

Regression based Pose Estimation with Automatic Occlusion Detection and Rectification

Ibrahim Radwan*1, Abhinav Dhall*2, Jyoti Joshi1 and Roland Goecke1,2

ibrahim.radwan@canberra.edu.au, abhinav.dhall@anu.edu.au, jyoti.joshi@canberra.edu.au, roland.goecke@ieee.org

Articulated Pose Estimation

Detect the occluded parts and rectify their position and orientation

Articulated Pose Estimation

- Pose Estimation:
 - Active topic of computer vision and multimedia retrieval
 - Task of identifying the object (e.g. human) pose by determining the position and orientation relative to some coordinate system
- Challenges:
 - Large degree of freedom for articulated objects
 - Cluttered backgrounds

Articulated Pose Estimation (2)

walk skate

• Applications:

- Search by pose
- Surveillance
- Pedestrian detection
- Video indexing
- Sport analysis
- Human action recognition

results

Articulated Pose Estimation (3)

• Approaches:

- 1. Inferring Poses from skeletal Points
- 2. Model-based methods \rightarrow <u>Pictorial Structure</u>
- Pictorial Structure:

Felzenszwalb & Huttenlocher 2005

Fischler & Elschlager 1973

- Collection of parts with connections between certain pairs of parts.
- Some previous Work
 - ► Felzenszwalb et al. (IJCV 2005),
 - Ramanan (NIPS 2006)
 - ➢ Felzenszwalb et al. (CVPR 2008),
 - > Ferrari et al. (CVPR 2008), Ferrari et al. (CVPR 2009)
 - > Andriluka et al. (CVPR 2009)
 - ➤ Yang et al. (CVPR 2011)

Pictorial Structure Model

- Combination of two models:
 - Appearance model
 - Each part, $d_i = (x, y, \theta)$
 - Measure the likelihood of each part *i* using:

$$-p(I|l_i, d_i) = \alpha_i \phi(I, l_i)$$

$$-p(I|L,D) = \prod_{i \in V} p(I|l_i,d_i)$$

- » α_i : learnt template for part *i*,
- » $\phi(I, l_i)$: features of the image patch with configuration l_i

Pictorial Structure Model (2)

- Combination of two models:
 - Configuration model
 - Learn spatial relationship between two adjacent parts *i* and *j*
 - Measure the probability of a certain configuration :

$$- p(l_i|l_j) = \beta_{ij}\varphi(l_i, l_j)$$

$$-p(L) = \prod_{ij \in E} p(l_i|l_j)$$

- » β_{ij} : learnt spatial relationship between i, j,
- » $\varphi(l_i, l_j)$: spatial features between parts i, j
- Posterior:

```
p(L|I,D) \propto p(I|L,D)p(L)
```


Pictorial Structure Model (3)

- One of the main Problems in PS is:
 - Self Occlusion

Due to large degree of freedom

PS models are not able to correctly estimate the human pose in highly selfoccluded scenes

Motivations

- How can we detect occlusion in a given image?
 If there is occlusion, how can we identify the body parts responsible for it?
 How can we rectify the occluded part's
 - position?

Our Method

1- Occlusion detection

2- Part-by-part rectification

Occlusion Detection

A novel self-occlusion detection approach

- Does not rely on background subtraction for input images
- Two binary models corresponding to the upper and lower body, respectively
 - 1. Pyramid of Histogram of Oriented Gradients (PHOG)
 - 2. Local Phase Quantisation (LPQ)
- The output from the two descriptors is combined
- A non-linear Support Vector Machine (SVM) is learnt, Radial Basis Function

PHOG descriptor example

Rectification

Train phase

Input:

 $D = [d_1, ..., d_m], PS \ Features$ $D' = [d'_1, ..., d'_m], GT \ Features$ For each part *i* training set is

$$\tau_i = \{ (d_j, d'_{i,j}) \}_{j=1}^m$$

Learning

Learn a non-linear mapping function

 $w_i: D^{nxm} \rightarrow D'^{ixm}$, i = 1, ..., qWe use GPR to estimate the w_i mapping **Results**

q models for q parts

Prediction phase

Input:

 $D = [d_1, ..., d_m], PS Features$ $P \leftarrow parts in ROI contain occlusion$

Rectify

$$i = 0$$

$$p(L_i) = p(L_i), initially$$

for $i = 1$ to size{P}

- 1. $i \leftarrow i + 1$
- 2. Select part with minimum appearance score
- 3. Load GPR model for that part
- 4. Predict d' for that part
- 5. Estimate new $p(L_i)$
- 6. Stop if no improvement in $p(L_i^{\wedge})$

Endfor

Datasets:

- 1. BUFFY dataset
- 2. People dataset
- 3. HumanEva dataset

Evaluating on:

- Full body pose {10 parts: torso, head, left and right upper/lower arms, and left and right upper/lower legs}
- Upper body pose {6 parts : torso, head, left and right upper/lower arms}

Evaluation Criteria:

- Detection rate
 - Indicates the number of detected stick figures (PASCAL VOC criterion).
- Percentage of Correctly estimated Body Parts (PCP)
 - Measures the intersection ratio between the detected body part window with the ground truth one
- Accuracy
 - Detection rate x PCP

Using these evaluation criteria, we measure the performance of our part-by-part rectification method against the a state-of-the-art PS method

Occlusion Detection Results

PCP performance of our 2 frameworks against Andriluka et al. (PS)

(a) HumanEva dataset - full body, (b) HumanEva dataset - upper body,
(c) People dataset - full body, (d) People dataset – upper body,
(e) Buffy datatset - upper body

Database	Туре	(PS) PCP	(Our) PCP	(PS) DetRate	(Our) DetRate	(PS) Accuracy	(Our) Accuracy
HumanEva	full body	70.54%	86.70%	85.20%	92.09%	60.10%	79.48%
	upper body	65.19%	74.10%	91.50%	94.00%	59.64%	69.65%
People	full body	70.56%	74.62%	84.71%	94.12%	59.77%	70.23%
	upper body	70.56%	64.55%	84.71%	90.59%	59.72%	58.47%
Buffy	full	-	-	-	-	-	—
	upper body	86.67%	87.72%	85.11%	88.64%	73.76%	77.75%

Comparison of PCP, detection rate and total accuracy between the proposed approach and Andriluka et al. (PS)

People dataset

HumanEva dataset

Buffy dataset

Conclusion

- The aim of that work is to produce a robust framework for correcting Pictorial Structure based pose estimation.
- Two steps
 - Occlusion detection
 - Part-by-part rectification
- Our method overcome one of the state-of-the-art articulated pose estimation method.

Future work

- 1. Different regression methods
- 2. Extending to Inter-Occlusion
- 3. Adding temporal information

References

- [1] M. Andriluka, S. Roth, and B. Schiele. "Pictorial structures revisited: People detection and articulated pose estimation". IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2009.
- [2] Y. Yang, D. Ramanan. "Articulated Pose Estimation using Flexible Mixtures of Parts". IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2011.
- [3] L. Sigal and M. J. Black "Measure Locally, Reason Globally: Occlusion-sensitive Articulated Pose Estimation". IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2006.
- [4] P. F. Felzenszwalb and D. P. Huttenlocher. "Pictorial structures for object recognition". Int. J. Computer Vision, 61(1):55–79, 2005.
- [5] N. Dalal and B. Triggs. "Histograms of oriented gradients for human detection". IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2005.
- [6] P. F. Felzenszwalb, D. McAllester, and D. Ramanan. "A discriminatively trained, multiscale, deformable part model". IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2008.

Thank you

http://ise.canberra.edu.au/ibrahim/

Ibrahim.radwan@canberra.edu.au

