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Abstract

A new Lévy process prior is proposed for an uncountable collection of covariate-
dependent feature-learning measures; the model is called the kernel beta process
(KBP). Available covariates are handled efficiently via the kernel construction,
with covariates assumed observed with each data sample (“customer”), and latent
covariates learned for each feature (“dish”). Each customer selects dishes from an
infinite buffet, in a manner analogous to the beta process, with the added constraint
that a customer first decides probabilistically whether to “consider” a dish, based
on the distance in covariate space between the customer and dish. If a customer
does consider a particular dish, that dish is then selected probabilistically as in
the beta process. The beta process is recovered as a limiting case of the KBP. An
efficient Gibbs sampler is developed for computations, and state-of-the-art results
are presented for image processing and music analysis tasks.

1 Introduction

Feature learning is an important problem in statistics and machine learning, characterized by the goal
of (typically) inferring a low-dimensional set of features for representation of high-dimensional data.
It is desirable to perform such analysis in a nonparametric manner, such that the number of features
may be learned, rather than a priori set. A powerful tool for such learning is the Indian buffet
process (IBP) [4], in which the data samples serve as “customers”, and the potential features serve
as “dishes”. It has recently been demonstrated that the IBP corresponds to a marginalization of a
beta-Bernoulli process [15]. The IBP and beta-Bernoulli constructions have found significant utility
in factor analysis [7, 17], in which one wishes to infer the number of factors needed to represent
data of interest. The beta process was developed originally by Hjort [5] as a Lévy process prior for
“hazard measures”, and was recently extended for use in feature learning [15], the interest of this
paper; we therefore here refer to it as a “feature-learning measure.”

The beta process is an example of a Lévy process [6], another example of which is the gamma
process [1]; the normalized gamma process is well known as the Dirichlet process [3, 14]. A key
characteristic of such models is that the data samples are assumed exchangeable, meaning that the
order/indices of the data may be permuted with no change in the model.

∗The first two authors contributed equally to this work.
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An important line of research concerns removal of the assumption of exchangeability, allowing
incorporation of covariates (e.g., spatial/temporal coordinates that may be available with the data).
As an example, MacEachern introduced the dependent Dirichlet process [8]. In the context of feature
learning, the phylogenetic IBP removes the assumption of sample exchangeability by imposing
prior knowledge on inter-sample relationships via a tree structure [9]. The form of the tree may be
constituted as a result of covariates that are available with the samples, but the tree is not necessarily
unique. A dependent IBP (dIBP) model has been introduced recently, with a hierarchical Gaussian
process (GP) used to account for covariate dependence [16]; however, the use of a GP may constitute
challenges for large-scale problems. Recently a dependent hierarchical beta process (dHBP) has
been developed, yielding encouraging results [18]. However, the dHBP has the disadvantage of
assigning a kernel to each data sample, and therefore it scales unfavorably as the number of samples
increases.

In this paper we develop a new Lévy process prior, termed the kernel beta process (KBP), which
yields an uncountable number of covariate-dependent feature-learning measures, with the beta pro-
cess a special case. This model may be interpreted as inferring covariates x∗i for each feature (dish),
indexed by i. The generative process by which the nth data sample, with covariates xn, selects
features may be viewed as a two-step process. First the nth customer (data sample) decides whether
to “examine” dish i by drawing z(1)

ni ∼ Bernoulli(K(xn,x
∗
i ;ψ
∗
i )), where ψ∗i are dish-dependent

kernel parameters that are also inferred (the {ψ∗i } defining the meaning of proximity/locality in co-
variate space). The kernels are designed to satisfy K(xn,x

∗
i ;ψ
∗
i ) ∈ (0, 1], K(x∗i ,x

∗
i ;ψ
∗
i ) = 1,

and K(xn,x
∗
i ;ψ
∗
i ) → 0 as ‖xn − x∗i ‖2 → ∞. In the second step, if z(1)

ni = 1, customer n draws
z

(2)
ni ∼ Bernoulli(πi), and if z(2)

ni = 1, the feature associated with dish i is employed by data sample
n. The parameters {x∗i , ψ∗i , πi} are inferred by the model. After computing the posterior distribu-
tion on model parameters, the number of kernels required to represent the measures is defined by
the number of features employed from the buffet (typically small relative to the data size); this is a
significant computational savings relative to [18, 16], for which the complexity of the model is tied
to the number of data samples, even if a small number of features are ultimately employed.

In addition to introducing this new Lévy process, we examine its properties, and demonstrate how
it may be efficiently applied in important data analysis problems. The hierarchical construction of
the KBP is fully conjugate, admitting convenient Gibbs-sampling (complicated sampling methods
were required for the method in [18]). To demonstrate the utility of the model we consider image-
processing and music-analysis applications, for which state-of-the-art performance is demonstrated
compared to other relevant methods.

2 Kernel Beta Process

2.1 Review of beta and Bernoulli processes

A beta process B ∼ BP(c,B0) is a distribution on positive random measures over the space (Ω,F).
Parameter c(ω) is a positive function over ω ∈ Ω, and B0 is the base measure defined over Ω. The
beta process is an example of a Lévy process, and the Lévy measure of BP(c,B0) is

ν(dπ, dω) = c(ω)π−1(1− π)c(ω)−1dπB0(dω) (1)

To draw B, one draws a set of points (ωi, πi) ∈ Ω × [0, 1] from a Poisson process with measure ν,
yielding

B =

∞∑
i=1

πiδωi
(2)

where δωi
is a unit point measure at ωi; B is therefore a discrete measure, with probabil-

ity one. The infinite sum in (2) is a consequence of drawing Poisson(λ) atoms {ωi, πi}, with
λ =

∫
Ω

∫
[0,1]

ν(dω, dπ) =∞. Additionally, for any set A ⊂ F , B(A) =
∑
i: ωi∈A πi.

If Zn ∼ BeP(B) is the nth draw from a Bernoulli process, with B defined as in (2), then

Zn =

∞∑
i=1

bniδωi
, bni ∼ Bernoulli(πi) (3)
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A set of N such draws, {Zn}n=1,N , may be used to define whether feature ωi ∈ Ω is utilized to
represent the nth data sample, where bni = 1 if feature ωi is employed, and bni = 0 otherwise. One
may marginalize out the measure B analytically, yielding conditional probabilities for the {Zn} that
correspond to the Indian buffet process [15, 4].

2.2 Covariate-dependent Lévy process

In the above beta-Bernoulli construction, the same measure B ∼ BP(c,B0) is employed for gen-
eration of all {Zn}, implying that each of the N samples have the same probabilities {πi} for use
of the respective features {ωi}. We now assume that with each of the N samples of interest there
are an associated set of covariates, denoted respectively as {xn}, with each xn ∈ X . We wish to
impose that if samples n and n′ have similar covariates xn and xn′ , that it is probable that they will
employ a similar subset of the features {ωi}; if the covariates are distinct it is less probable that
feature sharing will be manifested.

Generalizing (2), consider

B =

∞∑
i=1

γiδωi
, ωi ∼ B0 (4)

where γi = {γi(x) : x ∈ X} is a stochastic process (random function) from X → [0, 1] (drawn in-
dependently from the {ωi}). Hence, B is a dependent collection of Lévy processes with the measure
specific to covariate x ∈ X being Bx =

∑∞
i=1 γi(x)δωi

. This constitutes a general specification,
with several interesting special cases. For example, one might consider γi(x) = g{µi(x)}, where
g : R → [0, 1] is any monotone differentiable link function and µi(x) : X → R may be modeled
as a Gaussian process [10], or related kernel-based construction. To choose g{µi(x)} one can po-
tentially use models for the predictor-dependent breaks in probit, logistic or kernel stick-breaking
processes [13, 11, 2]. In the remainder of this paper we propose a special case for design of γi(x),
termed the kernel beta process (KBP).

2.3 Characteristic function of the kernel beta process

Recall from Hjort [5] that B ∼ BP(c(ω), B0) is a beta process on measure space (Ω,F) if its
characteristic function satisfies

E[ejuB(A)] = exp{
∫

[0,1]×A
(ejuπ − 1)ν(dπ, dω)} (5)

where here j =
√
−1, and A is any subset in F . The beta process is a particular class of the Lévy

process, with ν(dπ, dω) defined as in (1).

For kernel K(x,x∗;ψ∗), let x ∈ X , x∗ ∈ X , and ψ∗ ∈ Ψ; it is assumed that K(x,x∗;ψ∗) ∈ [0, 1]
for all x, x∗ and ψ∗. As a specific example, for the radial basis function K(x,x∗;ψ∗) =
exp[−ψ∗‖x − x∗‖2], where ψ∗ ∈ R+. Let x∗ represent random variables drawn from proba-
bility measure H , with support on X , and ψ∗ is also a random variable drawn from an appropriate
probability measure Q with support over Ψ (e.g., in the context of the radial basis function, ψ∗ are
drawn from a probability measure with support over R+). We now define a new Lévy measure

νX = H(dx∗)Q(dψ∗)ν(dπ, dω) (6)

where ν(dπ, dω) is the Lévy measure associated with the beta process, defined in (1).

Theorem 1 Assume parameters {x∗i , ψ∗i , πi, ωi} are drawn from measure νX in (6), and that the
following measure is constituted

Bx =

∞∑
i=1

πiK(x,x∗i ;ψ
∗
i )δωi

(7)

which may be evaluated for any covariate x ∈ X . For any finite set of co-
variates S = {x1, . . . ,x|S|}, we define the |S|-dimensional random vector K =

(K(x1,x
∗;ψ∗), . . . ,K(x|S|,x

∗;ψ∗))T , with random variables x∗ and ψ∗ drawn from H and
Q, respectively. For any set A ⊂ F , the B evaluated at covariates S, on the set A,
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yields an |S|-dimensional random vector B(A) = (Bx1
(A), . . . ,Bx|S|(A))T , where Bx(A) =∑

i: ωi∈A πiK(x,x∗i ;ψ
∗
i ). Expression (7) is a covariate-dependent Lévy process with Lévy mea-

sure (6), and characteristic function for an arbitrary set of covariates S satisfying

E[ej<u,B(A)>] = exp{
∫
X×Ψ×[0,1]×A

(ej<u,Kπ> − 1)νX (dx∗, dψ∗, dπ, dω)} (8)

2

A proof is provided in the Supplemental Material. Additionally, for notational convenience, below a
draw of (7), valid for all covariates in X , is denoted B ∼ KBP(c,B0, H,Q), with c and B0 defining
ν(dπ, dω) in (1).

2.4 Relationship to the beta-Bernoulli process

If the covariate-dependent measure Bx in (7) is employed to define covariate-dependent feature us-
age, then Zx ∼ BeP(Bx), generalizing (3). Hence, given {x∗i , ψ∗i , πi}, the feature-usage measure is
Zx =

∑∞
i=1 bxiδωi

, with bxi ∼ Bernoulli(πiK(x,x∗i ;ψ
∗
i )). Note that it is equivalent in distribution

to express bxi = z
(1)
xi z

(2)
xi , with z(1)

xi ∼ Bernoulli(K(x,x∗i ;ψ
∗
i )) and z(2)

xi ∼ Bernoulli(πi). This
model therefore yields the two-step generalization of the generative process of the beta-Bernoulli
process discussed in the Introduction. The condition z(1)

xi = 1 only has a high probability when
observed covariates x are near the (latent/inferred) covariates x∗i . It is deemed attractive that this
intuitive generative process comes as a result of a rigorous Lévy process construction, the properties
of which are summarized next.

2.5 Properties of B

For all Borel subsets A ∈ F , if B is drawn from the KBP and for covariates x,x′ ∈ X , we have

E[Bx(A)] = B0(A)E(Kx)

Cov(Bx(A),Bx′(A)) = E(KxKx′)

∫
A

B0(dω)(1−B0(dω))

c(ω) + 1
− Cov(Kx,Kx′)

∫
A
B2

0(dω)

where, E(Kx) =
∫
X×Ψ

K(x,x∗;ψ∗)H(dx∗)Q(dψ∗). If K(x,x∗;ψ∗) = 1 for all x ∈ X ,
E(Kx) = E(KxKx′) = 1, and Cov(Kx,Kx′) = 0, and the above results reduce to the those
for the original BP [15].

Assume c(ω) = c, where c ∈ R+ is a constant, and let Kx = (K(x,x∗1;ψ∗1),K(x,x∗2;ψ∗2), . . . )T

represent an infinite-dimensional vector, then for fixed kernel parameters {x∗i , ψ∗i },

Corr(Bx(A),Bx′(A)) =
<Kx,Kx′ >

‖Kx‖2 · ‖Kx′‖2
(9)

where it is assumed < Kx,Kx′ >, ‖Kx‖2, ‖Kx′‖2 are finite; the latter condition is always met
when we (in practice) truncate the number of terms used in (7). The expression in (9) clearly imposes
the desired property of high correlation in Bx and Bx′ when x and x′ are proximate.

Proofs of the above properties are provided in the Supplemental Material.

3 Applications

3.1 Model construction

We develop a covariate-dependent factor model, generalizing [7, 17], which did not consider covari-
ates. Consider data yn ∈ RM with associated covariates xn ∈ RL, with n = 1, . . . , N . The factor
loadings in the factor model here play the role of “dishes” in the buffet analogy, and we model the
data as

yn = D(wn ◦ bn) + εn

Zxn
∼ BeP(Bxn

), B ∼ KBP(c,B0, H,Q), B0 ∼ DP(α0G0) (10)

wn ∼ N (0, α−1
1 IT ), εn ∼ N (0, α−1

2 IM )
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with gamma priors placed on α0, α1 and α2, with ◦ representing the pointwise (Hadamard) vector
product, and with IM representing the M × M identity matrix. The Dirichlet process [3] base
measure G0 = N (0, 1

M IM ), and the KBP base measure B0 is a mixture of atoms (factor loadings).
For the applications considered it is important that the same atoms be reused at different points {x∗i }
in covariate space, to allow for repeated structure to be manifested as a function of space or time,
within the image and music applications, respectively. The columns of D are defined respectively
by (ω1, ω2, . . . ) in B, and the vector bn = (bn1, bn2, . . . ) with bnk = Zxn(ωk). Note that B is
drawn once from the KBP, and when drawing the Zxn we evaluate B as defined by the respective
covariate xn.

When implementing the KBP, we truncate the sum in (7) to T terms, and draw the πi ∼
Beta(1/T, 1), which corresponds to setting c = 1. We set T large, and the model infers the subset
of {πi}i=1,T that have significant amplitude, thereby estimating the number of factors needed for
representation of the data. In practice we let H and Q be multinomial distributions over a discrete
and finite set of, respectively, locations for {x∗i } and kernel parameters for {ψ∗i }, details of which
are discussed in the specific examples.

In (10), the ith column of D, denoted Di, is drawn from B0, with B0 drawn from a Dirichlet
process (DP). There are multiple ways to perform such DP clustering, and here we apply the Pólya
urn scheme [3]. Assume D1,D2, . . . ,Di−1 are a series of i.i.d. random draws from B0, then the
successive conditional distribution of Di is of the following form:

Di|D1, . . . ,Di−1, α0, G0 ∼
Nu∑
l=1

n∗l
i− 1 + α0

δD∗l +
α0

i− 1 + α0
G0, (11)

where {D∗l }l=1,Nu
are the unique dictionary elements shared by the first i − 1 columns of D, and

n∗l =
∑i−1
j=1 δ(Dj = D∗l ). For model inference, an indicator variable ci is introduced for each Di,

and ci = l with a probability proportional to n∗l , with l = 1, . . . , Nu, with ci equal to Nu + 1 with
a probability controlled by α0. If ci = l for l = 1, . . . , Nu, Di takes the value D∗l ; otherwise Di is
drawn from the priorG0 = N (0, 1

M IM ), and a new dish/factor loading D∗Nu+1 is hence introduced.

3.2 Extensions

It is relatively straightforward to include additional model sophistication into (10), one example
of which we will consider in the context of the image-processing example. Specifically, in many
applications it is inappropriate to assume a Gaussian model for the noise or residual εn. In Section
4.3 we consider the following augmented noise model:

εn = λn ◦mn + ε̂n (12)
λn ∼ N (0, α−1

λ IM ), mnp ∼ Bernoulli(π̃n), π̃n ∼ Beta(a0, b0), ε̂n ∼ N (0, α−1
3 IM )

with gamma priors placed on αλ and α2, and with p = 1, . . . ,M . The term λn ◦mn accounts for
“spiky” noise, with potentially large amplitude, and π̂n represents the probability of spiky noise in
data sample n. This type of noise model was considered in [18], with which we compare.

3.3 Inference

The model inference is performed with a Gibbs sampler. Due to the limited space, only those
variables having update equations distinct from those in the BP-FA of [17] are included here.
Assume T is the truncation level for the number of dictionary elements, {Di}i=1,T ; Nu is the
number of unique dictionary elements values in the current Gibbs iteration, {D∗l }l=1,Nu . For the
applications considered in this paper, K(xn,x

∗
i ;ψ
∗
i ) is defined based on the Euclidean distance:

K(xn,x
∗
i ;ψ
∗
i ) = exp[−ψ∗i ||xn − x∗i ||2] for i = 1, . . . , T ; both ψ∗i and x∗i are updated from multi-

nomial distributions (defining Q and H , respectively) over a set of discretized values with a uniform
prior for each; more details on this are discussed in Sec. 4.

• Update {D∗l }l=1,L: D∗l ∼ N (µl,Σl),

µl = Σl[α2

N∑
n=1

∑
i:ci=l

(bniwni)y
−l
n ], Σl = [α2

N∑
n=1

∑
i:ci=l

(bniwni)
2 +M ]−1IM ,
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where y−ln = yn −
∑
i:ci 6=l Di(bniwni).

• Update {ci}i=1,T : p(ci) ∼ Mult(pi),

p(ci = l|−) ∝

{
n∗l
−i

T−1+α0

∏N
n=1 exp{−α2

2 ‖y
−i
n −D∗l (bniwni)‖22}, if l is previously used,

α0

T−1+α0

∏N
n=1 exp{−α2

2 ‖y
−i
n −D∗lnew(bniwni)‖22}, if l = lnew,

where n∗l
−i =

∑
j:j 6=i δ(Dj = D∗l ), and y−in = yn −

∑
k:k 6=i Dk(bnkwnk); pi is realized

by normalizing the above equation.

• Update {Zxn}n=1,N : for Zxn , update each component p(bni) ∼ Bernoulli(vni) for
i = 1, . . . ,K,

p(bni = 1)

p(bni = 0)
=

exp{−α2

2

[
DT
i Diw

2
ni − 2wniD

T
i y
−i
n

]
}πiK(xn,x

∗
i ;ψ
∗
i )

1− πiK(xn,x∗i ;ψ
∗
i )

.

vni is calculated by normalizing p(bni) with the above constraint.

• Update {πi}i=1,T :
Introduce two sets of auxiliary variables {z(1)

ni }i=1,T and {z(2)
ni }i=1,T for each data yn.

Assume z(1)
ni ∼ Bernoulli(πi) and z(2)

ni ∼ Bernoulli(K(xn,x
∗
i ;ψ
∗
i )). For each specific n,

– If bni = 1, z(1)
ni = 1 and z(2)

ni = 1;

– If bni = 0,


p(z

(1)
ni = 0, z

(2)
ni = 0|bni = 0) =

(1−πi)
(

1−K(xn,x
∗
i ;ψ∗i )

)
1−πiK(xn,x∗i ;ψ∗i )

p(z
(1)
ni = 0, z

(2)
ni = 1|bni = 0) =

(1−πi)K(xn,x
∗
i ;ψ∗i )

1−πiK(xn,x∗i ;ψ∗i )

p(z
(1)
ni = 1, z

(2)
ni = 0|bni = 0) =

πi

(
1−K(xn,x

∗
i ;ψ∗i )

)
1−πiK(xn,x∗i ;ψ∗i )

From the above equations, we derive the conditional distribution for πi,

πi ∼ Beta
( 1

T
+
∑
n

z
(1)
ni , 1 +

∑
n

(1− z(1)
ni )
)
.

4 Results

4.1 Hyperparameter settings

For both α1 and α2 the corresponding prior was set to Gamma(10−6, 10−6); the concentration pa-
rameter α0 was given a prior Gamma(1, 0.1). For both experiments below, the number of dictionary
elements T was truncated to 256, the number of unique dictionary element values was initialized
to 100, and {πi}i=1,T were initialized to 0.5. All {ψ∗i }i=1,T were initialized to 10−5 and updated
from a set {10−5, 10−4, 10−3, 10−2, 10−1, 1}with a uniform priorQ. The remaining variables were
initialized randomly. No parameter tuning or optimization has been performed.

4.2 Music analysis

We consider the same music piece as described in [12]: “A Day in the Life” from the Beatles’ album
Sgt. Pepper’s Lonely Hearts Club Band. The acoustic signal was sampled at 22.05 KHz and divided
into 50 ms contiguous frames; 40-dimensional Mel frequency cepstral coefficients (MFCCs) were
extracted from each frame, shown in Figure 1(a).

A typical goal of music analysis is to infer interrelationships within the music piece, as a function
of time [12]. For the audio data, each MFCC vector yn has an associated time index, the latter used
as the covariate xn. The finite set of temporal sample points (covariates) were employed to define a
library for the {x∗i }, and H is a uniform distribution over this set. After 2000 burn-in iterations, we
collected samples every five iterations. Figure 1(b) shows the frequency for the number of unique
dictionary elements used by the data, based on the 1600 collected samples; and Figure 1(c) shows
the frequency for the number of total dictionary elements used.

With the model defined in (10), the sparse vector bn◦wn indicates the importance of each dictionary
element from {Di}i=1,T to data yn. Each of these N vectors {bn ◦ wn}n=1,N was normalized
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Figure 1: (a) MFCCs features used in music analysis, where the horizontal axis corresponds to time, for
“A Day in the Life”. Based on the Gibbs collection samples: (b) frequency on number of unique dictionary
elements, and (c) total number of dictionary elements.

within each Gibbs sample, and used to compute a correlation matrix associated with the N time
points in the music. Finally, this matrix was averaged across the collection samples, to yield a
correlation matrix relating one part of the music to all others. For a fair comparison between our
methods and the model proposed in [12] (which used an HMM, and computed correlations over
windows of time), we divided the whole piece into multiple consecutive short-time windows. Each
temporal window includes 75 consecutive feature vectors, and we compute the average correlation
coefficients between the features within each pair of windows. There were 88 temporal windows
in total (each temporal window is de noted as a sequence in Figure 2), and the dimension of the
correlation matrix is accordingly 88 × 88. The computed correlation matrix for the proposed KBP
model is presented in Figure 2(a).

We compared KBP performance with results based on BP-FA [17] in which covariates are not em-
ployed, and with results from the dynamic clustering model in [12], in which a dynamic HMM is
employed (in [12] a dynamic HDP, or dHDP, was used in concert with an HMM). The BP-FA results
correspond to replacing the KBP with a BP. The correlation matrix computed from the BP-FA and
the dHDP-HMM [12] are shown in Figures 2(b) and (c), respectively. The dHDP-HMM results yield
a reasonably good segmentation of the music, but it is unable to infer subtle differences in the music
over time (for example, all voices in the music are clustered together, even if they are different).
Since the BP-FA does not capture as much localized information in the music (the probability of
dictionary usage is the same for all temporal positions), it does not manifest as good a music seg-
mentation as the dHDP-HMM. By contrast, the KBP-FA model yields a good music segmentation,
while also capturing subtle differences in the music over time (e.g., in voices). Note that the use of
the DP to allow repeated use of dictionary elements as a function of time (covariates) is important
here, due to the repetition of structure in the piece. One may listen to the music and observe the
segmentation at http://www.youtube.com/watch?v=35YhHEbIlEI.
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Figure 2: Inference of relationships in music as a function of time, as computed via a correlation of the
dictionary-usage weights, for (a) and (b), and based upon state usage in an HMM, for (c). Results are shown
for “A Day in the Life.” The results in (c) are from [12], as a courtesy from the authors of that paper. (a)
KBP-FA, (b) BP-FA, (c) dHDP-HMM .

4.3 Image interpolation and denoising

We consider image interpolation and denoising as two additional potential applications. In both of
these examples each image is divided into N 8 × 8 overlapping patches, and each patch is stacked
into a vector of length M = 64, constituting observation yn ∈ RM . The covariate xn represents the
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patch coordinates in the 2-D space. The probability measureH corresponds to a uniform distribution
over the centers of all 8 × 8 patches. The images were recovered based on the average of the
collection samples, and each pixel was averaged across all overlapping patches in which it resided.
For the image-processing examples, 5000 Gibbs samples were run, with the first 2000 discarded as
burn-in.

For image interpolation, we only observe a fraction of the image pixels, sampled uniformly at ran-
dom. The model infers the underlying dictionary D in the presence of this missing data, as well as
the weights on the dictionary elements required for representing the observed components of {yn};
using the inferred dictionary and associated weights, one may readily impute the missing pixel val-
ues. In Table 1 we present average PSNR values on the recovered pixel values, as a function of
the fraction of pixels that are observed (20% in Table 1 means that 80% of the pixels are missing
uniformly at random). Comparisons are made between a model based on BP and one based on the
proposed KBP; the latter generally performs better, particularly when a large fraction of the pixels
are missing. The proposed algorithm yields results that are comparable to those in [18], which also
employed covariates within the BP construc tion. However, the proposed KBP construction has
the significant computational advantages of only requiring kernels centered at the locations of the
dictionary-dependent covariates {x∗i }, while the model in [18] has a kernel for each of the image
patches, and therefore it scales unfavorably for large images.

Table 1: Comparison of BP and KBP for interpolating images with pixels missing uniformly at random,
using standard image-processing images. The top and bottom rows of each cell show results of BP and KBP,
respectively. Results are shown when 20%, 30% and 50% of the pixels are observed, selected uniformly at
random.

RATIO C.MAN HOUSE PEPPERS LENA BARBARA BOATS F.PRINT MAN COUPLE HILL

20% 23.75 29.75 25.56 30.97 26.84 27.84 26.49 28.29 27.76 29.38
24.02 30.89 26.29 31.38 28.93 28.11 26.89 28.37 28.03 29.67

30% 25.59 33.09 28.64 33.30 30.13 30.20 29.23 29.89 29.97 31.19
25.75 34.02 29.29 33.33 31.46 30.24 29.37 30.12 30.33 31.25

50% 28.66 38.26 32.53 36.79 35.95 33.05 33.50 33.19 33.61 34.19
28.78 38.35 32.69 35.89 36.03 33.18 32.18 32.35 32.35 32.60

In the image-denoising example in Figure 3 the images were corrupted with both white Gaussian
noise (WGN) and sparse spiky noise, as considered in [18]. The sparse spiky noise exists in partic-
ular pixels, selected uniformly at random, with amplitude distributed uniformly between −255 and
255. For the pepper image, 15% of the pixels were corrupted by spiky noise, and the standard devi-
ation of the WGN was 15; for the house image, 10% of the pixels were corrupted by spiky noise and
the standard deviation of WGN was 10. We compared with different methods on both two images:
the augmented KBP-FA model (KBP-FA+) in Sec. 3.2, the BP-FA model augmented with a term for
spiky noise (BP-FA+) and the original BP-FA model. The model proposed with KBP showed the
best denoising result for both visual and quantitative evaluations. Again, these results are compara-
ble to those in [18], with the significant computational advant age discussed above. Note that here
the imposition of covariates and the KBP yields marked improvements in this application, relative
to BP-FA alone.

Figure 3: Denoising Result: the first column shows the noisy images (PSNR is 15.56 dB for Peppers and
17.54 dB for House); the second and third column shows the results inferred from the BP-FA model (PSNR
is 16.31 dB for Peppers and 17.95 dB for House), with the dictionary elements shown in column two and the
reconstruction in column three; the fourth and fifth columns show results from BP-FA+ (PSNR is 23.06 dB
for Peppers and 26.71 dB for House); the sixth and seventh column shows the results of the KBP-FA+ (PSNR
is 27.37 dB for Peppers and 34.89 dB for House). In each case the dictionaries are ordered based on their
frequency of usage, starting from top-left.
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5 Summary

A new Lévy process, the kernel beta process, has been developed for the problem of nonparametric
Bayesian feature learning, with example results presented for music analysis, image denoising, and
image interpolation. In addition to presenting theoretical properties of the model, state-of-the-art
results are realized on these learning tasks. The inference is performed via a Gibbs sampler, with
analytic update equations. Concerning computational costs, for the music-analysis problem, for
example, the BP model required around 1 second per Gibbs iteration, with KBP requiring about 3
seconds, with results run on a PC with 2.4GHz CPU, in non-optimized MatlabTM.
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