Haptics and its Application in Multimodal User Interfaces

Hong Z. Tan

Senior Researcher & Manager Human Computer Interaction Group Microsoft Research Asia, Beijing

Professor School of Electrical and Computer Engineering Purdue University, USA

IEEE International Conference on Multimedia & Expo • July 10, 2012 • Melbourne, Australia

Touch & High Information Transfer Rate

Blind and deaf people have been using touch to substitute vision or hearing for a very long time, at high information rate.

Being Deafferented

Tactile Sensing

haptics

through skin mechanoreceptors with specialized endings

(Johannson & Valbo, 1983)

Slide courtesy of Prof. Roberta Klatzky, Carnegie Mellon University

Kinesthetic Sensing (force + position) through receptors in muscles, tendons and joints

Muscle spindle embedded in extrafusal fibers contains intrafusal fibers. When intrafusal fibers contract, the spindle fires, conveying information about rate of change in fiber length.

Tendon organ \Rightarrow muscle tension

Joint receptor \Rightarrow joint angles (esp. extreme)

State of the Art HAPTIC TECHNOLOGIES

Tactile Stimulators (& Applications)

Popularity of Vibrations

haptics

TouchSense® 1000 Haptic System Overview

Kinesthetic (Force) Displays

PHANTOM™ by SensAble Technologies

Extrafusal muscle fibers

Intrafusal muscle fibers

α motor fiber γ motor fiber Type Ia sensory fiber Type II sensory fiber

The Mini-stick Custom designed by Dov Adelstein

The μHaptic Device designed by Curt Salisbury

The Maglev designed by Ralph Hollis

Force Feedback Is Intuitive

People understand force feedback without prior training.

In many scenarios, force feedback is superior to vibration feedback.

Force feedback on a touchscreen : The technology is available today!

Piezoelectric Actuator Technology

Surface / Fingertip Haptics

haptics

- Normal displacement

 keyclick
- 2. Friction coefficient µ
 - texture / 3D features
- 3. Static lateral force
 - force well for buttons

(Piezo 1) Keyclick Feedback on Touchscreens

haptics

(Piezo 2) Surface Friction Display

Principle of Operation

- Ultrasonic bending waves in a sheet of glass create a "squeeze film" of air underneath a human fingertip.
 - The squeeze film affects slipperiness of the surface. Controlling this in conjunction with fingertip movement serves as a tactile display.

Graphical display is positioned underneath glass surface of TPaD

TPaD by Northwestern

Photo courtesy of Prof. Ed Colgate, Northwestern University

From 2D Force to 3D Feature

Lateral force can create the illusion of 3D surface features

Flat surface

Virtual bump

haptics

(Piezo 3) Active Surface Force Display Feeling force on a touchscreen without moving the finger

Top view of the LateralPaD structure

LateralPaD by Northwestern

haptics

Photo courtesy of Prof. Ed Colgate, Northwestern University

Electrovibration

V(H) Hinder Hinder

TeslaTouch by Disney

Figure 11: Left: different textures produce different sensations, e.g. simulated corduroy. Right: a racing track where friction increases as the car "squeaks" around corners.

Figure 12: A visual star field in concert with a tactile layer conveying radiation intensity.

TeslaTouch (UIST 2010)

Thermal Display (very new...)

Slide courtesy of Dr. Lynette Jones, MIT

HAPTICS IN MULTIMODAL USER INTERFACES

Valid vs. Invalid cues

(b) tactor array on chair

Valid cue:

haptically-cued Q = visual-change Q

Invalid cue:

haptically-cued Q ≠ visual-change Q

Results from One Participant

haptics

Tan, Gray, Young, Irawan, "Haptic cueing of a visual change-detection task: Implications for multimodal interfaces," *HCI International 2001*.

Results from All Participants

Tactor DriverHead & ChinBoxStabilizer

Haptic Back Display

Baseline Initial Saccades

Q1

Q2

Jones, Gray, Spence, & Tan, "Directing visual attention with spatially informative and spatially noninformative tactile cues," *Experimental Brain Research*, 2008.

With Haptic Cueing (75% Validity)

Q1

Q4

 $\mathbf{02}$

Q3

Summary of Haptic Cueing Studies

- Haptic cueing of visual attention works
- Participants tend to look where the haptic cue directs them, effortlessly, without much training
- When asked to deliberately suppress haptic cues, participants reported that it was hard
- Haptic spatial cues are natural and effective in a multimodal system

2. Visuohaptic 3D Watermarking

- With anticipated availability of haptic devices, the need may soon rise to protect 3D visuohaptic data and rendering methods
- Of the three requirements of <u>robustness</u>, <u>imperceptibility</u> and <u>capacity</u>, we focused on maximize watermark capacity to improve robustness while guaranteeing imperceptibility
- New 3D visuohaptic watermarking schemes were developed to take advantage of the different sensory capabilities of vision and touch

Kim, Barni, & Tan, "Roughness-adaptive 3D watermarking based on masking of surface roughness," *IEEE Transactions on Information Forensic and Security*, 2010.

haptics

Overview: Roughness-Adaptive 3D Visuohaptic Watermarking

- For 3D visual watermarking, we developed a roughness-adaptive scheme that adaptively selected watermark strengths based on local surface roughness
- We extended the roughness-adaptive approach from visual to visuohaptic watermarking
- The watermark strengths are based on human detection thresholds for watermarks

Rendering

Visual: TFT LCD 19" monitor Haptic: a custom force display

haptics

Procedure

Three conditions: visual, haptic, & visuohaptic
On each trial, the participant looked at (or touched) 3 surfaces; only 1 was watermarked
The participant's task was to judge which surface was different

Human Watermark Detection Thresholds

haptics

Summary of Visuohaptic Watermarking

- The difference in visual and haptic watermark detection thresholds can be explored to <u>maximize</u> watermark strengths depending on local surface roughness
- Watermarking <u>capacity</u> can be increased by hiding watermarks in both visual and haptic channels
- Watermark <u>robustness</u> is consequently improved

Acknowledgments

Rob Gray (Arizona State U)

Charles Spence (Oxford U)

Cristy Ho (Oxford U)

Chanon Jones (Purdue U)

Rose Mohd Rosli (Purdue U)

Kwangtaek Kim (Purdue U)

Domenico Prattichizzo (U of Siena)

Mauro Barni (U of Siena)

US National Science Foundation

Oxford McDonald Neuroscience Foundation

Contact Information

haptics

Hong Z. Tan 张虹 hongtan@purdue.com