Haptics and its Application in Multimodal User Interfaces

Hong Z. Tan

Senior Researcher \& Manager Human Computer Interaction Group Microsoft Research Asia, Beijing

Professor

School of Electrical and Computer Engineering Purdue University, USA

Touch \& High Information Transfer Rate

Blind and deaf people have been using touch to substitute vision or hearing for a very long time, at high information rate.

haptics

Being Deafferented

BBICPRRIME

HAPTICS

Tactile Sensing

through skin mechanoreceptors with specialized endings

(Johannson \& Valbo, 1983)

Kinesthetic Sensing (force + position) through receptors in muscles, tendons and joints

Muscle spindle embedded in extrafusal fibers contains intrafusal fibers. When intrafusal fibers contract, the spindle fires, conveying information about rate of change in fiber length.

Tendon organ \Rightarrow muscle tension

Joint receptor \Rightarrow joint angles (esp. extreme)

State of the Art HAPTIC TECHNOLOGIES

Tactile Stimulators (\& Applications)

Popularity of Vibrations

Haptic System Overview

Kinesthetic (Force) Displays

Haptic Rendering

The Maglev designed by Ralph Hollis

Force Feedback Is Intuitive

People understand force feedback without prior training.
In many scenarios, force feedback is superior to vibration feedback.

Force feedback on a touchscreen: The technology is available today!

Piezoelectric Actuator Technology

Surface / Fingertip Haptics

1. Normal displacement

- keyclick

2. Friction coefficient μ

- texture / 3D features

3. Static lateral force

- force well for buttons

(Piezo 1) Keyclick Feedback on Touchscreens

(Piezo 2) Surface Friction Display

Principle of Operation

- Ultrasonic bending waves in a sheet of glass create a "squeeze film" of air underneath a human fingertip.
- The squeeze film affects slipperiness of the surface. Controlling this in conjunction with fingertip movement serves as a tactile display.

Graphical display is positioned underneath glass surface of TPaD

From 2D Force to 3D Feature

Lateral force can create the illusion of 3D surface features

Flat surface

(Piezo 3) Active Surface Force Display

Feeling force on a touchscreen without moving the finger

LateralPaD by Northwestern

Top view of the LateralPaD structure

Electrovibration

TeslaTouch by Disney

Figure 11: Left: different textures produce different sensations, e.g. simulated corduroy. Right: a racing track where friction increases as the car "squeaks" around corners.

Figure 12: A visual star field in concert with a tactile layer conveying radiation intensity.

TeslaTouch (UIST 2010)

Thermal Display (very new...)

Real material

Simulated material

HAPTICS IN MULTIMODAL USER INTERFACES

1. Haptic Cuing of Visual Attention

(Haptics-e, 2003; Transportation Research, 2005)

Valid vs. Invalid cues

(a) visual stimuli on computer screen

(b) tactor array on chair

- Valid cue:
haptically-cued $\mathrm{Q}=$ visual-change Q
- Invalid cue:
haptically-cued Q ₹ visual-change Q

Results from One Participant

Tan, Gray, Young, Irawan, "Haptic cueing of a visual change-detection task: Implications for multimodal interfaces," HCI International 2001.

Results from All Participants

Q2	Q1
Q3	Q4

Baseline Initial Saccades

Jones, Gray, Spence, \& Tan, "Directing visual attention with spatially informative and spatially noninformative tactile cues," Experimental Brain Research, 2008.

With Haptic Cueing (75\% Validity)

Overall,
RT decreased by 445 ms with valid cues,
Haptic cue in HQ1
(75% cue validity) and increased by 242 ms with invalid cues. (* both changes are statistically significant.)

Summary of Haptic Cueing Studies

- Haptic cueing of visual attention works
- Participants tend to look where the haptic cue directs them, effortlessly, without much training
- When asked to deliberately suppress haptic cues, participants reported that it was hard
- Haptic spatial cues are natural and effective in a multimodal system

2. Visuohaptic 3D Watermarking

- With anticipated availability of haptic devices, the need may soon rise to protect 3D visuohaptic data and rendering methods
- Of the three requirements of robustness, imperceptibility and capacity, we focused on maximize watermark capacity to improve robustness while guaranteeing imperceptibility
- New 3D visuohaptic watermarking schemes were developed to take advantage of the different sensory capabilities of vision and touch

Kim, Barni, \& Tan, "Roughness-adaptive 3D watermarking based on masking of surface roughness," IEEE Transactions on Information Forensic and Security, 2010.

Overview: Roughness-Adaptive 3D Visuohaptic Watermarking

- For 3D visual watermarking, we developed a roughness-adaptive scheme that adaptively selected watermark strengths based on local surface roughness
- We extended the roughness-adaptive approach from visual to visuohaptic watermarking
- The watermark strengths are based on human detection thresholds for watermarks

Stimuli

Rendering

- Visual: TFT LCD 19" monitor
- Haptic: a custom force display

Procedure

- Three conditions: visual, haptic, \& visuohaptic - On each trial, the participant looked at (or touched) 3 surfaces; only 1 was watermarked
- The participant's task was to judge which surface was different

Human Watermark Detection Thresholds

Summary of Visuohaptic Watermarking

- The difference in visual and haptic watermark detection thresholds can be explored to maximize watermark strengths depending on local surface roughness
- Watermarking capacity can be increased by hiding watermarks in both visual and haptic channels
- Watermark robustness is consequently improved

Acknowledgments

Charles Spence

Chanon Jones (Purdue U)

Rose Mohd Rosli (Purdue U)

- US National Science Foundation
- Oxford McDonald Neuroscience Foundation

Contact Information

Hong Z. Tan
张虹
hongtan@purdue.com

