
Edmund M. Clarke

School of Computer Science

Carnegie Mellon University

Model Checking and the
Curse of Dimensionality

Turing's Quote on Program Verification

 “How can one check a routine in the
sense of making sure that it is right?”

 “The programmer should make a number
of definite assertions which can be
checked individually, and from which the
correctness of the whole program easily
follows.”

Quote by A. M. Turing on 24 June 1949 at the inaugural conference of the
EDSAC computer at the Mathematical Laboratory, Cambridge.

3

 Temporal Logic Model Checking

 Model checking is an automatic verification technique for finite state
concurrent systems.

 Developed independently by Clarke and Emerson and by Queille and
Sifakis in early 1980’s.

 The assertions written as formulas in propositional temporal logic.
(Pnueli 77)

 Verification procedure is algorithmic rather than deductive in nature.

4

Main Disadvantage

Curse of Dimensionality:

 “In view of all that we have said in the

foregoing sections, the many obstacles

we appear to have surmounted, what

casts the pall over our victory

celebration? It is the curse of

dimensionality, a malediction that has

plagued the scientist from the earliest

days.”

Richard E. Bellman.
Adaptive Control Processes: A Guided Tour.
Princeton University Press, 1961.

Image courtesy Time Inc.
Photographer Alfred Eisenstaedt.

6

http://www.gstatic.com/hostedimg/8d6b8498739a756f_large

Main Disadvantage (Cont.)

Curse of Dimensionality:

2-bit counter

0,0 0,1 1,1 1,0

n-bit counter has 2n states

7

1

2

3

a

b

c

|
|

 n states,
m processes

1,a

2,a 1,b

2,b 3,a 1,c

3,b 2,c

3,c

nm states

Main Disadvantage (Cont.)

8

Curse of Dimensionality:
 The number of states in a system grows
 exponentially with its dimensionality
 (i.e. number of variables or bits or processes).
 This makes the system harder to reason about.

Unavoidable in worst case, but steady progress over the past 30 years
using clever algorithms, data structures, and engineering

Main Disadvantage (Cont.)

9

Determines Patterns on Infinite Traces

Atomic Propositions

Boolean Operations

Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a

10

Determines Patterns on Infinite Traces

Atomic Propositions

Boolean Operations

Temporal operators

 a “a is true now”

X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a

11

Determines Patterns on Infinite Traces

Atomic Propositions

Boolean Operations

Temporal operators

 a “a is true now”
X a “a is true in the neXt state”

F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a

12

Determines Patterns on Infinite Traces

Atomic Propositions

Boolean Operations

Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”

G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a a a a a

13

Determines Patterns on Infinite Traces

Atomic Propositions

Boolean Operations

Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”

a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a a a a b

14

Branching Time (EC 80, BMP 81)

15

CTL: Computation Tree Logic

EF g “g will possibly become true”
16

CTL: Computation Tree Logic

AF g “g will necessarily become true”

17

CTL: Computation Tree Logic

AG g “g is an invariant”

18

CTL: Computation Tree Logic

EG g “g is a potential invariant”

19

CTL: Computation Tree Logic

CTL (CES 83-86) uses the temporal operators

 AX, AG, AF, AU

 EX, EG, EF, EU

CTL* allows complex nestings such as

 AXX, AGX, EXF, ...

20

 Model Checking Problem

 Let M be a state-transition graph.

 Let ƒ be an assertion or specification in temporal logic.

 Find all states s of M such that M, s satisfies ƒ.

• CTL Model Checking: CE 81; CES 83/86; QS 81/82.
• LTL Model Checking: LP 85.
• Automata Theoretic LTL Model Checking: VW 86.
• CTL* Model Checking: EL 85.

21

Trivial Example

~ Start
~ Close
~ Heat
~ Error

 Start
~ Close
~ Heat
 Error

~ Start
 Close
~ Heat
~ Error

~ Start
 Close
 Heat
~ Error

 Start
 Close
 Heat
~ Error

 Start
 Close
~ Heat
~ Error

 Start
 Close
~ Heat
 Error

Microwave Oven

22

State-transition graph
describes system evolving
over time.

Temporal Logic and Model Checking

 The oven doesn’t heat up until the door is closed.

 Not heat_up holds until door_closed

 (~ heat_up) U door_closed

23

Transition System
(Automaton, Kripke structure)

Hardware Description

(VERILOG, VHDL, SMV)
Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Model Checking

24

Transition System

Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Safety Property:

bad state unreachable:

satisfied

Initial State

Counterexamples

Program or circuit

25

Transition System

Program or circuit
Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Initial State

Safety Property:

bad state unreachable

Counterexample

Counterexamples

26

Transition System

Program or circuit
Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Initial State

Safety Property:

bad state unreachable

Counterexamples

Counterexample

27

Hardware Example: IEEE Futurebus+

 In 1992 we used Model Checking to verify the IEEE Futurebus+
cache coherence protocol.

 Found a number of previously undetected errors in the design.

 First time that a formal verification tool was used to find errors
in an IEEE standard.

 Development of the protocol began in 1988, but previous
attempts to validate it were informal.

28

 Symbolic Model Checking
 Burch, Clarke, McMillan, Dill, and Hwang 90;

 Ken McMillan’s thesis 92

.

 The Partial Order Reduction
 Valmari 90

 Godefroid 90

 Peled 94

 Gerard Holzmann’s SPIN

Four Big Breakthroughs in
Model Checking!

30

 Symbolic Model Checking
 Burch, Clarke, McMillan, Dill, and Hwang 90;

 Ken McMillan’s thesis 92

 1020 states.

 The Partial Order Reduction
 Valmari 90

 Godefroid 90

 Peled 94

 Gerard Holzmann’s SPIN

Four Big Breakthroughs in
Model Checking!

31

 Symbolic Model Checking
 Burch, Clarke, McMillan, Dill, and Hwang 90;

 Ken McMillan’s thesis 92

 10100 states . . .

 The Partial Order Reduction
 Valmari 90

 Godefroid 90

 Peled 94

 Gerard Holzmann’s SPIN

Four Big Breakthroughs in
Model Checking!

32

 Symbolic Model Checking
 Burch, Clarke, McMillan, Dill, and Hwang 90;

 Ken McMillan’s thesis 92

 10120 states

 The Partial Order Reduction
 Valmari 90

 Godefroid 90

 Peled 94

 Gerard Holzmann’s SPIN

Four Big Breakthroughs in
Model Checking!

33

 Bounded Model Checking
 Biere, Cimatti, Clarke, Zhu 99

 Using Fast SAT solvers

 Can handle thousands

 of state elements

Can the given property fail in k-steps?

I(V0) Λ T(V0,V1) Λ … Λ T(Vk-1,Vk) Λ (¬ P(V0) V … V ¬ P(Vk))

k-steps
Property fails
in some step Initial state

BMC in practice: Circuit with 9510 latches, 9499 inputs
BMC formula has 4 x 106 variables, 1.2 x 107 clauses
Shortest bug of length 37 found in 69 seconds

Four Big Breakthroughs in
Model Checking (Cont.)

34

Four Big Breakthroughs in
Model Checking (Cont.)

 Localization Reduction

 Bob Kurshan 1994

 Counterexample Guided Abstraction Refinement (CEGAR)

 Clarke, Grumberg, Jha, Lu, Veith 2000

 Used in most software model checkers

35

Existential Abstraction

M

M

Given an abstraction function  : S  S, the concrete states are grouped and
mapped into abstract states:

  
Preservation Theorem ?

36

Preservation Theorem

 Theorem (Clarke, Grumberg, Long): If property holds on
abstract model, it holds on concrete model

 Technical conditions

Property is universal i.e., no existential quantifiers

Atomic formulas respect abstraction mapping

 Converse implication is not true !

37

Spurious Behavior

AG AF red
“Every path necessarily leads
back to red.”

Spurious Counterexample:
<go><go><go><go> ...

“red”

“go”

Artifact of the abstraction !

38

Automatic Abstraction

M
Original Model

Refinement

Refinement

M Initial Abstraction Spurious

Spurious
counterexample

Validation or
Counterexample Correct !

39

CEGAR
CounterExample-Guided Abstraction Refinement

Circuit or
Program

Initial
Abstraction

Simulator

No error
or bug found

Property
holds

Simulation
sucessful

Bug found

Abstraction refinement Refinement

Model
Checker

Verification

Spurious counterexample

Counterexample

Abstract
Model

40

Future Challenge
Is it possible to model check software?

According to Wired News on Nov 10, 2005:

 “When Bill Gates announced that the
technology was under development at the
2002 Windows Engineering Conference, he
called it the Holy Grail of computer science”

41

What Makes Software Model Checking
Different ?

 Large/unbounded base types: int, float, string

 User-defined types/classes

 Pointers/aliasing + unbounded #’s of heap-allocated cells

 Procedure calls/recursion/calls through pointers/dynamic method
lookup/overloading

 Concurrency + unbounded #’s of threads

42

What Makes Software Model Checking
Different ?

 Templates/generics/include files

 Interrupts/exceptions/callbacks

 Use of secondary storage: files, databases

 Absent source code for: libraries, system calls, mobile code

 Esoteric features: continuations, self-modifying code

 Size (e.g., MS Word = 1.4 MLOC)

43

What Does It Mean to Model Check
Software?

 Combine static analysis and model checking
 Use static analysis to extract a model K from an abstraction of the

program.

 Then check that f is true in K (K |= f),
 where f is the specification of the program.

 - SLAM (Microsoft)
 - Bandera (Kansas State)
 - MAGIC, SATABS (CMU)
 - BLAST (Berkeley)
 - F-Soft (NEC)

 44

Software Example: Device Driver Code

 Also according to Wired News:

 “Microsoft has developed a tool called Static Device
Verifier or SDV, that uses ‘Model Checking’ to analyze
the source code for Windows drivers and see if the code
that the programmer wrote matches a mathematical
model of what a Windows device driver should do. If the
driver doesn’t match the model, the SDV warns that the
driver might contain a bug.”

(Ball and Rajamani, Microsoft)

48

Future Challenge
Can We Debug This Circuit?

Kurt W. Kohn, Molecular Biology of the Cell 1999 49

P53, DNA Repair, and Apoptosis

 “The p53 pathway has been shown to mediate cellular stress responses; p53 can
initiate DNA repair, cell-cycle arrest, senescence and, importantly, apoptosis.
These responses have been implicated in an individual's ability to suppress
tumor formation and to respond to many types of cancer therapy.”

 (A. Vazquez, E. Bond, A. Levine, G. Bond. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev
Drug Discovery 2008 Dec;7(12):979-87.)

 The protein p53 has been described as the guardian of the genome referring to
its role in preventing genome mutation.

 In 1993, p53 was voted molecule of the year by Science Magazine.

50

