely to be understood more 
readily by understanding the nature of the problem 
being solved than by examining the mechanism land 
the hardware) in which it is embodied. In a similar  
vein, trying to understand perception by studying 
only neurons is like trying to understand bird flight 
by studying only feathers: It just cannot be done. In 
order to understand bird flight we have to understand 
aerodynamics; only then do the structure of feathers 
and the different shapes of birds’ wings make sense.



Questions

• How does one go about conducting a 
computational-level analysis?

• What is the equivalent of aerodynamics for 
cognition?

• What are the consequences of this kind of 
approach?



Questions

• How does one go about conducting a 
computational-level analysis?

• What is the equivalent of aerodynamics for 
cognition?

• What are the consequences of this kind of 
approach?



An approach to analyzing cognition

Identify the underlying computational problem

Find a good solution to that problem

Compare human cognition to that solution

Directly relates cognition and computation

(Marr, 1982; Shepard, 1987; Anderson, 1990)



Questions

• How does one go about conducting a 
computational-level analysis?

• What is the equivalent of aerodynamics for 
cognition?

• What are the consequences of this kind of 
approach?



A theory of induction

P(h | d)  P(d | h)P(h)
P(d | h )P( h )

h 


Posterior
probability

Likelihood Prior
probability

Sum over space 
of  hypotheses

h: hypothesis
d: data

Statistics tells us what structure we can infer from data
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Results of computational level analysis

1. Connections between problems in cognitive 
science and problems in statistics. 
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Results of computational level analysis

1. Connections between problems in cognitive 
science and problems in statistics. 

2. A characterization of the inductive biases of 
human learners.



The importance of inductive biases

“pecora”



Identifying inductive biases

P(h | d)  P(d | h)P(h)
P(d | h )P( h )

h 


Posterior
probability

Likelihood Prior
probability

Sum over space 
of  hypotheses

h: hypothesis
d: data

(more generally… sources of regularization)



Results of computational level analysis

1. Connections between problems in cognitive 
science and problems in statistics. 

2. A characterization of the inductive biases of 
human learners.

3. Some understanding of where those 
inductive biases come from.
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Currie (1798)
Medical Reports on, the Effects of Water, Cold and 
Warm, as a Remedy in Fevers and Febrile Diseases

“The contagion spread rapidly and before 
its progress could be arrested, sixteen 
persons were affected of which two died. 
Of these sixteen, eight were under my care. 
On this occasion I used for the first time the 
affusion of cold water in the manner 
described by Dr. Wright. It was first tried in 
two cases ... [then] employed in five other 
cases. It was repeated daily, and of these 
seven patients, the whole recovered.”



“Does the treatment cause recovery?”

Recovered

Died

Treated Untreated

7

0

7

2



“Does C cause E?”
(rate on a scale from 0 to 100)

E present (e+)

E absent (e-)

C present
(c+)

C absent
(c-)

a

b

c

d



Two models of causal judgment

• Delta-P (Jenkins & Ward, 1965):

• Power PC (Cheng, 1997):

baacePcePP   )()|()|(

)()|(1 dcd
P

ceP
Pp










Power



Recovered

Died

Treated Untreated

7

0

7

2

dccbaacePcePP   )()|()|( = 1.00-0.78 = 0.22
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
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Power = 0.22/0.22 = 1.00

P(e+|c+) = 7/7 = 1.00
P(e+|c-) = 7/9 = 0.78



Buehner and Cheng (1997)

People

P

Power
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Buehner and Cheng (1997)



People

P

Power

P = 0, changing judgments

Buehner and Cheng (1997)



Machine learning

Human learning



Causal graphical models 
(Pearl, 2000; Spirtes, Glymour, & Schienes, 1993)
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B C

E

• Variables

• Structure

• Conditional probabilities
P(E|B,C)

P(B) P(C)

Defines probability distribution over variables
(for both observation, and intervention)

Causal graphical models 
(Pearl, 2000; Spirtes, Glymour, & Schienes, 1993)



Conditional probabilities
• Structures:    h1 =                          h0 = 

• Parameterization:

E

B C

E

B C

w0 w1 w0

w0 , w1 : strength parameters for B, C

C B
0     0
1     0
0     1
1     1

P(E = 1 | C, B) P(E = 1| C, B)

0
w1
w0

w1 + w0 – w1 w0

0
0
w0
w0

“Noisy-OR” (Pearl, 1988)



Causal learning

• Structure: does a relationship exist?
• Strength: how strong is the relationship?

E
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w0 w1

E

B C

w0

B B

Power
P

(Griffiths & Tenenbaum, 2005)
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(Griffiths & Tenenbaum, 2005)



• Hypotheses:  h1 =                          h0 = 

• Bayesian structure learning:

support = 

E

B C
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Bayesian Occam’s Razor 

All possible data sets
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People 

P  (r = 0.89) 

Power (r = 0.88)

Support (r = 0.97) 

Buehner and Cheng (1997)



Assumptions guiding inference

• What assumptions are responsible for this?
– alternative model: Bayes with arbitrary P(E|B,C) 



Conditional probabilities
• Structures:    h1 =                          h0 = 

• Parameterization:

E

B C
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Assumptions guiding inference

• What assumptions are responsible for this?
– alternative model: Bayes with arbitrary P(E|B,C) 

• Critical assumption: causes increase the 
probability of their effects (as in noisy-OR)

• People have strong intuitions about the nature 
of causality, beyond statistical dependence

Support without noisy-OR



The blicket detector

See this?  It’s a 
blicket machine. 
Blickets make it go. 

Let’s put this one
on the machine.   

Oooh, it’s a 
blicket!   



– Two objects: A and B
– Trial 1: A B on detector – detector active
– Trial 2: A on detector – detector active
– 4-year-olds judge whether each object is a blicket

• A: a blicket (100% say yes)
• B: probably not a blicket (34% say yes)

“Backwards blocking” 
(Sobel, Tenenbaum & Gopnik, 2004)

AB Trial A TrialA B



Bayesian inference

• Evaluating causal models in light of data:

• Inferring a particular causal relation:   

P(hi | d)  P(d | hi)P(hi)
P(d | h j )P(h j )

j
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
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Bayesian inference
With a uniform prior on hypotheses, and the generic 

parameterization (with uniform prior), integrating over parameters 
(Cooper & Herskovits, 1992)

A B 
Probability of being a blicket

0.32 0.32 

0.34 0.34 



Two key assumptions

E

BA

E

BA

E

BA

E

BA

P(h00 ) = (1 – q)2 P(h10 ) = q(1 – q)P(h01 ) = (1 – q) q P(h11 ) = q2

• A restricted hypothesis space

• Detectors follow a deterministic “activation law”
– always activate if a blicket is on the detector
– never activate otherwise

(Tenenbaum & Griffiths, 2003; Griffiths, 2005)



Modeling backwards blocking

P(E=1 | A=0, B=0):     0                      0                              0 0
P(E=1 | A=1, B=0):     0                      0                              1 1
P(E=1 | A=0, B=1):     0                      1                              0 1
P(E=1 | A=1, B=1):     0                      1                              1 1

E

BA

E

BA

E

BA

E

BA

P(h00 ) = (1 – q)2 P(h10 ) = q(1 – q)P(h01 ) = (1 – q) q P(h11 ) = q2

P(B  E | d)  P(h01)  P(h11)  q



P(B  E | d)  P(h01)  P(h11)
P(h01)  P(h10)  P(h11)


q

q  q(1 q)

P(E=1 | A=1, B=1):     0                      1                              1 1

E

BA

E

BA

E

BA

E

BA

P(h00 ) = (1 – q)2 P(h10 ) = q(1 – q)P(h01 ) = (1 – q) q P(h11 ) = q2

Modeling backwards blocking



P(B  E | d)  P(h11)
P(h10)  P(h11)

 q

P(E=1 | A=1, B=0):                             0                              1                              1

P(E=1 | A=1, B=1):                             1                              1                              1

E

BA

E

BA

E

BA

P(h10 ) = q(1 – q)P(h01 ) = (1 – q) q P(h11 ) = q2

Modeling backwards blocking



After each trial, adults judge probability that each object is a blicket.

AB Trial A TrialBA

I. Pre-training phase: Establish baserate for blickets (q) 

II. Backwards blocking phase: 

Manipulating the prior



Manipulating the prior

• Expose to different base-rates
– q = 1/6, 1/3, 1/2, 2/3, 5/6

• Test with backwards blocking
• Model makes two qualitative predictions:

– evaluation of both A and B as blickets will 
increase with baserate

– evaluation of B will increase after AB Trial, 
then return to baserate after A Trial

(Tenenbaum, Sobel, Griffiths, & Gopnik, submitted)



Manipulating the prior

AB Trial A TrialInitial



Theory-based causal induction 
Theory  
Ontology

Plausible relations
Functional form

X Y

Z

X Y

Z

X Y

Z

X Y

Z

Hypothesis space
generates

Bayesian
inference

Case   X    Y    Z
1      1     0     1
2      0     1     1
3      1     1     1
4      0     0     0

...

Data
generates
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The blicketosity meter

D E F Blicketosity meter



The blicketosity meter

A B C Blicketosity meter

blickets



The blicketosity meter

D E F Blicketosity meter



Learning functional form

TheoryCausal 
structure

Causal 
structure

Observations Observations

# blickets
P(

ef
fe

ct
)

A B C D E F

(Lucas & Griffiths, 2009)



Results

• Model also accounts for fully unsupervised 
learning of functional form, domain sensitivity

• Compatible with continuous causes
(Lu, Rojas, Beckers & Yuille, 2008)



Learning an ontology

(Segal,Pe'er, Regev, Koller, & Friedman, 2005)

Learning from sparse data requires constraints

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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z

Nonparametric Block Model (NBM)
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(Mansinghka, Kemp, Tenenbaum & Griffiths, 2006)



True causal network

Sample 75 observations…

Causal learning 
without a 
theory:

(Mansinghka, Kemp, Tenenbaum & Griffiths, 2006)



True causal network

Sample 75 observations…

Causal learning 
with a (NBM) 
theory

z


1  2 
3  40.80.0 0.01

0.0 0.0 0.75

0.0 0.0 0.0

5  6 
7  8

9  10 
11  12

(Mansinghka, Kemp, Tenenbaum & Griffiths, 2006)



The “blessing of abstraction”
True causal network:

edge
(G)

class
(z)

No theory:

edge
(G)

NBM theory:

1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16

# of samples:         20                     50                 80                    1000



Machine learning

Human learning



Causal learning and graphical models
• Tools from machine learning can help to clarify the 

computational problem of causal learning

• But… human causal learning is guided by strong 
constraints, which make it possible to learn from 
small amounts of data
– e.g., noisy-OR, determinism

• Similar constraints can improve machine learning
– e.g., nonparametric block model

(Mansinghka, Kemp, Tenenbaum & Griffiths, 2006)
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