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Abstract

Modern classification tasks usually involve many class labels and can be informed
by a broad range of features. Many of these tasks are tackled by constructing a
set of classifiers, which are then applied at test time and then pieced together in a
fixed procedure determined in advance or at training time. Wepresent an active
classification process at the test time, where each classifier in a large ensemble
is viewed as a potential observation that might inform our classification process.
Observations are then selected dynamically based on previous observations, using
a value-theoretic computation that balances an estimate ofthe expected classifica-
tion gain from each observation as well as its computationalcost. The expected
classification gain is computed using a probabilistic modelthat uses the outcome
from previous observations. This active classification process is applied at test
time for each individual test instance, resulting in an efficient instance-specific de-
cision path. We demonstrate the benefit of the active scheme on various real-world
datasets, and show that it can achieve comparable or even higher classification ac-
curacy at a fraction of the computational costs of traditional methods.

1 Introduction

As the scope of machine learning applications has increased, the complexity of the classification
tasks that are commonly tackled has grown dramatically. On one dimension, many classification
problems involve hundreds or even thousands of possible classes [8]. On another dimension, re-
searchers have spent considerable effort developing new feature sets for particular applications, or
new types of kernels. For example, in an image labeling task,we have the option of using GIST
feature [26], SIFT feature [23], spatial HOG feature [33], Object Bank [21] and more. The benefits
of combining information from different types of features can be very significant [12, 33].

To solve a complex classification problem, many researchershave resorted to ensemble methods, in
which multiple classifiers are combined to achieve an accurate classification decision. For example,
the Viola-Jones classifier [32] uses a cascade of classifiers, each of which focuses on different spatial
and appearance patterns. Boosting [10] constructs a committee of weak classifiers, each of which
focuses on different input distributions. Multiclass classification problems are very often reduced
to a set of simpler (often binary) decisions, including one-vs-one [11], one-vs-all, error-correcting
output codes [9, 1], or tree-based approaches [27, 13, 3]. Intuitively, different classifiers provide
different “expertise” in making certain distinctions thatcan inform the classification task. However,
as we discuss in Section 2, most of these methods use a fixed procedure determined at training time
to apply the classifiers without adapting to each individualtest instance.

In this paper, we take an active and adaptive approach to combine multiple classifiers/features at
test time, based on the idea of value of information [16, 17, 24, 22]. At training time, we construct
a rich family of classifiers, which may vary in the features that they use or the set of distinctions
that they make (i.e., the subset of classes that they try to distinguish). Each of these classifiers is
trained on all of the relevant training data. At test time, wedynamically select an instance-specific
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subset of classifiers. We view each our pre-trained classifier as a possible observation we can make
about an instance; each one adds a potential value towards our ability to classify the instance, but
also has a cost. Starting from an empty set of observations, at each stage, we use a myopic value-of-
information computation to select the next classifier to apply to the instance in a way that attempts to
increase the accuracy of our classification state (e.g., decrease the uncertainty about the class label)
at a low computational cost. This process stops when one of the suitable criteria is met (e.g., if
we are sufficiently confident about the prediction). We provide an efficient probabilistic method for
estimating the uncertainty of the class variable and about the expected gain from each classifier. We
show that this approach provides a natural trajectory, in which simple, cheap classifiers are applied
initially, and used to provide guidance on which of our more expensive classifiers is likely to be
more informative. In particular, we show that we can get comparable (or even better) performance
to a method that uses a large range of expensive classifiers, at a fraction of the computational cost.

2 Related Work

Our classification model is based on multiple classifiers, soit resembles ensemble methods like
boosting [10], random forests [4] and output-coding based multiclass classification [9, 1, 29, 14].
However, these methods use a static decision process, whereall classifiers have to be evaluated
before any decision can be made. Moreover, they often consider a homogeneous set of classifiers,
but we consider a variety of heterogeneous classifiers with different features and function forms.

Some existing methods can make classification decisions based on partial observations. One exam-
ple is a cascade of classifiers [32, 28], where an instance goes through a chain of classifiers and the
decision can be made at any point if the classifier response passes some threshold. Another type of
method focuses on designing the stopping criteria. Schwinget al. [30] proposed a stopping criterion
for random forests such that decisions can be made based on a subset of the trees. However, these
methods have a fixed evaluation sequence for any instance, sothere is no adaptive selection of which
classifiers to use based on what we have already observed.

Instance-specific decision paths based on previous observations can be found in decision tree style
models, e.g., DAGSVM [27] and tree-based methods [15, 13, 3]. Instead of making hard decisions
based on individual observations like these methods, we usea probabilistic model to fuse informa-
tion from multiple observations and only make decisions when it is sufficiently confident.

When observations are associated with different features,our method also performs feature selec-
tion. Instead of selecting a fixed set of features in the learning stage [34], we actively select instance-
specific features in the test stage. Furthermore, our methodalso considers computational properties
of the observations. Our selection criterion trades off between the statistical gain and the compu-
tational cost of the classifier, resulting in a computationally efficient cheap-to-expensive evaluation
process. Similar ideas are hard-coded by Vedaldi et al. [31]without adaptive decisions about when to
switch to which classifier with what cost. Angelova et al. [2]performed feature selection to achieve
certain accuracy under some computational budget, but the selection is at training time without adap-
tation to individual test instances. Chai et al. [5] considered test-time feature value acquisition with
a strong assumption that observations are conditionally independent given the class variable.

Finally, our work is inspired by decision-making under uncertainty based on value of informa-
tion [16, 17, 24, 22]. For classification, Krause and Guestrin [19] used it to compute a conditional
plan for asking the expert, trying to optimize classification accuracy while requiring as little expert
interaction as possible. In machine learning, Cohn et al. [7] used active learning to select training
instances to reduce the labeling cost and speedup the learning, while our work focuses on inference.

3 Model

We denote the instance and label pair as(X,Y ). Furthermore, we assume that we have been pro-
vided a set of trained classifiersH, wherehi ∈ H : X → R can be any real-valued classifiers
(functions) from existing methods. For example, for multiclass classification,hi can be one-vs-all
classifiers, one-vs-one classifiers and weak learners from the boosting algorithms. Note thathi’s
do not have to be homogeneous meaning that they can have different function forms, e.g., linear
or nonlinear, and more importantly they can be trained on different types of features with various
computational costs. Given an instancex, our goal is to inferY by sequentially selecting onehi to
evaluate at a time, based on what has already been observed, until we are sufficiently confident about
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Y or some other stopping criterion is met, e.g., the computational constraint. The key in this process
is how valuable we think a classifierhi is, so we introduce the value of a classifier as follows.

Value of Classifier. Let O be the set of classifiers that have already been evaluated (empty at the
beginning). Denote the random variableMi = hi(X) as the response/margin of thei-th classifier
in H and denote the random vector for the observed classifiers asMO = [Mo1 ,Mo2 , . . . ,Mo|O|

]T ,
where∀oi ∈ O. Given the actual observed valuesmO of MO, we have a posteriorP (Y |mO)
overY . For now, suppose we are given a rewardR : P → R which takes in a distributionP and
returns a real value indicating how preferableP is. Furthermore, we useC(hi|O) to denote the
computational cost of evaluating classifierhi conditioned on the set of evaluated classifiersO. This
is because ifhi shares the same feature with someoi ∈ O, we do not need to compute the feature
again. With some chosen rewardR and a computational modelC(hi|O), we define the value of an
unobserved classifier as follows.

Definition 1 The value of classifierV (hi|mO) for a classifierhi given the observed classifier re-
sponsesmO is the combination of the expected reward of the state informed byhi and the compu-
tational cost ofhi. Formally,

V (hi|mO)
∆
=

∫

P (mi|mO)R(P (Y |mi,mO))dmi −
1

τ
C(hi|O)

=Emi∼P (Mi|mO)

[

R(P (Y |mi,mO))
]

−
1

τ
C(hi|O)

(1)

The value of classifier has two parts corresponding to the statistical and computational properties

of the classifier respectively. The first partVR(hi|mO)
∆
= E

[

R(P (Y |mi,mO))
]

is the expected
reward ofP (Y |mi,mO), where the expectation is with respect to the posterior ofMi givenmO.

The second partVC(hi|mO)
∆
= − 1

τC(hi|O) is a computational penalty incurred by evaluating the
classifierhi. The constantτ controls the tradeoff between the reward and the cost.

Given the definition of the value of classifier, at each step ofour sequential evaluations, our goal is
to pickhi with the highest value:

h∗ = argmax
hi∈H\O

V (hi|mO) = argmax
hi∈H\O

VR(hi|mO) + VC(hi|mO) (2)

We introduce the building blocks of the value of classifier, i.e., the reward, the cost and the proba-
bilistic model in the following, and then explain how to compute it.

Reward Definition. We propose two ways to define the rewardR : P → R.

Residual Entropy. From the information-theoretical point of view, we want toreduce the uncertainty
of the class variableY by observing classifier responses. Therefore, a natural wayto define the
reward is to consider the negative residual entropy, that isthe lower the entropy the higher the
reward. Formally, given some posterior distributionP (Y |mO) , we define

R(P (Y |mO)) = −H(Y |mO) =
∑

y

P (y|mO) logP (y|mO) (3)

The value of classifier under this reward definition is closely related to information gain. Specifically,

VR(hi|mO) =Emi∼P (Mi|mO)

[

−H(Y |mi,mO)
]

+H(Y |mO)−H(Y |mO)

=I(Y ;Mi|mO)−H(Y |mO)
(4)

SinceH(Y |mO) is a constant w.r.t.hi, we have

h∗ = argmax
hi∈H/O

VR(hi|mO) + VC(hi|mO) = argmax
hi∈H/O

I(Y ;Mi|mO) + VC(hi|mO) (5)

Therefore, at each step, we want to pick the classifier with the highest mutual information with the
class variableY given the observed classifier responsesmO with a computational constraint.

Classification Loss. From the classification loss point of view, we want to minimize the expected
loss when choosing classifiers to evaluate. Therefore, given a loss function∆(y, y′) specifying the
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penalty of classifying an instance of classy to y′, we can define the reward as the negative of the
minimum expected loss:

R(P (Y |mO)) = −min
y′

∑

y

P (y|mO)∆(y, y′) = −min
y′

Ey∼P (Y |mO)

[

∆(y, y′)
]

(6)

To gain some intuition about this definition, consider a 0-1 loss function, i.e.,∆(y, y′) = 1{y 6= y′},
thenR(P (Y |mO)) = −1 + maxy′ P (y′|mO). To maximizeR, we want the peak ofP (Y |mO) to
be as high as possible. In our experiment, these two reward definitions give similar results.

Classification Cost.The cost of evaluating a classifierh on an instancex can be broken down into
two parts. The first part is the cost of computing the featureφ : X → R

n on whichh is built, and
the second is the cost of computing the function value ofh given the inputφ(x). If h shares the
same feature as some evaluated classifiers inO, thenC(h|O) only consists of the cost of evaluating
the functionh, otherwise it will also include the cost of computing the feature inputφ. Note that
computingφ is usually much more expensive than evaluating the functionvalue ofh.

Probabilistic Model. Given a test instancex, we construct an instance-specific joint distribution
overY and the selected observationsMO. Our probabilistic model is a mixture model, where each
component corresponds to a classY = y, and we use a uniform priorP (Y ). Starting from an empty
O, we modelP (Mi, Y ) as a mixture of Gaussian distributions. At each step, given the selectedMO,
we model the new joint distributionP (Mi,MO, Y ) = P (Mi|MO, Y )P (MO, Y ) by modeling the
newP (Mi|MO, Y = y) as a linear Gaussian, i.e.,P (Mi|MO, Y = y) = N (θTy MO, σ

2
y). As we

show in Section 5, this choice of probabilistic model works well empirically. We discuss how to
learn the distribution and do inference in the next section.

4 Learning and Inference

Learning P (Mi|mO, y). Given the subset of the training set{(x(j), y(j) = y)}
Ny

j=1 corresponding

to the instances from class y, we denotem
(j)
i = hi(x

(j)), then our goal is to learnP (Mi|mO, y)

from {(m(j), y(j) = y)}
Ny

j=1. If O = ∅, thenP (Mi|mO, y) reduces to the marginal distribution

P (Mi|y) = N (µy , σ
2
y), and based on maximum likelihood estimation, we haveµy = 1

Ny

∑

j m
(j)
i ,

and σ2
y = 1

Ny

∑

j(m
(j)
i − µy)

2. If O 6= ∅, we assume thatP (Mi|mO, y) is a linear Gaus-

sian, i.e.,µy = θTy mO. Note that we also append a constant1 to mO as the bias term. Since
we knowmO at test time, we estimateθy andσ2

y by maximizing the local likelihood with a Gaus-

sian prior onθy. Specifically, for each training instancej from classy, let wj = e−
‖mO−m

(j)
O

‖2

β ,
whereβ is a bandwidth parameter, then theregularized local log likelihoodis

L(θy, σy;mO) = −λ ‖ θy ‖22 +

Ny
∑

j=1

wj logN (m
(j)
i ; θTy m

(j)
O , σ2

y) (7)

where we overload the notationN (x;µy , σ
2
y) to mean the value of a Gaussian PDF with meanµy and

varianceσ2
y evaluated atx. Note that maximizing (7) is equivalent to locally weightedregression [6]

with ℓ2 regularization. Maximizing (7) results in:

θ̂y = argmin
θy

λ ‖ θy ‖22 +

Ny
∑

j=1

wj ‖ m
(j)
i − θTy m

(j)
O ‖22= (M̄T

OWM̄O + λI)−1
M̄

T
OWM̄i (8)

whereM̄O is a matrix whosej-th row ism(j)T
O , W is a diagonal matrix whose diagonal entries are

wj ’s , M̄i is an column vector whosej-th element ism(j)
i , andI is an identity matrix. It is worth

noting that(M̄T
OWM̄O + λI)−1

W in (8) does not depend oni, so it can be computed once and
shared for different classifiershi’s. Finally, the estimatedσ2

y is

σ̂y
2 =

1
∑Ny

j=1 wj

Ny
∑

j=1

wj ‖ m
(j)
i − θ̂y

T
m

(j)
O ‖2 (9)

4



Computing V (fi|mO). Given the learned distribution, we can easily compute the two CPDs
in (1), i.e., P (Mi|mO) and P (Y |mi,mO). P (Mi|mO) can be obtained asP (Mi|mO) =
∑

y P (Mi|mO, y)P (y|mO), whereP (Y |mO) is the posterior overY given some observation
mO which is tracked over iterations. Specifically,P (Y |mi,mO) ∝ P (mi,mO|Y )P (Y ) =
P (mi|mO, Y )P (mO|Y )P (Y ), where all terms are available by caching previous computations.
Finally, to computeV (fi|mO), the computational partVC(fi|mO) is just a lookup in a cost table,
and the expected reward partVR(fi|mO) can be rewritten as:

VR(hi|mO) =
∑

y

P (y|mO)Emi∼P (Mi|mO,y)

[

R(P (Y |mi,mO))
]

(10)

Therefore, each componentEmi∼P (Mi|mO,y)

[

R(P (Y |mi,mO))
]

is the expectation of a function
of a scalar Gaussian variable. We use Gaussian quadrature [18] 1 to approximate each component
expectation, and then do the weighted average to getVR(hi|mO).

Dynamic Inference.Given the building blocks introduced before, one can execute the classification
process in|H| steps, where at each step, the values of all the remaining classifiers are computed.
However, this will incur a large scheduling cost. This is dueto the fact that usually|H| is large. For
example, in multiclass classification, if we include all one-vs-one classifiers intoH, |H| is quadratic
in the number of classes. Since we are maintaining a belief overY as observations are accumulated,
we can use it to make the inference process more adaptive resulting in small scheduling cost.

Early Stopping.Based on the posteriorP (Y |mO), we can make dynamic and adaptive decision
about whether to continue observing new classifiers or stop the process. We propose two stop-
ping criteria. We stop the inference process whenever either of them is met, and use the pos-
terior overY at that point to make classification decision. The first criterion is based on the
information-theoretic point of view. Given the current posterior estimationP (Y |mi,mO) and
the previous posterior estimationP (Y |mO), the relative entropy (KL-divergence) between them

isD
(

P (Y |mO) ‖ P (Y |mi,mO)
)

. We stop the inference procedure when this divergence is below

some thresholdt. The second criterion is based on the classification point ofview. We consider the
gap between the probability of the current best class and that of the runner-up. Specifically, we define
themargin given a posteriorP (Y |mO) asδm(P (Y |mO)) = P (y∗|mO) − maxy 6=y∗ P (Y |mO),
wherey∗ = argmaxy P (y|mO). If δm(P (Y |mO)) ≥ t′, then the inference stops.

Dynamic Pruning of Class Space.In many cases, a class is mainly confused with a small number of
other classes (the confusion matrix is often close to sparse). This implies that after observing a few
classifiers, the posteriorP (Y |mO) is very likely to be dominated by a few modes leaving the rest
with very small probability. For those classesy with very smallP (y|mO), their contributions to the
value of classifier (10) are negligible. Therefore, when computing (10), we ignore the components
whoseP (y|mO) is below some small threshold (equivalent to setting the contribution from this
component to0). Furthermore, whenP (y|mO) falls below some very small threshold for a classy,
we will not estimate the likelihood related toy, i.e.,P (Mi|mO, y), but use a small constant.

Dynamic Classifier Space.To avoid computing the values of all the remaining classifiers, we can
dynamically restrict the search space of classifiers to those having high expected mutual informa-
tion with Y with respect to the current posteriorP (Y |mO). Specifically, during the training, for
each classifierhi we can compute the mutual informationI(Mi;By) between its responseMi and
a classy, whereBy is a binary variable indicating whether an instance is from classy or not.
Given our current posteriorP (Y |mO), we tried two ways to rank the unobserved classifiers. First,
we simply select the topL classifiers with the highestI(Mi;Bŷ), whereŷ is the most probable
class based on current posterior. Since we can sort classifiers in the training stage, this step is con-
stant time. Another way is that for each classifier, we can compute a weighted mutual information
score, i.e.,

∑

y P (y|mO)I(Mi;By), and we restrict the classifier space to those with the topL

scores. Note that computing the scores is very efficient, since it is just an inner product between two
vectors, whereI(Y ;By)’s have been computed and cached before testing. Our experiments showed
that these two scores have similar performances, and we usedthe first method to report the results.

Analysis of Time Complexity. At each iterationt, the scheduling overhead includes selecting
the topL candidate observations, and for each candidatei, learningP (Mi|mO, y) and computing

1We found that3 or 5 points provide an accurate approximation.
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Figure 1: (Best viewed magnified and in colors) Performance comparisons on UCI datasets. From
the left to right are the results on satimage, pendigits, vowel and letter (in log-scale) datasets. Note
that the error bars for pendigits and letter datasets are very small (around0.5% on average).

V (fi|mO). First, selecting the topL candidate observations is a constant time, since we can sort
the observations based onI(Mi;By) before the test process. Second, estimatingP (Mi|mO, y)
requires computing (8) and (9) for differenty’s. Given our dynamic pruning of class space, suppose
there are onlyNt,Y promising classes to consider instead of the total number ofclassesK. Since
(M̄T

OWM̄O+λI)−1
W in (8) does not depend oni, we compute it for each promising class, which

takesO(tN2
y + t2Ny + t3) floating point operations, and share it for differenti’s. After computing

this shared component, for each pair ofi and a promising class, computing (8) and (9) both take
O(tNy). Finally, computing (10) takesO(N2

t,Y ). Putting everything together, the overall cost at
iterationt is O(Nt,Y (tN

2
y + t2Ny + t3) + LNt,Y tNy + LN2

t,Y ). The key to have a low cost is to
effectively prune the class space (smallNt,Y ) and reach a decision quickly (smallt).

5 Experimental Results

We performed experiments on a collection of four UCI datasets [25] and on a scene recognition
dataset [20]. All tasks are multiclass classification problems. The first set of experiments focuses on
a single feature type and aims to show that (i) our probabilistic model is able to combine multiple
binary classifiers to achieve comparable or higher classification accuracy than traditional methods;
(ii) our active evaluation strategy successfully selects asignificantly fewer number of classifiers. The
second set of experiments considers multiple features, with varying computational complexities.
This experiment shows the real power of our active scheme. Specifically, it dynamically selects an
instance-specific subset of features, resulting in higher classification accuracy of using all features
but with a significant reduction in the computational cost.

Basic Setup.Given a featureφ, our set of classifiersHφ consists of all one-vs-one classifiers, all
one-vs-all classifiers, and all node classifiers from a tree-based method [13], where a node classifier
can be trained to distinguish two arbitrary clusters of classes. Therefore, for aK-class problem, the
number of classifiers given a single feature is|Hφ| =

(K−1)K
2 +K + Nφ,tree, whereNφ,tree is the

number of nodes in the tree model. If there are multiple features{φi}Fi=1, our pool of classifiers is
H = ∪F

i=1Hφi
. The form of all classifiers is linear SVM for the first set of experiments and nonlinear

SVM with various kernels for the second set of experiments. During training, in addition to learning
the classifiers, we also need to compute the responsem

(j)
i of each classifierhi ∈ H for each training

instancex(j). In order to make the training distribution of the classifierresponses better match the
test distribution, when evaluating classifierhi onx(j), we do not wanthi to be trained onx(j). To
achieve this, we use a procedure similar to cross validation. Specifically, we split the training set
into 10 folds, and for each fold, instances from this fold are testedusing the classifiers trained on the
other9 folds. After this procedure, each training instancex(j) will be evaluated by allhi’s. Note
that the classifiers used in the test stage are trained on the entire training set. Although for different
training instancesx(j) andx(k) from different folds and a test instancex, m(j)

i , m(k)
i andmi are

obtained using differenthi’s, our experimental results confirmed that their empiricaldistributions
are close enough to achieve good performance.

Standard Multiclass Problems from UCI Repository. The first set of experiments are done on
four standard multiclass problems from the UCI machine learning repository [25]: vowel (speech
recognition,11 classes), letter (optical character recognition,26 classes), satimage (pixel-based clas-
sification/segmentation on satellite images,6 classes) and pendigits (hand written digits recognition,
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10 classes). We used the same training/test split as specified in the UCI repository. For each dataset,
there is only one type of feature, so it will be computed at thefirst step no matter which classifier
is selected. After that, all classifiers have the same complexity, so the results will be independent
of theτ parameter in the definition of value of classifier (1). For thebaselines, we have one-vs-one
with max win, one-vs-all, DAGSVM [27] and a tree-based method [13]. These methods vary both
in terms of what set of classifiers they use and how those classifiers are evaluated and combined.
To evaluate the effectiveness of our classifier selection scheme, we introduce another baseline that
selects classifiers randomly, for which we repeated the experiments for10 times and the average and
one standard deviation are reported. We compare different methods in terms of both the classifica-
tion accuracy and the number of evaluated classifiers. For our algorithm and the random selection
baseline, we show the accuracy over iterations as well. Since in our framework the number of it-
erations (classifiers) needed varies over instances due to early stopping, the maximum number of
iterations shown is defined as the mean plus one standard derivation of the number of classifier
evaluations of all test instances. In addition, for the tree-based method, the number of evaluated
classifiers is the mean over all test instances.

Figure 1 shows a set of results. As can be seen, our method can achieve comparable or higher
accuracy than traditional methods. In fact, we achieved thebest accuracy on three datasets and
the gains over the runner-up methods are0.2%, 5.2%, 8.2% for satimage, vowel, and letter datasets
respectively. We think the statistical gain might come fromtwo facts: (i) we are performing instance-
specific “feature selection” to only consider those most informative classifiers; (ii) another layer of
probabilistic model is used to combine the classifiers instead of the uniform voting of classifiers used
by many traditional methods. In terms of the number of evaluated classifiers, our active scheme is
very effective: the mean number of classifier evaluations for 6-class,10-class,11-class and26-class
problems are4.50, 3.22, 6.15 and7.72. Although the tree-based method can also use a few number
of classifiers, sometimes it suffers from a significant drop in accuracy like on the vowel and letter
datasets. Furthermore, compared to the random selection scheme, our method can effectively select
more informative classifiers resulting in faster convergence to a certain classification accuracy.

The performance gain of our method is not free. To maintain a belief over the class variableY
and to dynamically select classifiers with high value, we have introduced additional computational
costs, i.e., estimating conditional distributions and computing the value of classifiers. For example,
this additional cost is around10ms for satimage, however, evaluating a linear classifier only takes
less than1ms due to very low feature dimension, so the actual running time of the active scheme
is higher than one-vs-one. Therefore, our method will have areal computational advantage only
if the cost of evaluating the classifiers is higher than the cost of our probabilistic inference. We
demonstrate such benefit of our method in the context of multiple high dimensional features below.

Scene Recognition.We test our active classification on a benchmark scene recognition dataset
Scene15 [20]. It has15 scene classes and4485 images in total. Following the protocol used in
[20, 21],100 images per class are randomly sampled for training and the remaining2985 for test.

model accuracy feature cost classifier scheduling total
(# of features) cost cost running time

all features 86.40% 52.645s (184) 0.426s 0 53.071s
best feature OB [21] 83.38% 6.20s 0.024s 0 6.224s
fastest feature GIST [26] 72.70% 0.399s 0.0002s 0 0.3992s
oursτ = 25 86.26% 1.718s (5.62) 0.010s 0.141s 1.869s (28.4x)
oursτ = 100 86.77% 6.573s (4.71) 0.014s 0.116s 6.703s (7.9x)
oursτ = 600 88.11% 19.821s (4.46) 0.031s 0.094s 19.946s (2.7x)

Table 1: Detailed performance comparisons on Scene15 dataset with various feature types. For our
methods, we show the speedup factors with respective to using all the features in a static way.

We consider various types of features, since as shown in [33], the classification accuracy can be
significantly improved by combining multiple features but at a high computational cost. Our feature
set includes7 features from [33], including GIST, spatial HOG, dense SIFT, Local Binary Pattern,
self-similarity, texton histogram, geometry specific histograms (please refer to [33] for details), and
another recently proposed high-level image feature ObjectBank [21]. The basic idea of Object
Bank is to use the responses of various object detectors as the feature. The current release of the
code from the authors selected177 object detectors, each of which outputs a feature vectorφi with
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dimension252. These individual vectors are concatenated together to form the final feature vector
Φ = [φ1;φ2; . . . ;φ177] ∈ R

44,604. Instead of treatingΦ as an undecomposable single feature
vector, we can think of it as a collection of177 different features{φi}177i=1. Therefore, our feature
pool consists of184 features in total. Their computational costs vary from0.035 to 13.796 seconds,
with the accuracy from54% to 83%. One traditional way to combine these features is through
multiple kernel learning. Specifically, we take the averageof individual kernels constructed based
on individual features, and train a one-vs-all SVM using thejoint average kernel. Surprisingly, this
simple average kernel performs comparably with learning the weights to combine them [12].

For our active classification, we will not compute all features at the beginning of the evaluation
process, but will only compute a componentφi when a classifierh based on it is selected. We
will cache all evaluatedφi’s, so different classifiers sharing the sameφi will not induce repeated
computation of the commonφi. We decompose the computational costs per instance into three
parts: (1) the feature cost, which is the time spent on computing the features; (2) the classifier cost,
which is the time spent on evaluating the function value of the classifiers; (3) the scheduling cost,
which is the time spent on selecting the classifiers using ourmethod. To demonstrate the trade-off
between the accuracy and computational cost in the definition of value of classifier, we run multiple
experiments with variousτ ’s.
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Figure 2: Classification accuracy versus run-
ning time for the baseline, active classifica-
tion, and various individual features.

The results are shown in Table 1. We also report
comparisons to the best individual features in terms
of either accuracy or speed (the reported accuracy
is the best of one-vs-one and one-vs-all). As can
be seen, combining all features using the traditional
method indeed improves the accuracy significantly
over those individual features, but at an expensive
computational cost. However, using active classifi-
cation, to achieve similar accuracy as the baseline
of all features, we can get28.4x speedup (τ = 25).
Note that at this configuration, our method is faster
than the state-of-the-art individual feature [21], and
is also2.8% better in accuracy. Furthermore, if we
put more emphasis on the accuracy, we can get the
best accuracy88.11% whenτ = 600.

To further test the effectiveness of our active selec-
tion scheme, we compare with another baseline that
sequentially adds one feature at a time from a filtered
pool of features. Specifically, we first rank the individual features based on their classification accu-
racy, and only consider the top80 features (using80 features achieves essentially the same accuracy
as using184 features). Given this selected pool, we arrange the features in order of increasing com-
putational complexity, and then train a classifier based on the topN features for all values ofN from
1 to 80. As shown in Figure 2, our active scheme is one order of magnitude faster than the baseline
given the same level of accuracy.

6 Conclusion and Future Work

In this paper, we presented an active classification processbased on the value of classifier. We ap-
plied this active scheme in the context of multiclass classification, and achieved comparable and
even higher classification accuracy with significant computational savings compared to traditional
static methods. One interesting future direction is to estimate the value of features instead of individ-
ual classifiers. This is particularly important when computing the feature is much more expensive
than evaluating the function value of classifiers, which is often the case. Once a feature has been
computed, a set of classifiers that are built on it will be cheap to evaluate. Therefore, predicting the
value of the feature (equivalent to the joint value of multiple classifiers sharing the same feature) can
potentially lead to more computationally efficient classification process.
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