
Inferring structure from data

Tom Griffiths
Department of Psychology

Program in Cognitive Science
University of California, Berkeley



Human learning

Categorization

Causal learning

Function learning

Representations

Language

Experiment design

…

Machine learning

Density estimation

Graphical models

Regression

Nonparametric Bayes

Probabilistic grammars

Inference algorithms

…



How much structure exists?

• How many categories of objects?
• How many features does an object have?
• How many words (or rules) are in a language?

Learning the things people learn requires using 
rich, unbounded hypothesis spaces



Nonparametric Bayesian statistics

• Assume the world contains infinite complexity, 
of which we only observe a part 

• Use stochastic processes to define priors on 
infinite hypothesis spaces
– Dirichlet process/Chinese restaurant process

(Ferguson, 1973; Pitman, 1996)
– Beta process/Indian buffet process

(Griffiths & Ghahramani, 2006; Thibaux & Jordan, 2007)



Categorization

How do people represent categories?
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Exemplars

(Medin & Schaffer, 1978; Nosofsky, 1986)
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Something in between

(Love et al., 2004; Vanpaemel et al., 2005)
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A computational problem
• Categorization is a classic inductive problem

– data: stimulus x
– hypotheses: category c

• We can apply Bayes’ rule:

and choose c such that P(c|x) is maximized

P(c | x)  p(x | c)P(c)
p(x | c)P(c)

c




Density estimation
• We need to estimate some probability 

distributions
– what is P(c)?
– what is p(x|c)?

• Two approaches:
– parametric
– nonparametric

• These approaches correspond to prototype and 
exemplar models respectively

(Ashby & Alfonso-Reese, 1995)



Parametric density estimation
Assume that p(x|c) has a simple form, characterized 

by parameters  (indicating the prototype)
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Nonparametric density estimation
Approximate a probability distribution as a sum 

of many “kernels” (one per data point)
estimated function
individual kernels
true function

n = 10
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Something in between

mixture distribution
mixture components
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Use a “mixture” distribution, with more than one 
component per data point

(Rosseel, 2002)



TIF
are ne

Anderson’s rational model 
(Anderson, 1990, 1991)

• Treat category labels like any other feature
• Define a joint distribution p(x,c) on features using 

a mixture model, breaking objects into clusters
• Allow the number of clusters to vary…

P(cluster j)
n j j is old
 j is new





a Dirichlet process mixture model
(Neal, 1998; Sanborn et al., 2006)



The Chinese restaurant process

P(zi  j | z1,...,zi1) 

n j

i 1
existing table j


i 1

next unoccupiedtable









• n customers walk into a restaurant, choose 
tables zi with probability

• Defines an exchangeable distribution over 
seating arrangements (inc. counts on tables)

(Aldous, 1985; Pitman, 1996)



Dirichlet process mixture model

1. Sample parameters for each component

2. Assign datapoints to components via CRP

      …

      …



A unifying rational model
• Density estimation is a unifying framework

– a way of viewing models of categorization
• We can go beyond this to define a unifying model

– one model, of which all others are special cases
• Learners can adopt different representations by 

adaptively selecting between these cases

• Basic tool: two interacting levels of clusters
– results from the hierarchical Dirichlet process 

(Teh, Jordan, Beal, & Blei, 2004)



The hierarchical Dirichlet process
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A unifying rational model
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HDP+,
 

and Smith & Minda (1998)
• HDP+,

 

will automatically infer a representation 
using exemplars, prototypes, or something in 
between (with 

 
being learned from the data)

• Test on Smith & Minda (1998, Experiment 2)
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Category A: Category B:

exceptions
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• In HDP+,+ , clusters are shared between categories
– a property of hierarchical Bayesian models

• Learning one category has a direct effect on the 
prior on probability densities for the next category
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Other uses of Dirichlet processes

• Nonparametric Block Model from causality lecture
– extends DPMM to relations

• Models of language, where number of words, 
syntactic classes, or grammar rules is unknown

• Any multinomial can be replaced by a CRP…
• Extensions:

– hierarchical, nested, dependent, two-parameter, 
distance-dependent, …



Learning the features of objects

• Most models of human cognition assume objects 
are represented in terms of abstract features

• What are the features of this object?

• What determines what features we identify?

(Austerweil & Griffiths, 2009)
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Binary matrix factorization





Binary matrix factorization



How should we infer the number of features?



The nonparametric approach



Use the Indian buffet process as a prior on Z

Assume that the total number of features is 
unbounded, but only a finite number will be 

expressed in any finite dataset

(Griffiths & Ghahramani, 2006)



The Indian buffet process

• First customer walks into Indian restaurant, and 
tastes Poisson () dishes from the buffet

• The ith customer tastes previously-tasted dish k 
with probability mk /i, where mk is the number of 
previous tasters, and Poisson (/i) new dishes

• Customers are exchangeable, as in the CRP

(Griffiths & Ghahramani, 2006)



The Indian buffet process

(Griffiths & Ghahramani, 2006)
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An experiment…

(Austerweil & Griffiths, 2009)
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(Austerweil & Griffiths, 2009)

Results



Other uses of the IBP

• Prior on sparse binary matrices, used for number of 
dimensions in any sparse latent feature model
– PCA, ICA, collaborative filtering, …

• Prior on adjacency matrix for bipartite graph with 
one class of nodes having unknown size
– e.g., inferring hidden causes

• Interesting link to Beta processes (like CRP to DP)
• Extensions:

– two parameters, three parameters, phylogenetic, …



Nonparametric Bayes and the mind

• Nonparametric Bayesian models provide a way to 
answer questions of how much structure to infer

• For questions like “how many clusters?” we can 
use the Chinese restaurant/Dirichlet process

• For questions like “how many features?” we can 
use the Indian buffet/Beta process

• Lots of room to develop new models…





P(S|Grammatical)P(Grammatical|S)

Distribution
of

sentences

S2S1 S3 S4 S5 S6

S2S1 S3 S4 S5 S6

Learning language

vs.Discriminative Generative

Labels of grammatical or 
ungrammatical



S1 S2 S3

V1 +  (9) + (9) - (6)
V2 - (3) +(18) - (3)
V3 + (18) - (3) - (3)
V4* + (18) - (0) - (6)

An artificial language:
S1)  Verb Subject Object

S2)  Subject Verb Object

S3)  Subject Object Verb



Grammatical

Ungrammatical

vs.Discriminative
Logistic regression

Generative 
Hierarchical 
Bayesian model



Model Predictions



Condition 1: Generative learning

Always grammatically 
correct adult

Always grammatically 
incorrect child
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flern

Condition 2: Discriminative learning



flern

Condition 2: Discriminative learning



semz

Condition 2: Discriminative learning



Human language learning

*

* χ2(1) = 7.28, p = 0.007
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