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A Sneak Peek

Estimation-theoretic scalable video coding (ET-SVC) - a transform domain
approach to optimal enhancement layer prediction

Optimally utilizes all available information including base-layer quantization
intervals accessible only in the transform domain

Robustness of ET-SVC to packet-losses requires choosing coding modes that
minimize End-to-End Distortion (EED)

Conventionally calculated in the pixel domain, accounts for effects of
quantization as well as packet losses
A well established approach for accurate EED estimation - Recursive
Optimal Per-Pixel Estimate (ROPE)

Achieve optimality on both fronts?
A longstanding difficulty due to the fundamental conflict of operating space!
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A Sneak Peek

Proposed solution: A unified framework complementing ET-SVC with Spectral
Coefficient-wise Optimal Recursive Estimate (SCORE) - EED estimation that
operates directly in the transform domain

Added bonus: enables estimation-theoretic (optimal) enhancement layer
concealment at the decoder, fully accounted for by encoder EED estimation

Overall system provides significant performance gains over competing optimized
H.264/SVC solution
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Scalable Video Coding

Encode a video sequence into two layers of fidelity scalability.

H.264 compatible
block-based coder

How to encode
efficiently?

frame index

Base Layer

Enhancement Layer

n-2 n-1 n n+1
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Enhancement Layer Prediction in SVC

Information accessible for prediction at the enhancement layer:
High quality (enhancement layer) reconstructions of prior samples
- inter frame prediction
Coarsely quantized (base layer) reconstructions of current samples
- inter layer prediction

Conventional solutions work in pixel domain
Weighted sum of the enhancement-layer motion compensation and
base-layer reconstructed pixels
Adaptively choose the mode that minimizes rate-distortion cost
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A Transform Domain Model

DCT blocks along a motion trajectory form an AR process per frequency

Frame n-1 Frame n Frame n+1

DCT DCT DCT

xn−1 xn xn+1

Specifically. xn = ρxn−1 + zn, where {zn} are the i.i.d innovations with pdf pZ (zn)

Advantage: largely eliminates spatial correlation before applying a temporal
evolution model to individual frequency components
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Estimation-Theoretic SVC

All the relevant information provided by the base layer: xn ∈ Ib
n

The information provided by prior enhancement layer: p(xn|x̂e
n−1)

How to optimally combine the two types of information?

ibn

xn

x̂e
n−1

Base Layer

Enhancement
Layer

xn

x̂e
n−1

p(xn|x̂e
n−1)

Ib
n
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Estimation-Theoretic SVC
The conditional pdf of xn hence can be expressed as:

p(xn|x̂e
n−1, I

b
n ) ≈


pZ (xn−x̂e

n−1)∫
Ib

n
pZ (xn−x̂e

n−1)dxn
xn ∈ Ib

n ,

0 otherwise .

xn
x̂e

n−1

p(xn|x̂e
n−1)

Ib
n

xn

p(xn|x̂e
n−1, I

b
n )

The optimal enhancement layer prediction of xn given all the available information is the
non-linear estimate

f (Ib
n , x̂

e
n−1) = E(xn|x̂e

n−1, I
b
n )

The prediction residue xn − f (Ib
n , x̂e

n−1) is quantized and coded into the enhancement layer
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ET-SVC over Lossy Networks

ET-SVC provides significant compression gains when the base layer interval and
enhancement layer motion compensated reference are guaranteed

What if the channel is lossy? Amongst other effects, the calculation of the base
layer interval at the decoder would itself be subject to drift

Drift due to packet loss can be mitigated via judicious choice of per-macroblock
coding modes, partitions and QPs:

Intra mode vs Inter mode at the base layer
Inter-layer prediction mode vs ET prediction-mode at the enhancement layer

Optimize coding decisions to minimize End-to-End Distortion (EED)
EED includes the effect of quantization as well as packet losses: can only be
estimated at the encoder

Efficient utility of the ET-SVC framework over lossy networks mandates an EED
estimation mechanism that accommodates its transform domain operation
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EED Estimation via ROPE

ROPE: an established approach to recursively calculate EED per pixel while
accounting for encoder and decoder operations, and channel stochasticity

The decoder reconstruction f̃ i
n is a random variable w.r.t the encoder. Expected

EED for this pixel is:

E{(f i
n − f̃ i

n)
2
} = (f i

n)
2 − 2f i

nE{f̃ i
n}+ E{(f̃ i

n)
2}.

f i
n

f̃ i
nf̂ i

n

original pixel

encoder decoder
lossy channel

EED

ROPE update recursions compute up to second moments of reconstructed pixels

The pixel-domain framework of ROPE is incompatible with the non-linear
transform domain operations of ET-SVC
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Proposed Approach for EED Estimation

The obvious: calculate EED in the transform domain - mean squared error is
preserved under unitary transformation

The not so obvious: complications arise due to interaction with motion
compensation

Proposed Solution: Spectral Coefficient-wise Optimal Recursive
Estimate(SCORE)

SCORE provides a near-accurate per-transform coefficient estimate of
EED
Recursively computes first and second moments of reconstructions of
transform coefficients of on-grid blocks in a frame
Overcomes intricacies due to off-grid motion compensation references

Explicitly accounts for ET prediction in its update recursions
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SCORE: Expected Distortion

Specific focus on SCORE recursions at the enhancement layer

xk,m
n : unquantized value of transform coefficient m in block k of frame n.

x̂k,m
n,e : enhancement layer encoder reconstruction of this coefficient.

x̃k,m
n,e : enhancement decoder reconstruction, possibly after concealment. A random

variable w.r.t the encoder.

xk,m
n

x̃k,m
n,ex̂k,m

n,e

original DCT coeff.

encoder decoder
lossy channel

EED

The enhancement layer EED of coefficient xk,m
n is

E{(xk,m
n − x̃k,m

n,e )
2
} = (xk,m

n )2 − 2xk,m
n E{x̃k,m

n,e }+ E{(x̃k,m
n,e )2}.

SCORE recursively computes E{x̃k,m
n,e } and E{(x̃k,m

n,e )2}
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SCORE: Off-Grid Reference Challenge

SCORE computes and retains first and second moments of transform
coefficients of on-grid blocks of a frame

However, an on-grid block in the current frame can have an off-grid motion
compensation reference, whose moments will feature in the recursions

Frame n-1

X K1
n−1 X K2

n−1

X K3
n−1 X K4

n−1

UK
n

Frame n

X K
n

DCT DCT

AR process: uk,m
n xk,m

n

Can we calculate first and second moments of off-grid transform coefficients
from those of on-grid transform coefficients?
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Solution to the Off-Grid Reference Challenge

DCT is a linear transformation: there exist constants ai,m such that,

ũk,m
n,e =

4∑
i=1

15∑
m=0

ai,mx̃ki ,m
n−1,e .

The required first and second moments of off-grid blocks:

E{ũk,m
n,e } =

4∑
i=1

15∑
m=0

ai,mE{x̃ki ,m
n−1,e} ,

E{(ũk,m
n,e )2} =

4∑
i=1

4∑
j=1

15∑
m=0

15∑
l=0

ai,maj,lE{x̃ki ,m
n−1,ex̃

kj ,l
n−1,e} .

Uncorrelatedness: a very good approximation in the transform domain.

E{x̃ki ,m
n−1,ex̃

kj ,l
n−1,e} ≈ E{x̃ki ,m

n−1,e}E{x̃
kj ,l
n−1,e}, kj 6= ki or m 6= l

Jingning Han (UC Santa Barbara) July 10, 2012 14 / 22



Solution to the Off-Grid Reference Challenge

DCT is a linear transformation: there exist constants ai,m such that,
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SCORE: Enhancement Layer Update Recursions
Case 1: Coding modes: Base layer - Intra, Enhancement layer - ET Prediction

Current base layer packet lost with probability pb , enhancement layer PLR pe

Events Probability Enhancement Layer
Base Enhancement Decoder Reconstruction
Layer Layer of xk,m

n
received received (1− pb)(1− pe) r̂k,m

n,e + f (Ĩb
n , ũk,m

n,e )

received lost (1− pb)pe x̃k,m
n,b

lost received pb(1− pe) r̂k,m
n,e + ũk,m

n,e

lost lost pbpe x̃k,m
n,b

SCORE update recursion:

E{x̃k,m
n,e } = (1− pb)(1− pe)(r̂ k,m

n,e + E{f (Ĩb
n , ũ

k,m
n,e )}) (1)

+ (1− pb)peE{x̃k,m
n,b }

+ pb(1− pe)(r̂ k,m
n,e + E{ũk,m

n,e })

+ pbpeE{x̃k,m
n,b }
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n,e )}+ pbE{ũk,m

n,e }) + peE{x̃k,m
n,b }

E{(x̃k,m
n,e )

2
} = (1− pe)((r̂ k,m

n,e )2 + 2r̂ k,m
n,e ((1− pb)E{f (Ĩb

n , ũ
k,m
n,e )}+ pbE{ũk,m

n,e })

+(1− pb)E{f (Ĩb
n , ũ
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n , ũ
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n , ũ

k,m
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Non-linearity problem: How to compute first and second moments of the non-linear ET
prediction f (Ĩb

n , ũ
k,m
n,e )?

Note: Ĩb
n , calculated at the decoder, is itself impacted by packet loss
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Solution to the Non-linearity Problem

The base layer interval Ĩb
n can be decomposed into random and deterministic

parts:

Ĩb
n = x̃k,m

n,b + [−δ1, δ2], where [−δ1, δ2] is completely determined by the base
layer quantization index ib

n

f (Ĩb
n , ũ

k,m
n,e ) can be represented as fibn (x̃

k,m
n,b , ũ

k,m
n,e )

fibn (x̃
k,m
n,b , ũ

k,m
n,e ) approximated by Taylor series expansion of fibn (x , u) about

(E{x̃k,m
n,b },E{ũ

k,m
n,e }), retaining only up to the second order terms

Expectations of fibn (x̃
k,m
n,b , ũ

k,m
n,e ) and fibn (x̃

k,m
n,b , ũ

k,m
n,e )2 are evaluated in terms of

known moments of the arguments

Note: SCORE should be run in the base layer as well

Recursions for the remaining coding modes are discussed in the paper

Jingning Han (UC Santa Barbara) July 10, 2012 16 / 22



Solution to the Non-linearity Problem

The base layer interval Ĩb
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k,m
n,e )

fibn (x̃
k,m
n,b , ũ
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k,m
n,e }), retaining only up to the second order terms

Expectations of fibn (x̃
k,m
n,b , ũ
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k,m
n,e )2 are evaluated in terms of

known moments of the arguments

Note: SCORE should be run in the base layer as well

Recursions for the remaining coding modes are discussed in the paper

Jingning Han (UC Santa Barbara) July 10, 2012 16 / 22



Solution to the Non-linearity Problem

The base layer interval Ĩb
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k,m
n,e }), retaining only up to the second order terms

Expectations of fibn (x̃
k,m
n,b , ũ
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Estimation Theoretic Concealment

Estimation theoretic prediction inspires an approach for optimal enhancement
layer concealment at the decoder when the base layer is received

The base layer provides the interval Ĩb
n

The base layer motion vector points to a motion reference in the prior
enhancement layer reconstruction ũk,m

n,c

The optimal concealment of the transform coefficient at the enhancement
layer is f (Ĩb

n , ũ
k,m
n,c )

SCORE recursions at the encoder naturally account for usage of ET
concealment at the decoder

Note: ET concealment is also not compatible with ROPE

Provides an additional shot of performance
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Results: The Competing Systems

State-of-the-art: H.264/SVC with multiloop prediction at enhancement layer,
optimized via ROPE - H.264/MLOOP-ROPE

Proposed system: ET-SVC optimized via SCORE -ET-SVC-SCORE

Both competitors use the same base layer: H.264-ROPE

Note: SCORE is run in parallel at the base layer but does not influence coding
decisions
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Enhancement Layer Decoding Quality Versus Bit-Rate

120 140 160 180 200 220
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H.264/MLOOP−ROPE
ET−SVC−SCORE

Sequence foreman at QCIF resolution: the base layer is encoded at 128 kbps,
and transmitted at packet loss rate 1% and the enhancement layer has a packet
loss rate of 5%.

Similar performance gains observed for other sequences
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Enhancement Layer Decoding Quality Versus PLR
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H.264/MLOOP−ROPE
ET−SVC−SCORE

Sequence coastguard at QCIF resolution: the base layer bit-rate is 170 kbps;
the enhancement layer bit rate is 340 kbps

The gain at 0% PLR is primarily due to ET-SVC

This gain is maintained as the PLR increases due to the optimization of coding
decisions via SCORE
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Conclusions

Proposed a transform-domain approach to efficient and robust scalable video
coding that is a union of optimal compression via ET-SVC and accurate EED
estimation via SCORE

SCORE overcomes intricacies of transform domain EED estimation that arise
due to motion compensation references frequently being off-grid

SCORE naturally accommodates the non-linear transform-domain operations of
ET-SVC via suitable approximation and the usage of ET concealment at the
decoder

The proposed unified system provides significant performance gains over a
competing state-of-the-art pixel-domain SVC approach that is optimized via
ROPE
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