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Abstract

Modern classification tasks usually involve many classli&bed can be informed
by a broad range of features. Many of these tasks are tackledrstructing a
set of classifiers, which are then applied at test time anal pieced together in a
fixed procedure determined in advance or at training time.pv@sent an active
classification process at the test time, where each classifee large ensemble
is viewed as a potential observation that might inform oassification process.
Observations are then selected dynamically based on pregloservations, using
a value-theoretic computation that balances an estimateaxpected classifica-
tion gain from each observation as well as its computationat. The expected
classification gain is computed using a probabilistic maldat uses the outcome
from previous observations. This active classificationcpes is applied at test
time for each individual test instance, resulting in an effitinstance-specific de-
cision path. We demonstrate the benefit of the active schemarious real-world
datasets, and show that it can achieve comparable or evieertitassification ac-
curacy at a fraction of the computational costs of traddionethods.

1 Introduction

As the scope of machine learning applications has increakeccomplexity of the classification

tasks that are commonly tackled has grown dramatically. @ndimension, many classification
problems involve hundreds or even thousands of possibse$a[8]. On another dimension, re-
searchers have spent considerable effort developing retwréesets for particular applications, or
new types of kernels. For example, in an image labeling taskhave the option of using GIST

feature [26], SIFT feature [23], spatial HOG feature [33hj€xt Bank [21] and more. The benefits
of combining information from different types of featuremde very significant [12, 33].

To solve a complex classification problem, many researdiers resorted to ensemble methods, in
which multiple classifiers are combined to achieve an atewlassification decision. For example,
the Viola-Jones classifier [32] uses a cascade of classiiach of which focuses on different spatial
and appearance patterns. Boosting [10] constructs a caoeenuf weak classifiers, each of which
focuses on different input distributions. Multiclass slfisation problems are very often reduced
to a set of simpler (often binary) decisions, including asesne [11], one-vs-all, error-correcting
output codes [9, 1], or tree-based approaches [27, 13, 3litilrely, different classifiers provide
different “expertise” in making certain distinctions ttean inform the classification task. However,
as we discuss in Section 2, most of these methods use a fixegdune determined at training time
to apply the classifiers without adapting to each individaat instance.

In this paper, we take an active and adaptive approach to ioenmbultiple classifiers/features at
test time, based on the idea of value of information [16, #{,22]. At training time, we construct

a rich family of classifiers, which may vary in the featureattthey use or the set of distinctions
that they make (i.e., the subset of classes that they trystinduish). Each of these classifiers is
trained on all of the relevant training data. At test time,dy@aamically select an instance-specific



subset of classifiers. We view each our pre-trained classifi@ possible observation we can make
about an instance; each one adds a potential value towardsbiity to classify the instance, but
also has a cost. Starting from an empty set of observatibrach stage, we use a myopic value-of-
information computation to select the next classifier tolgfpthe instance in a way that attempts to
increase the accuracy of our classification state (e.gredee the uncertainty about the class label)
at a low computational cost. This process stops when oneeo§uitable criteria is met (e.g., if
we are sufficiently confident about the prediction). We pdevan efficient probabilistic method for
estimating the uncertainty of the class variable and athmuxpected gain from each classifier. We
show that this approach provides a natural trajectory, irclvhimple, cheap classifiers are applied
initially, and used to provide guidance on which of our moxpensive classifiers is likely to be
more informative. In particular, we show that we can get caraple (or even better) performance
to a method that uses a large range of expensive classifieréaaction of the computational cost.

2 Related Work

Our classification model is based on multiple classifiersit sesembles ensemble methods like
boosting [10], random forests [4] and output-coding basedtiotass classification [9, 1, 29, 14].
However, these methods use a static decision process, \alarassifiers have to be evaluated
before any decision can be made. Moreover, they often cenaitiomogeneous set of classifiers,
but we consider a variety of heterogeneous classifiers \ifitreint features and function forms.

Some existing methods can make classification decisiorelas partial observations. One exam-
ple is a cascade of classifiers [32, 28], where an instancethoaugh a chain of classifiers and the
decision can be made at any point if the classifier resporssepaome threshold. Another type of
method focuses on designing the stopping criteria. Schetiad) [30] proposed a stopping criterion
for random forests such that decisions can be made basedulrset ®f the trees. However, these
methods have a fixed evaluation sequence for any instanttegigois no adaptive selection of which
classifiers to use based on what we have already observed.

Instance-specific decision paths based on previous oligersaan be found in decision tree style
models, e.g., DAGSVM [27] and tree-based methods [15, 13n3lead of making hard decisions
based on individual observations like these methods, we ygebabilistic model to fuse informa-
tion from multiple observations and only make decisionsminés sufficiently confident.

When observations are associated with different featan@smethod also performs feature selec-
tion. Instead of selecting a fixed set of features in the iegrstage [34], we actively select instance-
specific features in the test stage. Furthermore, our metisocdconsiders computational properties
of the observations. Our selection criterion trades offveen the statistical gain and the compu-
tational cost of the classifier, resulting in a computatilyrefficient cheap-to-expensive evaluation
process. Similar ideas are hard-coded by Vedaldi et al f@hput adaptive decisions about when to
switch to which classifier with what cost. Angelova et al. p2fformed feature selection to achieve
certain accuracy under some computational budget, buetbetion is at training time without adap-

tation to individual test instances. Chai et al. [5] considitest-time feature value acquisition with
a strong assumption that observations are conditionadgpendent given the class variable.

Finally, our work is inspired by decision-making under untiamty based on value of informa-
tion [16, 17, 24, 22]. For classification, Krause and Guegttd] used it to compute a conditional
plan for asking the expert, trying to optimize classificataxcuracy while requiring as little expert
interaction as possible. In machine learning, Cohn et &lu§éd active learning to select training
instances to reduce the labeling cost and speedup therigawile our work focuses on inference.

3 Model

We denote the instance and label paif&sY’). Furthermore, we assume that we have been pro-
vided a set of trained classifief$, whereh; € H : X — R can be any real-valued classifiers
(functions) from existing methods. For example, for midtss classification;; can be one-vs-all
classifiers, one-vs-one classifiers and weak learners fnenbbdosting algorithms. Note that’s

do not have to be homogeneous meaning that they can haveediffeinction forms, e.g., linear
or nonlinear, and more importantly they can be trained ofeifit types of features with various
computational costs. Given an instangeour goal is to infel” by sequentially selecting orig to
evaluate at a time, based on what has already been obsemtiédiaiare sufficiently confident about



Y or some other stopping criterion is met, e.g., the computaticonstraint. The key in this process
is how valuable we think a classifig is, so we introduce the value of a classifier as follows.

Value of Classifier. Let O be the set of classifiers that have already been evaluatqutyenthe
beginning). Denote the random variadlé = h;(X) as the response/margin of th¢h classifier

in 7 and denote the random vector for the observed classifi&¥é@s= [M,,, M,,, . . ., Mo‘o‘]T,
whereVo; € O. Given the actual observed valuas, of My, we have a posterioP (Y |mo)
overY. For now, suppose we are given a rew&#d P — R which takes in a distributio®® and
returns a real value indicating how preferalilés. Furthermore, we us€'(h;|O) to denote the
computational cost of evaluating classifigrconditioned on the set of evaluated classifi€tsThis

is because ifi; shares the same feature with somez O, we do not need to compute the feature
again. With some chosen rewaRdand a computational modél(h;|O), we define the value of an
unobserved classifier as follows.

Definition 1 The value of classifieV (h;jme) for a classifierh; given the observed classifier re-
sponsesny is the combination of the expected reward of the state inddrboyh; and the compu-
tational cost ofh;. Formally,

V (hi[mo) é/P(mi|mo)R(P(Y|mi,m@))dmi - %C(hﬂ(’)) o
=B, ~P(0M;|mo) [R(P(Y |mi, mo))] — %C(MO)

The value of classifier has two parts corresponding to thesstal and computational properties

of the classifier respectively. The first pafk (h;|me) = E[R(P(Y|m;, mo))] is the expected

reward of P(Y|m;, mp), where the expectation is with respect to the posteriatfpfgiven me.

The second paitc (h; |/ me) 2 —1C(h;]0) is a computational penalty incurred by evaluating the

classifierh;. The constant controls the tradeoff between the reward and the cost.

Given the definition of the value of classifier, at each stepuwfsequential evaluations, our goal is
to pick h; with the highest value:

h* = argmaxV (h;|me) = argmaxtz (h;|me) + Ve (hijmo) 2
hi€H\O hi €H\O

We introduce the building blocks of the value of classifigs,,ithe reward, the cost and the proba-
bilistic model in the following, and then explain how to counte it.

Reward Definition. We propose two ways to define the rewdtd P — R.

Residual EntropyFrom the information-theoretical point of view, we wantégluce the uncertainty
of the class variabl®” by observing classifier responses. Therefore, a naturaltwvagfine the
reward is to consider the negative residual entropy, thalhéslower the entropy the higher the
reward. Formally, given some posterior distributiB(lY |me) , we define

R(P(Y|mo)) = —H(Y|mo) = Y P(ylmo)log P(y|mo) ®3)
Yy
The value of classifier under this reward definition is clgselated to information gain. Specifically,
VR(h,l|mo) :EmiNP(MHmO) [ — H(Y|m1, m@)] —+ H(Y|m@) — H(Y|m()) (4)
=I1(Y; M;jmo) — H(Y|mo)

SinceH (Y|mp) is a constant w.r.th;, we have

h* = argmaxVg (h;imo) + Vo (hi|me) = argmax! (Y; M;imo) 4+ Ve (hi|me) (5)
hi€H/O hi€H/O

Therefore, at each step, we want to pick the classifier wighhighest mutual information with the
class variablé” given the observed classifier responags with a computational constraint.

Classification LossFrom the classification loss point of view, we want to mirdimthe expected
loss when choosing classifiers to evaluate. ThereforengiMess functiom\(y, y’) specifying the



penalty of classifying an instance of clag$o y’, we can define the reward as the negative of the
minimum expected loss:

R(P(Y|mp)) = — min > P(ylmo)A(y,y') = - min By p(y jmo) Ay, y")] (6)

Y

To gain some intuition about this definition, consider a @sklfunction, i.e. A(y,v') = 1{y # y'},
thenR(P(Y|mp)) = —1 + max,s P(y'|me). To maximizeR, we want the peak aP (Y |mo) to
be as high as possible. In our experiment, these two rewdirdtans give similar results.

Classification Cost.The cost of evaluating a classifieron an instance can be broken down into
two parts. The first part is the cost of computing the featureX — R™ on which# is built, and
the second is the cost of computing the function valué given the inputp(z). If h shares the
same feature as some evaluated classifiet% ithenC'(h|O) only consists of the cost of evaluating
the functionh, otherwise it will also include the cost of computing thettea input¢. Note that
computinge is usually much more expensive than evaluating the functidme ofh.

Probabilistic Model. Given a test instance, we construct an instance-specific joint distribution
overY and the selected observatidnk,. Our probabilistic model is a mixture model, where each
component corresponds to a class= y, and we use a uniform prid?(Y"). Starting from an empty
0O, we modelP(M;,Y') as a mixture of Gaussian distributions. At each step, gives¢lectedI,

we model the new joint distributiof*(M;, M,Y) = P(M;|Mp,Y )P (M@, ) by modeling the

new P(M;|Mo,Y = y) as alinear Gaussian, i.€2(M;|Mo,Y =y) = Mo, 07). As we

show in Section 5, this choice of probabilistic model Worlellvempincally K/Ve discuss how to
learn the distribution and do inference in the next section.

4 Learning and Inference

Learning P(M;|mp,y). Given the subset of the training sete), yU) = y)} ¥, corresponding

to the instances from class y, we denmﬁ) = hi(z19)), then our goal is to lear®(M;|me, )
from {(m), ) = Y} yl. If O = 0, thenP(M;|mp,y) reduces to the marginal distribution

P(M;ly) = N(py,0;), and based on maximum likelihood estimation, we haye- &+ Z m(J)
ando; = N—yzj( m? — )2 If O # 0, we assume thaP(M;|mo,y) is a I|near Gaus-

sian, i.e.,u, = egmo. Note that we also append a constantb my as the bias term. Since
we knowmy at test time, we estimatg, ando—j by maximizing the local likelihood with a Gaus-

lm —m{) 2
sian prior ond,. Specifically, for each training instangerom classy, letw; = e~ 5 ,
wheref is a bandwidth parameter, then tiegularized local log likelihoods
L0y, 05:m0) = = | 0y 13 + Y wjlog N (m”; 6;m@), 07) )

J=1

where we overload the notatidvi(z; 11, o) to mean the value of a Gaussian PDF with megand

variances2 evaluated at. Note that maximizing (7) is equivalent to locally weightegdression [6]
with ¢4 regularization. Maximizing (7) results in:

4, _argmin/\ | 6, ||2+ij | m? —TmY) 3= (MEWMo + AL 'MEWM;  (8)

j=1

whereM is a matrix whosg-th row ISm(J) , W is a diagonal matrix whose diagonal entries are

w;’s , Mj; is an column vector whosgth element ismgj), andI is an identity matrix. It is worth
noting that ME WMo + AI)~'W in (8) does not depend an so it can be computed once and
shared for different classifiefs’s. Finally, the estimateei2 is

‘fy2 Zwa | m —9 m(J) 12 9)
Z wy Jj=1



Computing V(f;jme). Given the learned distribution, we can easily compute the &PDs
in (1), i.e., P(M;mep) and P(Y|m;,mp). P(M;mep) can be obtained a®(M;mp) =
>, P(M;lmo, y)P(ylmo), where P(Y[mo) is the posterior ovel” given some observation
meo which is tracked over iterations. Specificall,(Y|m;, mp) < P(m; me|Y)P(Y) =
P(m;|me,Y)P(mp|Y)P(Y), where all terms are available by caching previous comjmunsit
Finally, to computd/( f;lme), the computational pafit- (f;|me) is just a lookup in a cost table,
and the expected reward p&ft(f;/me) can be rewritten as:

Ve(hiimo) = ZP(MmO)Eme(Mi\mo,y) [R(P(Y|m;, mo))] (10)
y

Therefore, each componest,,, . p(rs, jmo.y) [R(P(Y|m1-, m@))} is the expectation of a function

of a scalar Gaussian variable. We use Gaussian quadra8]ré fd approximate each component
expectation, and then do the weighted average t&/gét;|me).

Dynamic Inference. Given the building blocks introduced before, one can exethé classification
process in#| steps, where at each step, the values of all the remainisgifitas are computed.
However, this will incur a large scheduling cost. This is du¢he fact that usually?| is large. For
example, in multiclass classification, if we include all ereone classifiers int®, |#| is quadratic

in the number of classes. Since we are maintaining a belefid\as observations are accumulated,
we can use it to make the inference process more adaptivimgsn small scheduling cost.

Early Stopping.Based on the posterid?(Y|me), we can make dynamic and adaptive decision
about whether to continue observing new classifiers or dtepptocess. We propose two stop-
ping criteria. We stop the inference process whenever redh¢hem is met, and use the pos-
terior overY at that point to make classification decision. The first dodte is based on the
information-theoretic point of view. Given the current fe®r estimationP (Y |m;, me) and
the previous posterior estimatid?(Y |mo), the relative entropy (KL-divergence) between them

isD (P(Y|m@) | P(Y|mg, mo)) . We stop the inference procedure when this divergenceasbel

some threshold. The second criterion is based on the classification poiaiesf. We consider the
gap between the probability of the current best class arnafhiae runner-up. Specifically, we define
the margin given a posterio (Y |me) asé,,(P(Y|mp)) = P(y*|mp) — maxy,~ P(Y |mop),
wherey™ = argmay, P(y|/mo). If 4,,(P(Y|mo)) > ¢/, then the inference stops.

Dynamic Pruning of Class Spad&. many cases, a class is mainly confused with a small nunfber o
other classes (the confusion matrix is often close to spafsgs implies that after observing a few
classifiers, the posterid?P(Y |mp) is very likely to be dominated by a few modes leaving the rest
with very small probability. For those classgwith very smallP(y|me), their contributions to the
value of classifier (10) are negligible. Therefore, when pating (10), we ignore the components
whoseP(y|mp) is below some small threshold (equivalent to setting therdmrtion from this
component td@). Furthermore, whe®(y|mo) falls below some very small threshold for a class
we will not estimate the likelihood related foi.e., P(M;|me, y), but use a small constant.

Dynamic Classifier Spacélo avoid computing the values of all the remaining classfigre can
dynamically restrict the search space of classifiers toethh@wing high expected mutual informa-
tion with Y with respect to the current posteri®(Y |me). Specifically, during the training, for
each classifieh; we can compute the mutual informatiét/;; B, ) between its respons¥; and

a classy, where B, is a binary variable indicating whether an instance is frdas€y or not.
Given our current posterid?(Y|me ), we tried two ways to rank the unobserved classifiers. First,
we simply select the tofd classifiers with the highest(M;; B;), whereg is the most probable
class based on current posterior. Since we can sort classifithe training stage, this step is con-
stant time. Another way is that for each classifier, we canpma weighted mutual information
score, i.e..y_, P(ylmo)I(M;; By), and we restrict the classifier space to those with theltop
scores. Note that computing the scores is very efficientesiris just an inner product between two
vectors, wherd (Y'; B,)’s have been computed and cached before testing. Our exgrasshowed
that these two scores have similar performances, and wethisdidst method to report the results.

Analysis of Time Complexity. At each iterationt, the scheduling overhead includes selecting
the topL candidate observations, and for each candiddearningP(M;|me, y) and computing

"We found thaB or 5 points provide an accurate approximation.
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Figure 1: (Best viewed magnified and in colors) Performameegarisons on UCI datasets. From
the left to right are the results on satimage, pendigits,el@md letter (in log-scale) datasets. Note
that the error bars for pendigits and letter datasets agesreall (around).5% on average).

V(filmp). First, selecting the tof candidate observations is a constant time, since we can sort
the observations based dii);; B,) before the test process. Second, estimaff{d/;|mo, y)
requires computing (8) and (9) for differegis. Given our dynamic pruning of class space, suppose
there are onlyV, - promising classes to consider instead of the total numbelagesk’. Since
(MZWDM + AI) "W in (8) does not depend anwe compute it for each promising class, which
takesO(tN2 + t2N, + t3) floating point operations, and share it for differéat After computing

this shared component, for each pairiaind a promising class, computing (8) and (9) both take
O(tN,). Finally, computing (10) take@(Nﬁy). Putting everything together, the overall cost at
iterationt is O(Nyy (tN2 4+ t*N, + t*) + LN ytN, + LNZ,). The key to have a low cost is to
effectively prune the class space (sn1dlly) and reach a decision quickly (smé&)l

5 Experimental Results

We performed experiments on a collection of four UCI dag$2b] and on a scene recognition
dataset [20]. All tasks are multiclass classification peat. The first set of experiments focuses on
a single feature type and aims to show that (i) our probdigilieodel is able to combine multiple
binary classifiers to achieve comparable or higher clasasific accuracy than traditional methods;
(ii) our active evaluation strategy successfully seledigaificantly fewer number of classifiers. The
second set of experiments considers multiple featured, wéitying computational complexities.
This experiment shows the real power of our active schemecifigally, it dynamically selects an
instance-specific subset of features, resulting in higlassdication accuracy of using all features
but with a significant reduction in the computational cost.

Basic Setup. Given a featurep, our set of classifier#{4 consists of all one-vs-one classifiers, all
one-vs-all classifiers, and all node classifiers from a b@ged method [13], where a node classifier

can be trained to distinguish two arbitrary clusters ofsdss Therefore, for &-class problem, the
number of classifiers given a single featuréfis,| = @ + K + Ny tree WhereN yeeis the

number of nodes in the tree model. If there are multiple fiest{ip; } 7, our pool of classifiers is
H = UL H,. The form of all classifiers is linear SVM for the first set opeximents and nonlinear

SVM with various kernels for the second set of experimentsiriy training, in addition to learning
the classifiers, we also need to compute the respfmﬁgeof each classifiek; € H for each training
instancez?). In order to make the training distribution of the classifiesponses better match the
test distribution, when evaluating classifieron (), we do not want; to be trained on:(). To
achieve this, we use a procedure similar to cross validat®pecifically, we split the training set
into 10 folds, and for each fold, instances from this fold are testgdg the classifiers trained on the
other9 folds. After this procedure, each training instané€ will be evaluated by alh;'s. Note
that the classifiers used in the test stage are trained omtiie training set. Although for different

training instances ") andz(*) from different folds and a test instaneem”’, m{*) andm, are
obtained using different;’s, our experimental results confirmed that their empiritiatributions
are close enough to achieve good performance.

Standard Multiclass Problems from UCI Repository. The first set of experiments are done on
four standard multiclass problems from the UCI machinerliggy repository [25]: vowel (speech

recognition,11 classes), letter (optical character recognititihclasses), satimage (pixel-based clas-
sification/segmentation on satellite imagés|asses) and pendigits (hand written digits recognition,



10 classes). We used the same training/test split as speciftbd UCI repository. For each dataset,
there is only one type of feature, so it will be computed atfitet step no matter which classifier
is selected. After that, all classifiers have the same catitpleso the results will be independent
of the  parameter in the definition of value of classifier (1). Forllaselines, we have one-vs-one
with max win, one-vs-all, DAGSVM [27] and a tree-based metfit3]. These methods vary both
in terms of what set of classifiers they use and how thoseifitassare evaluated and combined.
To evaluate the effectiveness of our classifier selectiberse, we introduce another baseline that
selects classifiers randomly, for which we repeated theréxpats forl0 times and the average and
one standard deviation are reported. We compare differetiiads in terms of both the classifica-
tion accuracy and the number of evaluated classifiers. Foalgorithm and the random selection
baseline, we show the accuracy over iterations as well.eSmour framework the number of it-
erations (classifiers) needed varies over instances duarlyp sopping, the maximum number of
iterations shown is defined as the mean plus one standanchtieni of the number of classifier
evaluations of all test instances. In addition, for the -tvased method, the number of evaluated
classifiers is the mean over all test instances.

Figure 1 shows a set of results. As can be seen, our methodctéeva comparable or higher
accuracy than traditional methods. In fact, we achievedbdtst accuracy on three datasets and
the gains over the runner-up methods@e%, 5.2%, 8.2% for satimage, vowel, and letter datasets
respectively. We think the statistical gain might come ftt@ra facts: (i) we are performing instance-
specific “feature selection” to only consider those mostinfative classifiers; (ii) another layer of
probabilistic model is used to combine the classifiers awstdf the uniform voting of classifiers used
by many traditional methods. In terms of the number of evaldiglassifiers, our active scheme is
very effective: the mean number of classifier evaluationgfolass,10-class,11-class an@6-class
problems are.50, 3.22, 6.15 and7.72. Although the tree-based method can also use a few number
of classifiers, sometimes it suffers from a significant dmopgécuracy like on the vowel and letter
datasets. Furthermore, compared to the random selecti@m&; our method can effectively select
more informative classifiers resulting in faster convergeto a certain classification accuracy.

The performance gain of our method is not free. To maintairl@bover the class variablg
and to dynamically select classifiers with high value, weehiatroduced additional computational
costs, i.e., estimating conditional distributions and patmg the value of classifiers. For example,
this additional cost is arountbms for satimage, however, evaluating a linear classifiey takes
less thanims due to very low feature dimension, so the actual running ©f the active scheme
is higher than one-vs-one. Therefore, our method will haveah computational advantage only
if the cost of evaluating the classifiers is higher than th&t ©f our probabilistic inference. We
demonstrate such benefit of our method in the context of plelkigh dimensional features below.

Scene Recognition.We test our active classification on a benchmark scene réangudataset
Scenel5 [20]. It has5 scene classes ard85 images in total. Following the protocol used in
[20, 21],100 images per class are randomly sampled for training and thairéng2985 for test.

model accuracy| feature cost classifier| scheduling| total

(# of features) | cost cost running time
all features 86.40% | 52.645s (184) | 0.426s 0 53.071s
best feature OB [21] 83.38% | 6.20s 0.024s 0 6.224s
fastest feature GIST [26] 72.70% | 0.399s 0.0002s | O 0.3992s
ourst = 25 86.26% | 1.718s (5.62) | 0.010s 0.141s 1.869s (28.4x)
ourst = 100 86.77% | 6.573s (4.71) | 0.014s 0.116s 6.703s (7.9x)
ourst = 600 88.11% | 19.821s (4.46) | 0.031s | 0.094s 19.946s (2.7X)

Table 1: Detailed performance comparisons on Scenel5alatith various feature types. For our
methods, we show the speedup factors with respective tg aflithe features in a static way.

We consider various types of features, since as shown in {B8]classification accuracy can be
significantly improved by combining multiple features buadigh computational cost. Our feature
set included features from [33], including GIST, spatial HOG, dense SlEdcal Binary Pattern,
self-similarity, texton histogram, geometry specific bggtams (please refer to [33] for details), and
another recently proposed high-level image feature Olgactk [21]. The basic idea of Object
Bank is to use the responses of various object detectorsedgdkure. The current release of the
code from the authors selectéd7 object detectors, each of which outputs a feature vegtorith



dimension252. These individual vectors are concatenated together to fbe final feature vector

O = [p1;¢0;...;0177] € R¥6% Instead of treatingd as an undecomposable single feature
vector, we can think of it as a collection o7 different featureg ¢, }.”%. Therefore, our feature
pool consists 084 features in total. Their computational costs vary fre85 to 13.796 seconds,
with the accuracy fron%4% to 83%. One traditional way to combine these features is through
multiple kernel learning. Specifically, we take the averafjmdividual kernels constructed based
on individual features, and train a one-vs-all SVM usingjtiet average kernel. Surprisingly, this
simple average kernel performs comparably with learniegabights to combine them [12].

For our active classification, we will not compute all feasiat the beginning of the evaluation
process, but will only compute a componenRtwhen a classifieh based on it is selected. We
will cache all evaluated;’s, so different classifiers sharing the saewill not induce repeated
computation of the commoun,;. We decompose the computational costs per instance irge thr
parts: (1) the feature cost, which is the time spent on comgtite features; (2) the classifier cost,
which is the time spent on evaluating the function value efc¢tassifiers; (3) the scheduling cost,
which is the time spent on selecting the classifiers usingmethod. To demonstrate the trade-off
between the accuracy and computational cost in the definifiealue of classifier, we run multiple
experiments with various's.

The results are shown in Table 1. We also report
comparisons to the best individual features in terms eo——
of either accuracy or speed (the reported accuracy !"‘/
is the best of one-vs-one and one-vs-all). As can o}

be seen, combining all features using the traditionaf r‘ °

method indeed improves the accuracy significantlyg o
over those individual features, but at an expensive

results on scenel5 dataset
T T T T T T

computational cost. However, using active classifi-g ——sequentially adding features ||
cation, to achieve similar accuracy as the baseling % aclve classifcation

of all features, we can gé8.4x speedupf = 25). & LBP

Note that at this configuration, our method is faster® @ spatial HOG

than the state-of-the-art individual feature [21], and o oolect Bank

is also2.8% better in accuracy. Furthermore, if we %+ = rﬁnmngﬁmé?sacé"n ds)z‘s w6 W
put more emphasis on the accuracy, we can get the

best accuracgs.11% whenr = 600. Figure 2: Classification accuracy versus run-
To further test the effectiveness of our active seleging time for the baseline, active classifica-
tion scheme, we compare with another baseline th@n, and various individual features.
sequentially adds one feature at a time from a filtered

pool of features. Specifically, we first rank the individugdfures based on their classification accu-
racy, and only consider the t@&0 features (using0 features achieves essentially the same accuracy
as usingl84 features). Given this selected pool, we arrange the fematnrerder of increasing com-
putational complexity, and then train a classifier basederidpNV features for all values a¥V from

1 to 80. As shown in Figure 2, our active scheme is one order of madaeifaster than the baseline
given the same level of accuracy.

6 Conclusion and Future Work

In this paper, we presented an active classification prdzassd on the value of classifier. We ap-
plied this active scheme in the context of multiclass cfasgtion, and achieved comparable and
even higher classification accuracy with significant corapabhal savings compared to traditional
static methods. One interesting future direction is taesté the value of features instead of individ-
ual classifiers. This is particularly important when conipgithe feature is much more expensive
than evaluating the function value of classifiers, whichfiemthe case. Once a feature has been
computed, a set of classifiers that are built on it will be ghigeevaluate. Therefore, predicting the
value of the feature (equivalent to the joint value of mudtiplassifiers sharing the same feature) can
potentially lead to more computationally efficient clagsifion process.
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