Inferring structure from data

Tom Griffiths

Department of Psychology Program in Cognitive Science University of California, Berkeley

Machine learning	
Density estimation	
Graphical models	
Regression	
Nonparametric Bayes	
Language Probabilistic grammars	
Inference algorithms	

. . .

. . .

How much structure exists?

- How many categories of objects?
- How many features does an object have?
- How many words (or rules) are in a language?

Learning the things people learn requires using rich, unbounded hypothesis spaces

Nonparametric Bayesian statistics

- Assume the world contains infinite complexity, of which we only observe a part
- Use stochastic processes to define priors on infinite hypothesis spaces
 - Dirichlet process/Chinese restaurant process (Ferguson, 1973; Pitman, 1996)
 - Beta process/Indian buffet process
 (Griffiths & Ghahramani, 2006; Thibaux & Jordan, 2007)

Categorization

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

How do people represent categories?

Prototypes

are needed to see this picture.

(Posner & Keele, 1968; Reed, 1972)

Exemplars

cat

arè needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor QuickTime[™] and a TIFF (Uncompressed) decompressor

are needed to see this picture.

cat

QuickTime[™] and a TIFF (Uncompressed) decompresson are needed to see this picture. Store every instance (exemplar) in memory

cat

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

cat

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

(Medin & Schaffer, 1978; Nosofsky, 1986)

Something in between

(Love et al., 2004; Vanpaemel et al., 2005)

A computational problem

- Categorization is a classic inductive problem
 - data: stimulus *x*
 - hypotheses: category *c*
- We can apply Bayes' rule:

$$P(c \mid x) = \frac{p(x \mid c)P(c)}{\sum_{c} p(x \mid c)P(c)}$$

and choose c such that P(c|x) is maximized

Density estimation

- We need to estimate some probability distributions
 - what is P(c)?
 - what is p(x|c)?
- Two approaches:
 - parametric
 - nonparametric
- These approaches correspond to prototype and exemplar models respectively

(Ashby & Alfonso-Reese, 1995)

Parametric density estimation

Assume that p(x|c) has a simple form, characterized by parameters θ (indicating the prototype)

Probability density

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Nonparametric density estimation

Approximate a probability distribution as a sum of many "kernels" (one per data point)

estimated function individual kernels true function

$$n = 10$$

Something in between

Use a "mixture" distribution, with more than one component per data point

(Rosseel, 2002)

Anderson's rational model (Anderson, 1990, 1991)

- Treat category labels like any other feature
- Define a joint distribution p(x,c) on features using a mixture model, breaking objects into clusters
- Allow the number of clusters to vary...

$$P(\text{cluster } j) \propto \begin{cases} n_j & j \text{ is old} \\ \alpha & j \text{ is new} \end{cases}$$

a Dirichlet process mixture model (Neal, 1998; Sanborn et al., 2006)

The Chinese restaurant process

• *n* customers walk into a restaurant, choose tables *z_i* with probability

$$P(z_{i} = j \mid z_{1}, ..., z_{i-1}) = \begin{cases} \frac{n_{j}}{i - 1 + \alpha} & \text{existing table } j \\ \frac{\alpha}{i - 1 + \alpha} & \text{next unoccupied table} \end{cases}$$

 Defines an exchangeable distribution over seating arrangements (inc. counts on tables) (Aldous, 1985; Pitman, 1996)

Dirichlet process mixture model

1. Sample parameters for each component

 $\left(\begin{array}{cccc} \theta & \theta \\ \end{array}\right) \left(\begin{array}{cccc} \theta & \theta \\ \end{array}\right) \left(\begin{array}{cccc} \theta \\ \end{array}\right) \left(\begin{array}{ccccc} \theta \\ \end{array}\right) \left(\begin{array}{cccccc} \theta \\ \end{array}\right) \left(\begin{array}{ccccc} \theta \\ \end{array}\right$

2. Assign datapoints to components via CRP

A unifying rational model

- Density estimation is a unifying *framework*a way of viewing models of categorization
- We can go beyond this to define a unifying *model* – one model, of which all others are special cases
- Learners can adopt different representations by adaptively selecting between these cases
- Basic tool: two interacting levels of clusters
 results from the hierarchical Dirichlet process

(Teh, Jordan, Beal, & Blei, 2004)

The hierarchical Dirichlet process

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

A unifying rational model • cluster • exemplar • category					
	$\gamma \in (0,\infty)$	$\gamma \rightarrow \infty_{\text{prototype}}$			
$\alpha \rightarrow 0$	QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.	QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.			
$\alpha \in (0,\infty)$	QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.	QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.			
$\alpha \rightarrow \infty$	QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.	QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.			

Anderson

exemplar

$HDP_{+,\infty}$ and Smith & Minda (1998)

- $HDP_{+,\infty}$ will automatically infer a representation using exemplars, prototypes, or something in between (with α being learned from the data)
- Test on Smith & Minda (1998, Experiment 2)

$HDP_{+,\infty}$ and Smith & Minda (1998)

HDP

exemplar

prototype

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Log-likelihood

,™ con ∵thi

Probability of A

The promise of $HDP_{+,+}$

- In HDP_{+,+}, clusters are shared between categories
 a property of hierarchical Bayesian models
- Learning one category has a direct effect on the prior on probability densities for the next category

Other uses of Dirichlet processes

- Nonparametric Block Model from causality lecture

 extends DPMM to relations
- Models of language, where number of words, syntactic classes, or grammar rules is unknown
- Any multinomial can be replaced by a CRP...
- Extensions:
 - hierarchical, nested, dependent, two-parameter, distance-dependent, ...

Learning the features of objects

- Most models of human cognition assume objects are represented in terms of abstract features
- What are the features of this object?

• What determines what features we identify?

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Binary matrix factorization

 $P(x_{i,t} = 1 | \mathbf{Z}, \mathbf{Y}) = 1 - (1 - \lambda)^{\langle \mathbf{z}_{i,:}, \mathbf{y}_{:,t} \rangle} (1 - \epsilon)$

Binary matrix factorization

 $P(x_{i,t} = 1 | \mathbf{Z}, \mathbf{Y}) = 1 - (1 - \lambda)^{\langle \mathbf{z}_{i,:}, \mathbf{y}_{:,t} \rangle} (1 - \epsilon)$

How should we infer the number of features?

The nonparametric approach

Assume that the total number of features is unbounded, but only a finite number will be expressed in any finite dataset

Use the Indian buffet process as a prior on **Z** (Griffiths & Ghahramani, 2006)

The Indian buffet process

- First customer walks into Indian restaurant, and tastes Poisson (α) dishes from the buffet
- The *i*th customer tastes previously-tasted dish k with probability m_k/i , where m_k is the number of previous tasters, and Poisson (α/i) new dishes
- Customers are exchangeable, as in the CRP

(Griffiths & Ghahramani, 2006)

The Indian buffet process

(Griffiths & Ghahramani, 2006)

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

An experiment...

Training

Testing

Results

Other uses of the IBP

- Prior on sparse binary matrices, used for number of dimensions in *any* sparse latent feature model
 PCA, ICA, collaborative filtering, ...
- Prior on adjacency matrix for bipartite graph with one class of nodes having unknown size

– e.g., inferring hidden causes

- Interesting link to Beta processes (like CRP to DP)
- Extensions:

– two parameters, three parameters, phylogenetic, ...

Nonparametric Bayes and the mind

- Nonparametric Bayesian models provide a way to answer questions of how much structure to infer
- For questions like "how many clusters?" we can use the Chinese restaurant/Dirichlet process
- For questions like "how many features?" we can use the Indian buffet/Beta process

• Lots of room to develop new models...

Learning language

Discriminative vs.

P(Grammatical|S)

Labels of grammatical or ungrammatical

Generative

P(S|Grammatical)

An artificial language:

S1) Verb Subject Object

S2) Subject Verb Object

S3) Subject Object Verb

	S 1	S2	S 3
V1	+ (9)	+(9)	- (6)
V2	- (3)	+(18)	- (3)
V3	+(18)	- (3)	- (3)
V4*	+(18)	- (0)	- (6)

Discriminative Logistic regression

Generative Hierarchical Bayesian model

VS.

Ungrammatical

Model Predictions

Condition 1: Generative learning

Always grammatically correct adult

Always grammatically incorrect child

blergen norg nagid

nagid blergen semz

Condition 2: Discriminative learning

scene 1/84

tombat blergen flern

Was that sentence grammatical?

Grammatical

🕖 U i grammatical

Condition 2: Discriminative learning

blergen semz tombat

Was that sentence grammatical?

💽 G rammatica)

🕐 Ungrammatical

Sorry you were wrong.

Human language learning

* χ2(1) = 7.28, p = 0.007