Inferring structure from data

Tom Griffiths

Department of Psychology
Program in Cognitive Science
University of California, Berkeley

Human learning
 Machine learning

Categorization
Causal learning
Function learning

Density estimation
Graphical models
Regression
Nonparametric Bayes

Language

Experiment design

Probabilistic grammars
Inference algorithms

How much structure exists?

- How many categories of objects?
- How many features does an object have?
- How many words (or rules) are in a language?

Learning the things people learn requires using rich, unbounded hypothesis spaces

Nonparametric Bayesian statistics

- Assume the world contains infinite complexity, of which we only observe a part
- Use stochastic processes to define priors on infinite hypothesis spaces
- Dirichlet process/Chinese restaurant process
(Ferguson, 1973; Pitman, 1996)
- Beta process/Indian buffet process
(Griffiths \& Ghahramani, 2006; Thibaux \& Jordan, 2007)

Categorization

cat

How do people represent categories?

Prototypes

(Posner \& Keele, 1968; Reed, 1972)

Exemplars

cat

QuickTime ${ }^{\text {TM }}$ and a TIFF (Uncompressed) decompressor are needed to see this picture

cat

QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompresso
are needed to see this picture.

cat
 QuickTime ${ }^{\text {Twu and a }}$ a (Uncompressed) deompresso
 QuickTimetw and a TIFF (Uncompresse) dicompressor are needed to see this picture.
 Store every instance (exemplar) in memory

cat

 QuickTime ${ }^{\text {TM }}$ and aTIFF (Uncompressed) decompressor are needed to see this picture

cat

QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.
(Medin \& Schaffer, 1978; Nosofsky, 1986)

Something in between

(Love et al., 2004; Vanpaemel et al., 2005)

A computational problem

- Categorization is a classic inductive problem
- data: stimulus X
- hypotheses: category c
- We can apply Bayes’ rule:

$$
P(c \mid x)=\frac{p(x \mid c) P(c)}{\sum_{c} p(x \mid c) P(c)}
$$

and choose c such that $P(c \mid x)$ is maximized

Density estimation

- We need to estimate some probability distributions
- what is $P(c)$?
- what is $p(x \mid c)$?
- Two approaches:
- parametric
- nonparametric
- These approaches correspond to prototype and exemplar models respectively
(Ashby \& Alfonso-Reese, 1995)

Parametric density estimation

Assume that $p(x \mid c)$ has a simple form, characterized by parameters θ (indicating the prototype)
Probability density

Nonparametric density estimation

Approximate a probability distribution as a sum of many "kernels" (one per data point)

Something in between

Use a "mixture" distribution, with more than one component per data point

(Rosseel, 2002)

Anderson's rational model

 (Anderson, 1990, 1991)- Treat category labels like any other feature
- Define a joint distribution $p(x, c)$ on features using a mixture model, breaking objects into clusters
- Allow the number of clusters to vary...

$$
P(\text { cluster } j) \propto\left\{\begin{array}{cc}
n_{j} & j \text { is old } \\
\alpha & j \text { is new }
\end{array}\right.
$$

a Dirichlet process mixture model
(Neal, 1998; Sanborn et al., 2006)

The Chinese restaurant process

- n customers walk into a restaurant, choose tables z_{i} with probability
$P\left(z_{i}=j \mid z_{1}, \ldots, z_{i-1}\right)=\left\{\begin{array}{cc}\frac{n_{j}}{i-1+\alpha} & \text { existing table } j \\ \frac{\alpha}{i-1+\alpha} & \text { next unoccupiedtable }\end{array}\right.$
- Defines an exchangeable distribution over seating arrangements (inc. counts on tables)
(Aldous, 1985; Pitman, 1996)

Dirichlet process mixture model

1. Sample parameters for each component

2. Assign datapoints to components via CRP

A unifying rational model

- Density estimation is a unifying framework - a way of viewing models of categorization
- We can go beyond this to define a unifying model - one model, of which all others are special cases
- Learners can adopt different representations by adaptively selecting between these cases
- Basic tool: two interacting levels of clusters - results from the hierarchical Dirichlet process (Teh, Jordan, Beal, \& Blei, 2004)

The hierarchical Dirichlet process

A unifying rational model

-

cluster exemplar category

	$\gamma \in(0, \infty)$	$\gamma \rightarrow \infty$ prototype
$\alpha \rightarrow 0$		
$\alpha \in(0, \infty)$		
$\alpha \rightarrow \infty$		

$\mathrm{HDP}_{+, \infty}$ and Smith \& Minda (1998)

- $\mathrm{HDP}_{+, \infty}$ will automatically infer a representation using exemplars, prototypes, or something in between (with α being learned from the data)
- Test on Smith \& Minda (1998, Experiment 2)

Category A:	000000		111111
	100000		011111
	010000		101111
	001000	Category B:	110111
	000010		111011
	000001		111110
	111101	exceptions	000100

$\mathrm{HDP}_{+, \infty}$ and Smith \& Minda (1998)

Probability of A

The promise of $\mathrm{HDP}_{+,+}$

- In $\mathrm{HDP}_{+,+}$, clusters are shared between categories - a property of hierarchical Bayesian models
- Learning one category has a direct effect on the prior on probability densities for the next category

Other uses of Dirichlet processes

- Nonparametric Block Model from causality lecture - extends DPMM to relations
- Models of language, where number of words, syntactic classes, or grammar rules is unknown
- Any multinomial can be replaced by a CRP...
- Extensions:
- hierarchical, nested, dependent, two-parameter, distance-dependent, ...

Learning the features of objects

- Most models of human cognition assume objects are represented in terms of abstract features
- What are the features of this object?
- What determines what features we identify?

QuickTime ${ }^{\text {TM }}$ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime ${ }^{\text {TM }}$ and a
TIFF (LZW) decompressor are needed to see this picture.

Binary matrix factorization

$$
P\left(x_{i, t}=1 \mid \mathbf{Z}, \mathbf{Y}\right)=1-(1-\lambda)^{\left.<\mathbf{z}_{i, j}, \mathbf{Y} ;, t\right\rangle}(1-\epsilon)
$$

Binary matrix factorization

$$
P\left(x_{i, t}=1 \mid \mathbf{Z}, \mathbf{Y}\right)=1-(1-\lambda)^{\left.<z_{i, j}, \mathbf{y} ;, t\right\rangle}(1-\epsilon)
$$

How should we infer the number of features?

The nonparametric approach

Assume that the total number of features is
unbounded, but only a finite number will be expressed in any finite dataset

Use the Indian buffet process as a prior on \mathbf{Z} (Griffiths \& Ghahramani, 2006)

The Indian buffet process

- First customer walks into Indian restaurant, and tastes Poisson (α) dishes from the buffet
- The ith customer tastes previously-tasted dish k with probability m_{k} / i, where m_{k} is the number of previous tasters, and Poisson (α / i) new dishes
- Customers are exchangeable, as in the CRP

The Indian buffet process

Dishes

(Griffiths \& Ghahramani, 2006)

QuickTime ${ }^{\text {TM }}$ and a TIFF (LZW) decompresso are needed to see this picture

An experiment...

Training

Testing

(Austerweil \& Griffiths, 2009)

Results

(Austerweil \& Griffiths, 2009)

Other uses of the IBP

- Prior on sparse binary matrices, used for number of dimensions in any sparse latent feature model
- PCA, ICA, collaborative filtering, ...
- Prior on adjacency matrix for bipartite graph with one class of nodes having unknown size - e.g., inferring hidden causes
- Interesting link to Beta processes (like CRP to DP)
- Extensions:
- two parameters, three parameters, phylogenetic, ...

Nonparametric Bayes and the mind

- Nonparametric Bayesian models provide a way to answer questions of how much structure to infer
- For questions like "how many clusters?" we can use the Chinese restaurant/Dirichlet process
- For questions like "how many features?" we can use the Indian buffet/Beta process
- Lots of room to develop new models...

Learning language

Discriminative

P(Grammatical|S)
$S^{1} S^{2} S^{3} S^{4} S^{5} S^{6}$

Labels of grammatical or ungrammatical

VS.

Generative
$\mathrm{P}($ S \mid Grammatical $)$

An artificial language:

S1) Verb Subject Object
S2) Subject Verb Object
S3) Subject Object Verb

	S1	S2	S3
V1	$+(9)$	$+(9)$	$-(6)$
V2	$-(3)$	$+(18)$	$-(3)$
V3	$+(18)$	$-(3)$	$-(3)$
V4*	$+(18)$	$+(0)$	$-(6)$

Discriminative Logistic regression

Grammatical

Ungrammatical

Generative Hierarchical Bayesian model

Model Predictions

Condition 1: Generative learning

Always grammatically correct adult

Always grammatically
incorrect child

blergen norg nagid

blergen

tombat

nagid blergen semz

blergen
nagid

tombat

Condition 2: Discriminative learning

scene $1 / 84$

tombat blergen flern

Was that sentence grammatical?
Gramatical Ungramatical

Condition 2: Discriminative learning

scene $1 / 84$

tombat blergen flern

Was that sentence grammatical?
-Grammatical
Ungramatical

Grammatical

You are correct!

Condition 2: Discriminative learning

blergen semz tombat

scene 4/84

Ungrammatical

Sorry you were wrong.

Human language learning

\square	Probabilities
\square	Rules

${ }^{*} \mathrm{x} 2(1)=7.28, \mathrm{p}=0.007$

