Never Ending Language Learning

Carnegie Mellon University

Tenet 1: Understanding requires a <u>belief system</u>

We'll never produce natural language <u>understanding</u> systems until we have systems that react to arbitrary sentences by saying one of:

- I understand, and already knew that
- I understand, and didn't know, but accept it
- I understand, and disagree because ...

Tenet 2:

We'll never really understand learning until we build machines that

- learn many different things,
- over years,
- and become better learners over time.

NELL: Never-Ending Language Learner

Inputs:

- initial ontology
- few examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate the initial ontology
 - 2. learn to read (perform #1) better than yesterday

NELL today

Running 24x7, since January, 12, 2010

Inputs:

- ontology defining >600 categories and relations
- 10-20 seed examples of each
- 500 million web pages
- 100,000 web search queries per day
- ~ 5 minutes/day of human guidance

Result:

- KB with > 15 million candidate beliefs, growing daily
- · learning to reason, as well as read
- automatically extending its ontology

NELL Today

- <u>http://rtw.ml.cmu.edu</u> ← follow NELL here
- eg. "diabetes", "Avandia", , "tea", "IBM", "love" "baseball" "BacteriaCausesCondition" ...

Recently-Learned Facts Lewitter

instance	iteration	date learned
banana nut chocolate chip bread is a baked good	446	03-nov-2011
<u>nisha_ganatra</u> is an <u>African person</u>	446	03-nov-2011
<u>corky_miller</u> is a <u>male</u>	445	01-nov-2011
<u>two_marriages</u> is a <u>parlour game</u>	443	29-oct-2011
tanner_police_department is a part of the government	446	03-nov-2011
georgia_aquarium is a tourist attraction in the city atlanta	448	05-nov-2011
florida hospital is a hospital in the city orlando	446	03-nov-2011
adobe_systems_incorporated is a company also known as adobe	445	01-nov-2011
the sports team <u>yankees</u> was the <u>winner of n1923 world series</u>	448	05-nov-2011
north_arm is a city located in the state or province ohio	446	03-nov-2011

NELL Today

- <u>http://rtw.ml.cmu.edu</u> ← follow NELL here
- eg. "diabetes", "Avandia", , "tea", "IBM", "love" "baseball" "BacteriaCausesCondition" ...

Recently-Learned Facts witter

instance	iteration	date learned	con
the rembrandts is a <u>TV show</u>	535	21-mar-2012	
alexander_memorial_coliseum is a building	535	21-mar-2012	
<u>jason bergmann</u> is an <u>athlete</u>	535	21-mar-2012	
cnc_costume_national_shoes is a kind of clothing	535	21-mar-2012	
<u>korinthia</u> is a <u>state or a province</u>	535	21-mar-2012	
children is an animal that can develop problems	536	23-mar-2012	
burlington is a city that lies on the river skagit	536	23-mar-2012	
grains is a generalization of maize	536	23-mar-2012	
j <u>s bach</u> is a musician who <u>plays</u> the <u>piano</u>	539	26-mar-2012	
mary is the parent of god_the_son	538	25-mar-2012	

NELL Today

- <u>http://rtw.ml.cmu.edu</u> ← follow NELL here
- eg. "diabetes", "Avandia", , "tea", "IBM", "love" "baseball" "BacteriaCausesCondition" ...

Recently-Learned Facts Lewitter

instance	iteration	date learned
hartsfield is an airport	554	22-apr-2012
ted marcoux is a commedian	554	22-apr-2012
graph paper is an office supply	559	01-may-2012
san antonio museum of art is a museum	554	22-apr-2012
south ossetia is a country	556	26-apr-2012
duke ellington is a musician who plays the piano	559	01-may-2012
classic books is a generalization of pride and prejudice	559	01-may-2012
state is a synonym for department	557	29-apr-2012
brookfield zoo is a tourist attraction in the city chicago	559	01-may-2012
ford motor is a company that produces falcon	559	01-may-2012

Semi-Supervised Bootstrap Learning

mayor of arg1 live in arg1

arg1 is home of traits such as arg1

Key Idea 1: Coupled semi-supervised training of many functions

hard (underconstrained) semi-supervised learning problem

much easier (more constrained) semi-supervised learning problem

Type 1 Coupling: Co-Training, Multi-View Learning

[Blum & Mitchell; 98] [Dasgupta et al; 01] [Ganchev et al., 08] [Sridharan & Kakade, 08] [Wang & Zhou, ICML10]

Type 2 Coupling: Multi-task, Structured Outputs

[Daume, 2008] [Bakhir et al., eds. 2007] [Roth et al., 2008] [Taskar et al., 2009] [Carlson et al., 2009]

Multi-view, Multi-Task Coupling

NP:

Learning Relations between NP's

Type 3 Coupling: Argument Types

playsSport(NP1,NP2) → athlete(NP1), sport(NP2)

Basic NELL Architecture

NELL: Learned reading strategies

Plays_Sport(arg1,arg2):

	igi,aigz).			
arg1_was_	_playing_arg2_arg2_megas	Predicate	Feature	Weight
arg1_was arg2_playe arg2_playe arg2_great arg2_leget arg2_opert arg2_opert arg2_great arg2_great arg2_great arg2_great arg2_great arg2_great arg2_great arg2_great arg2_great arg2_profe arg2_archi arg2_pros_ arg2_supe	playing_arg2 arg2_megas er_named_arg1 arg2_prod e_tiger_woods_of_arg2 ar ts_as_arg1 arg1_plays_arg nds_arg1 arg1_announced ations_chief_arg1 arg2_pla golfing_personalities_includ ts_like_arg1 arg2_players_ t_arg1 arg2_champ_arg1 essionals_such_as_arg1 arg arg1 arg2_stars_like_arg1 es_from_arg2 arg2_phenor tects_robert_trent_jones_ar arg1 arg2_stars_venus_a erstar_arg1 arg2_legend_a	mountain mountain mountain musicArtist musicArtist musicArtist newspaper newspaper newspaper newspaper university university university	LAST=peak LAST=mountain FIRST=mountain LAST=band POS=DT_NNS POS=DT_JJ_NN LAST=sun LAST=university POS=NN_NNS LAST=college PREFIX=uc LAST=state LAST=state	1.791 1.093 -0.875 1.853 1.412 -0.807 1.330 -0.318 -0.798 2.076 1.999 1.992 1.745
argz_playe	ers_is_arg1 arg2_pro_arg1	university	FIKS I=college	-1.381
Bradicata		visual a ruviovemen	Extraction Tomplate	1.282
Predicate	Web UKL		Extraction Template	
academicField athlete bird bookAuthor	http://scholendow.ais.msu.edu/stude http://www.quotes-search.com/d_oce http://www.michaelforsberg.com/sto http://lifebehindthecurve.com/	nt/ScholSearch.Asp cupation.aspx?o=+athlete ock.html	<pre> [X] - <a href="d_author.as <option>[X]</option> [X] by [Y]</pre></td><td>px?a=[X]"> –</pre>	

If coupled learning is the key, how can we get new coupling constraints?

Key Idea 2:

Discover New Coupling Constraints

• first order, probabilistic horn clause constraints:

0.93 athletePlaysSport(?x,?y) ← athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)

- connects previously uncoupled relation predicates
- infers new beliefs for KB

Example Learned Horn Clauses

- 0.95 athletePlaysSport(?x,basketball) ← athleteInLeague(?x,NBA)
- 0.93 athletePlaysSport(?x,?y) ← athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)
- 0.91 teamPlaysInLeague(?x,NHL) ← teamWonTrophy(?x,Stanley_Cup)
- 0.90 athleteInLeague(?x,?y) ←athletePlaysForTeam(?x,?z), teamPlaysInLeague(?z,?y)
- 0.88 cityInState(?x,?y) ← cityCapitalOfState(?x,?y), cityInCountry(?y,USA)
- 0.62* newspaperInCity(?x,New_York) ← companyEconomicSector(?x,media) generalizations(?x,blog)

Some rejected learned rules

teamPlaysInLeague{?x nba} ← teamPlaysSport{?x basketball}
0.94 [35 0 35] [positive negative unlabeled]

cityCapitalOfState{?x ?y} ← cityLocatedInState{?x ?y}, teamPlaysInLeague{?y nba} 0.80 [16 2 23]

teamplayssport{?x, basketball} ← generalizations{?x, university}
0.61 [246 124 3063]

Learned Probabilistic Horn Clause Rules

0.93 playsSport(?x,?y) ← playsForTeam(?x,?z), teamPlaysSport(?z,?y)

Key Idea 3: Automatically extend ontology

Ontology Extension (1)

[Mohamed et al., EMNLP 2011]

Goal:

• Add new relations to ontology

Approach:

- For each pair of categories C1, C2,
 - co-cluster pairs of known instances, and text contexts that connect them

Example Discovered Relations

[Mohamed et al. EMNLP 2011]

Category Pair	Text contexts	Extracted Instances	Suggested Name
MusicInstrument Musician	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	sitar , George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton	Master
Disease Disease	ARG1 is due to ARG2 ARG1 is caused by ARG2	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia	IsDueTo
CellType Chemical	ARG1 that release ARG2 ARG2 releasing ARG1	epithelial cells, surfactant neurons, serotonin mast cells, histomine	ThatRelease
Mammals Plant	ARG1 eat ARG2 ARG2 eating ARG1	koala bears, eucalyptus sheep, grasses goats, saplings	Eat
River City	ARG1 in heart of ARG2 ARG1 which flows through ARG2	Seine, Paris Nile, Cairo Tiber river, Rome	InHeartOf

NELL: recently self-added relations

- athleteWonAward
- animalEatsFood
- languageTaughtInCity
- clothingMadeFromPlant
- beverageServedWithFood
- fishServedWithFood
- athleteBeatAthlete
- athleteInjuredBodyPart
- arthropodFeedsOnInsect
- animalEatsVegetable
- plantRepresentsEmotion
- foodDecreasesRiskOfDisease

- clothingGoesWithClothing
- bacteriaCausesPhysCondition
- buildingMadeOfMaterial
- emotionAssociatedWithDisease
- foodCanCauseDisease
- agriculturalProductAttractsInsect
- arteryArisesFromArtery
- countryHasSportsFans
- bakedGoodServedWithBeverage
- beverageContainsProtein
- animalCanDevelopDisease
- beverageMadeFromBeverage

Key Idea 4: Cumulative, Staged Learning Learning X improves ability to learn Y

- 1. Classify noun phrases (NP's) by category
- 2. Classify NP pairs by relation
- 3. Discover rules to predict new relation instances
- 4. Learn which NP's (co)refer to which concepts
- 5. Discover new relations to extend ontology
- 6. Learn to infer relation instances via targeted random walks
- 7. Learn to assign temporal scope to beliefs
- 8. Learn to microread single sentences
- 9. Vision: co-train text and visual object recognition
- 10. Goal-driven reading: predict, then read to corroborate/correct
- 11. Make NELL a conversational agent on Twitter

Inference by KB Random Walks

[Lao et al, EMNLP 2011]

If:
$$x_1 \longrightarrow competes \longrightarrow x_2 \longrightarrow conomic \longrightarrow x_3$$

(x1,x2) (x2, x3) x_3

Then: economic sector (x1, x3)

Inference by KB Random Walks

[Lao et al, EMNLP 2011]

Infer Pr(R(x,y)): Trained logistic function for R, where ith feature is probability of arriving at node y when starting at node x, and taking a random walk along path type i CityLocatedInCountry(Pittsburgh) = ?

Pittsburgh

CityLocatedInCountry(Pittsburgh) = ?

[Lao et al, EMNLP 2011]

CityLocatedInCountry(Pittsburgh) = ?

CityLocatedInCountry(Pittsburgh) = ?

[Lao et al, EMNLP 2011]

CityLocatedInCountry(Pittsburgh) = ?

[Lao et al, EMNLP 2011]

CityLocatedInCountry(Pittsburgh) = ?

[Lao et al, EMNLP 2011]

CityLocatedInCountry(Pittsburgh) = ?

CityLocatedInCountry(Pittsburgh) = ?

0.32

0.20

CityInState, CityInstate⁻¹, CityLocatedInCountry AtLocation⁻¹, AtLocation, CityLocatedInCountry

Feature	Value
0.	8

[Lao et al, *EMNLP* 2011]

0.20

0.6

CityLocatedInCountry(Pittsburgh) = ?

AtLocation⁻¹, AtLocation, CityLocatedInCountry

[Lao et al, *EMNLP* 2011]

CityLocatedInCountry(Pittsburgh) = ?

CityLocatedInCountry(Pittsburgh) = U.S. p=0.58

Random walk inference: learned path types

CityLocatedInCountry(city, country):

8.04 cityliesonriver, cityliesonriver⁻¹, citylocatedincountry
5.42 hasofficeincity⁻¹, hasofficeincity, citylocatedincountry
4.98 cityalsoknownas, cityalsoknownas, citylocatedincountry
2.85 citycapitalofcountry, citylocatedincountry⁻¹, citylocatedincountry
2.29 agentactsinlocation⁻¹, agentactsinlocation, citylocatedincountry
1.22 statehascapital⁻¹, statelocatedincountry
0.66 citycapitalofcountry

7 of the 2985 paths for inferring CityLocatedInCountry

Random Walk Inference: Example

Rank 17 companies by probability competesWith(MSFT,X):

NELL/PRA ranking

Google Oracle IBM Apple SAP Yahoo Facebook Redhat Lenovo FedEx SAS Boeing Honda Dupont Lufthansa Exxon Pfizer

Random Walk Inference: Example

Rank 17 companies by probability competesWith(MSFT,X):

NELL/PRA rankingHuman Ranking (9 subjs)GoogleApple

Oracle IBM Apple SAP Yahoo Facebook Redhat Lenovo FedFx SAS Boeing Honda Dupont Lufthansa Exxon Pfizer

Google Yahoo IBM Redhat Oracle Facebook SAP SAS Lenovo Boeing Honda FedEx Dupont Exxon Lufthansa Pfizer

- Tractable (bounded length)
- 2. Anytime
- 3. Accuracy increases as KB grows
- 4. Addresses question of how to combine probabilities from different horn clauses

<u>demo</u>

Random walk inference: learned path types

CompetesWith(company, company):

KB graph augmented by Subj-Verb-Obj corpus statistics

- 5.29 companyAlsoKnownAs, competesWith
 2.12 companyAlsoKnownAs, producesProduct, agentInvolvedWith⁻¹
 0.77 companyAlsoKnownAs, *subj_offer_obj*, *subj_offer_obj*⁻¹
- 0.65 companyEconomicSector, companyEconomicSector⁻¹
- 0.19 companyAlsoKnownAs
- 0.38 companyAlsoKnownAs, companyAlsoKnownAs

6 of the 7966 path types learned for CompetesWith

Summary

Key ideas:

- Coupled semi-supervised learning
- Learn new coupling constraints (Horn clauses)
- Automatically extend ontology
- Learn progressively more challenging types of K
- Scalable random walk probabilistic inference
 - Integrating symbolic extracted beliefs,
 - + subsymbolic corpus statistics

thank you

and thanks to: Darpa, Google, NSF, Intel, Yahoo!, Microsoft, Fullbright