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Overview 
•  Introduction to scalable media compression 

–  emerging trends 
–  scalability and accessibility 
–  things that work well 

•  The SVC extension to H.264 
•  Beyond prediction 

–  motion compensated temporal transforms and their merits 

•  Spatio-temporal transform structures for scalable video 
–  wavelets, pyramids and lifting structures 

•  Beyond video 
–  other media types 

•  Motion models for scalable video 
–  important properties 
–  block-based and block-free motion schemes 
–  scalable compression of sparse innovations (discontinuities)  

•  Related research directions and themes 
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The Changing Landscape of Video 
•  Video formats 

–  QCIF (25 Kpel), CIF (100 Kpel), 
4CIF/SDTV (½ Mpel), HDTV (2 Mpel) 
UHDTV 4K (10 Mpel) and 8K (32 Mpel) – ITU, June 2012  

–  Cinema: 24/48/60 fps; UHDTV: potentially up to 120 fps 
•  Displays 

–  “retina” resolutions (200 to 400 pixels/inch) 
–  what resolution video do I need for an iPad? (2048x1536?) 

•  Internet and mobile devices  
–  ~80% of internet traffic is video 
–  YouTube 2nd most popular web-site - 4 billion views/day 
–  Global mobile TV subscribers to reach ~800M by 2014 

•  New media: multi-view video, 2.5D (texture+depth) 
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Scalability – degrees of interest 
•  Usually implies embedding 
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Low res 
Medium res 

High res 

Compressed bit-stream 

Low frame rate 
Medium frame rate 

High frame rate 

Compressed bit-stream 

Low quality 
Medium quality 

High quality 

Compressed bit-stream 
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Accessibility – disjoint subsets of interest 
•  Spatial region of interest 
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•  Temporal region (or frames) of interest 

•  Implications: 
–  need to break or localize dependencies 
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Scalable images – things that work well 
•  Multi-resolution transforms 

–  2D wavelet transforms work well 
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•  Accessibility through partitioned coding of subbands 
–  Region of interest access without any blocking artefacts 

ECDZQ R-D curve 
(step size modulation) 

€ 

0

Bit-plane coding 
(truncation) 

2 coding passes 
per bit-plane 

•  Embedded coding 
–  Successive refinement through bit-plane coding 
–  Multiple coding passes/bit-plane improve embedding 
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JPEG2000 – more than compression 
Decoupling and embedding 
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JPEG2000 – more than compression 
Spatial random access 
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JPEG2000 – more than compression 
Quality and resolution scalability 

quality layers 
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JPEG2000 – dimensions of scalability 
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JPEG2000 – JPIP interactivity (IS15444-9) 

•  Client sends “window requests” 
–  spatial region, resolution, components, … 

•  Server sends “JPIP stream” messages 
–  self-describing, arbitrarily ordered 
–  pre-emptable, server optimized data stream 

•  Server typically models client cache 
–  avoids redundant transmission 

Cache Model 

imagery 
window request 

JPIP Server JPIP Client 

Target 
(file or code-stream) Decompress/render 

Application 
JPIP stream + response headers 

Client Cache 

window 

window 

status 
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What can you do with JPIP? 
•  Highly efficient interactive navigation within 

–  large images (giga-pixel, even tera-pixel) 
–  medical volumes 
–  virtual microscopy 
–  window of interest access, progressive to lossless 
–  interactive metadata 

•  Interactive video 
–  frame of interest 
–  region of interest 
–  frame rate and resolution of interest 
–  quality improves each time we go back over content 

Panoramic Video Demo 

Aerial Demo 

Album Demo 

Catscan Demo 

Campus Demo 
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Scalable video standardization 
•  SVC extension to H.264/AVC 
•  Lots of prediction 

–  good adaptation of the prediction strengths of H.264 
–  new macro-block modes and slice options 

•  Supports temporal, spatial and quality scalability 
–  also supports combinations of these scalabilities 

•  Key design objectives 
–  relatively small set of defined “access layers” 
–  minimal increase in decoding complexity w.r.t. H.264 
–  minimal loss in coding efficiency from scalability 

•  has to be much better than “simulcast” 
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Temporal scalability in SVC 

•  Essentially hierarchical B-frames 
–  Temporal prediction only: no temporal update steps 
–  Not limited to the B-frame structure 

•  use prev coded frames at the same or a coarser temporal level 
•  allows non-dyadic frame-rates  

•  Encoding typically not open-loop 
–  prediction residuals based on quantized reference frames 
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Temporal transform 
(hierarchical B-frames) Intra-prediction 

(intra-blocks only) 

Spatial transform 
(DCT), quantize 

and code 

Motion 
prediction 

and coding 
motion intra 

texture 
MC 
residue 

Spatial scalability in SVC 

•  Multi-resolution pyramid – redundant sampling 
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Filter & 
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–  intra-coded samples from lower layer (for intra-blocks) 

Spatial 
interpolation 

•  Macro-block modes allow optional re-use of: 
–  motion and macro-block modes from lower layer 

–  prediction residues from lower layer (for non-intra blocks) 
–  decoder runs only one motion compensation loop 
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Coarse grain quality scalability in SVC 

•  Extra “spatial” layers the same resolution 
–  SVC uses the term “dependency layer” 
–  Each higher layer depends on one specific lower layer 

•  not fully embedded 
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Temporal transform 
(hierarchical B-frames) Intra-prediction 

(intra-blocks only) 
motion 

Spatial transform 
(DCT), quantize 

and code 
Motion 
coding Enhancement 

Temporal transform 
(hierarchical B-frames) Intra-prediction 

(intra-blocks only) 
motion 

Spatial transform 
(DCT), quantize 

and code 
Motion 
coding H.264 base layer 

Medium grain quality scalability in SVC 

•  Similar to CGS, but 
–  One dependency layer formed from multiple quality layers 

•  Dependent (higher spatial resolution) layers use highest available 
quality for prediction 

•  Except where use of lower quality forced by “key frames” 
–  Decoder still runs one motion compensation loop  
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•  Can come within ~10% of H.264/AVC bit-rate 
                                         (Schwarz, Marpe & Wiegand, 2007) 
–  depends on number of quality layers 

•  Not easy to optimize at encoder 
–  multiple coupled closed-loop encoders: one per layer 
–  bottom-up approach (layer by layer) not optimal  

•  Performance of spatial scalability 
                                                        (Segall & Sullivan, 2007) 

SVC Efficiency 
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SVC rate reduction 
relative to simultcast 

Single layer rate reduction 
relative to simultcast 

2 layers only, JVT test bit-rates 
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Limitations of SVC 
•  Prediction only solution – inherently sub-optimal 

–  in time (hierarchical B-frame prediction) 
–  in space (prediction across scales) 
–  in motion (prediction across scales) – least effective 

•  Redundant sampling with multi-resolution pyramids 
•  Not fully embedded 

–  high res stream includes only some low res info 
•  depends on relative quality (SNR) of low res layers  
•  partially simulcast 

–  having high quality content for low spatial resolution  
•  may not help a lot if we then decide we want high resolution 

–  oriented toward provision of a small set of access layers 
•  as opposed to progressive build-up during interactive browsing 

•  Block-based motion modeling is not physical 
–  motion does not scale well 
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Temporal transforms: Why prediction alone 
is sub-optimal 

even 
frames 

odd 
frames 

residual 

forward transform reverse transform quantization 
1 

-½ -½ 

1 1 

½ ½ 1 

Redundant spanning 
of low-pass content by 
both channels ⇒ 
High-pass quantization 
noise has unnecessarily 
high energy gain.  

Bi-directional 
prediction 
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Reduced noise power through lifting 

•  Inject –ve fraction of high band 
into low band synthesis path 
–  removes low freq. noise power from 

synthesized high band 

•  Add compensating step in the 
forward transform 
–  does not affect energy compacting 

properties of prediction 

even 
frames 

odd 
frames 

0 0 

1 
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Motion compensated lifting 

•  All FIR subband/wavelet transforms have lifting factorizations 
•  MC warped lifting steps ⇒ xform is applied along motion trajectories: 

–  provided trajectories exist (motion model is invertible); 
–  strictly true only for spatially continuous frames          (Secker & Taubman) 

even 
frames 

odd 
frames 

•  Motion compensate each 
lifting step 
–  transform remains reversible 

•  Proposed in 2001: 
(Pesquet-Popescu & Bottreau) 
(Secker & Taubman) 
(Luo, Li, Li, Zhuang, Zhang) 
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Temporal analysis effects  

•  Temporal analysis reduces noise & aliasing power 
–  Improves energy compaction in next level of temporal 

transform 
–  Improves visual appearance at reduced temporal 

resolutions 
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True scene spatial content: 
•  coherent across motion trajectories 

Sampling noise: 
•  incoherent 

Spatial aliasing: 
•  incoherent 
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low-res 
predict 

Spatial scalability – 2D+t   

•  Start with spatial multi-resolution transform 
•  Apply temporal transform to each spatial resolution 

–  use only information from same or lower resolution 
(Andreopoulis, Van der Schaar, Munteaneau, Barbarien, Schelkens, Cornelis – 2003) 

•  Frequency leakage limits low-res energy compaction 
•  Each frame contributes its own aliasing at low-res 
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Wavelet transforms – critically sampled  

Analysis filter responses of the 
popular 9/7 wavelet transform 

Fundamental constraint: 
(for perfect reconstruction) 

half-band filter 
0 0 

1 

Extract LL 
subband 

Spatial aliasing 
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Lifted pyramid transforms 
      – for improved quality scalability  

reduce expand 

full res 
image 

half res 
image 

quantization 

detail 

base 

expand 

full res 
image 

reduce reduce 

(Flierl & Vandergeist, 2005) 

Prediction alone 
is sub-optimal! 
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Lifted Pyramid transforms – variations  

reduce expand 

full res 
image 

half res 
image 

quantization 

detail 

base 

expand 

full res 
image 

reduce reduce 

(Flierl and Vandergeist, 2005) 
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reduce 

full res 
image 

half res 
image 

quantization 

detail 

base 

expand 

full res 
image 

expand reduce expand 

(Liu, Gan and Tran, 2008) Similar compression performance, 
more control over low-pass anti-aliasing filter 
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Wavelets with energy exchange – 2D+t  
•  Key: video spectrum rolls off quickly with frequency 

–  Property not preserved by DWT at reduced resolution 

•  Modulated lifting steps can move spectral content 
(Gan and Taubman, 2007) 

PSD 
low 

band 
high 

band 

transfer 
step 

cancel 
step 
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Wavelet energy exchange – variations  
•  Start with Packet Wavelet transform 

–  transfer step moves aliased content to “acceptor 
packets” 

–  cancel step cancels aliased content in “donor 
packets” 

•  Can make transfer step adaptive 
–  modulate by local estimate of aliasing energy in 

donor packets 
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DWT Packet Lift Adaptive 
Packet Lift 

3/2 Lifted 
Pyramid 

2/3 Lifted 
Pyramid 

(Gan and Taubman, 2009) 
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Spatial scalability – t+2D  

•  Temporal transform uses full spatial resolution 
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temporal 
predict 

temporal 
update 

•  At reduced spatial resolution 
–  Temporal synthesis steps missing high-resolution info 
–  If motion trajectories wrong/non-physical  ghosting 
–  If trajectories valid  temporal synthesis reduces aliasing 

•  less aliasing power (relative to 2D+t case) 
•  aliasing content changes slowly over time  
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Adaptive Schemes – t+2D vs 2D+t   
•  Adaptively use hi-res info in low-res temporal lifting 

–  to the extent that this is “safe” (from ghosting) 
                                                              (Mehrseresht & Taubman, 2004)  

ICME’12, Melbourne 30 

•  Could further reduce aliasing effects 
–  by combining with adaptive energy exchange schemes 
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Aliasing suppression – t+2D  
                                                  (Wu & Woods, 2007) 
•  Temporal transform performed at full res 
•  Spatial DWT applied to temporal subband frames 
•  High-pass subband samples “attenuated”  

–  attenuation undone to reconstruct higher resolutions 
–  reduces aliasing effects in low-res reconstructions 
–  no loss of full-res coding efficiency 

•  done through bit-plane shifting 

•  Attenuated subband samples get less bits 
–  not just decoder-side post-processing 

•  Best with wavelet packet transforms 
–  more control over frequency roll-off produced by subband 

sample attenuation  
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Summary of transform effects 
•  2D+t pyramid schemes are simplest 

–  but, redundant sampling hurts performance 
•  especially at high bit-rates 

–  lifting important for open loop pyramids 
–  wavelets with energy exchange present an interesting alternative 

•  t+2D schemes always the most efficient 
–  full resolution motion compensation 
–  can produce ghosting at reduced spatial resolutions 
–  t+2D DWT schemes produce aliasing at reduced resolutions 

•  reduced by good motion models 
•  still not clear that this is a real issue in practice  

•  5/3 temporal transform superior to hierarchical B-frames 
–  reduced quantization noise power 
–  less noise/artefacts passed to lower temporal resolutions 
–  but, dangerous with some 2D+t schemes 

•  can damage low-temporal, high-spatial resolution 
–  high quality motion is very important 
–  adaptive schemes required to reep benefits “safely” 
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Beyond video 
•  Object-based video 

–  MC shape-adaptive lifting                           (Liu, Ngan, Wu, 2007 & 2008) 
•  Scalable volume compression 

–  MC lifting on slices                               (Taubman, Leung & Secker, 2002) 
–  DC (disparity comp) lifting on volume views (Marcellin, Bilgin et al. 2008) 

•  Worth noting: 
–  above schemes generally based on 3/4D DWT with 5/3 “temporal/

inter-view” lifting, using motion/geometry compensation 
–  competitive with H.264, especially when motion/geometry smooth  

•  Light fields and free view-point video 
–  DC (disparity comp) lifting on scene views     (Girod, Chang, et al. 2003) 
–  MC/DC lifting on views                    (Garbas, Fecker, Troger & Kaup 2006) 

                                                             (Garbas, Pesquet-Popescu & Kaup 2011) 
•  Scalable depth fields for 2.5D media 

–  closely related to motion compression; see later 
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Motion for Scalable Video 
•  Fully scalable video requires scalable motion 

–  reduce motion bit-rate as video quality reduces 
–  reduce motion resolution as video resolution reduces 

•  First demonstration (Taubman & Secker, 2003) 
–  16x16 triangular mesh motion model 
–  Wavelet transform of mesh node vectors 
–  EBCOT coding of mesh subbands 
–  Model-based allocation of motion bits to quality layers 
–  Pure t+2D motion-compensated temporal lifting  
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Scalable motion – very early results 
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H.264 high 
complexity H.264 results 

•  CABAC 
•  5 prev, 3 future ref frames 
•  multi-hypothesis testing 
•  (courtesy of Marcus Flierl) 
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On the road to better motion 
•  Issues: 

–  smooth motion fields scale well 
•  mesh is guaranteed to be smooth and invertible everywhere 

–  but, real motion fields have discontinuities 
•  Hierarchical block-based schemes 

–  produce a massive number of artificial discontinuities 
–  not invertible – i.e., there are no motion trajectories 
–  non-physical – hence, not easy to scale 
–  but, easy to optimize for energy compaction 

•  particularly effective at lower bit-rates 

•  Objectives 
–  minimize artificial discontinuities 
–  encourage smooth models wherever possible 

•  pure translation not generally sufficient 
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Block-based schemes with merging 

•  Linear & affine models 
–  encourages larger blocks 

•  Merging of quad-tree nodes 
–  encourages larger regions and improves efficiency 
–  merging approach later picked up by the HEVC standard 

•  Hierarchical coding 
–  works very well with merging; provides resolution scalability 
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Affine motion model 

Linear motion model 

Pure translation 

leaf 
merging 

(Mathew and Taubman, 2006) 
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Boundary geometry and merging 
•  Model motion & boundary 
•  No merging 

–  Hung et al. (2006) 
–  Escoda et al. (2007) 

•  With merging 
–  Mathew & Taubman (2007) 
–  separate quad-trees (2008) 
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Indicative Performance 

•  Things that reduce artificial discontinuities: 
–  modeling geometry as well as motion 
–  separately pruned trees for geometry and motion 
–  merging nodes from the pruned quad-trees 

•  These schemes are practical and resolution scalable 
–  readily optimized across the hierarchy 
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Two quad-trees: 
motion, geometry, 

merging 

Single quad-tree: 
motion, geometry, 

merging 

Single quad-tree: 
motion only 

Single quad-tree: 
motion + merging 
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A new approach – currently implemented only for 
depth maps; very similar to motion maps 
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JPEG 2000, 50 k bits 
•  Resolution scalable 
•  Quality scalable 
•  No blocks 

Proposed, 50 k bits 
•  Resolution scalable 
•  Quality scalable 
•  No blocks 

Poorly suited to 
discontinuities in 

depth/motion fields 

Well suited to 
discontinuous 

depth/motion fields 
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Highly scalable depth/motion coding 
(Mathew, Taubman, Zanuttigh, 2012) 

•  No explicit segmentation 
•  No parametric models of boundaries 
•  Explicit signalling of discontinuities along “arcs” 

–  Spatial hierarchy of arcs that may contain breakpoints 
•  introduces resolution scalability to discontinuity field 

–  Position of breakpoints on arcs successively refined 
•  introduces quality scalabiity to discontinuity field 

–  Breakpoint adaptive DWT of depth/motion field values 
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Field samples & Breakpoint pyramids 
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Breakpoint adaptive DWT – sequence of 
non-separable 2D lifting steps 
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  Breakpoints drive an adaptive DWT 

  Basis functions do not cross 
discontinuity along an arc 

 Max of one breakpoint per arc 
  Adaptive transform well defined 

Arc Breakpoint Pyramid 
Field Sample 

Pyramid 

Original field samples 
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Original field samples 

Vertices & Induced Breakpoints 

 Only a subset of breakpoints  communicated 

 We call these “vertices” 

  Vertices induce remaining breakpoints  

  Breakpoints at a coarser resolution level can induce 
breakpoints on arcs at finer levels (recursive) 

Arc Breakpoint Pyramid 
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Vertices & Induced Breakpoints 
Inducing  Policy  

1.  Parent to child arc 

2.  Inferred edge 

Arc Breakpoint Pyramid 

Original field samples 

  Arc breakpoint can induce breakpoints on its sub-arc 

  Vertex on an arc overrides any induced breakpoints 
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Vertices & Induced Breakpoints 

Arc Breakpoint Pyramid 

Inducing  Policy  

1.  Parent to child arc 

2.  Inferred edge 

Original field samples 

  Breakpoints induced on “root arcs” 

  Vertex on a root arcs overrides induced breakpoints 

 Good for compression & scalable decoding 
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root arcs 

Sub-bands and Arc-bands 
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Embedded Block Coding 
 – for scalability and ROI accessibility 

•  Sub-band stream (field samples) 
–  Sub-bands divided into code blocks 
–  Coded using EBCOT (JPEG2000) 
–  Bitplanes assigned to quality layers 

•  Vertex Stream 
–  Arc-bands divided into code blocks 
–  Coding scheme similar to EBCOT 
–  Bitplanes refine vertex locations 
–  Bitplanes assigned to quality layers 
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Indicative performance – depth coding 
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•  Scaled by discarding sub-band quality layers only 
–  vertex coding cost hurts low bit-rate performance 
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Indicative performance – depth coding 
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•  Scaled by discarding sub-band and arc-band quality layers 
–  fully automatic model-based quality layer formation 
–  model-based interleaving of all quality layers for optimal embedding 
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Indicative performance – depth coding 
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Segment 

•  Compared with segmentation based approach 
(Zanuttigh & Cortelazzo, 2009) 
–  not scalable; sensitive to initial choice of segmentation complexity 
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Scalable coding of sparse data 

•  Breakpoint adaptive DWT simple in 1D 
•  Breakpoints coded at vertices (v) 

–  Successive bit-planes refine accuracy of breakpoint 
•  Model based quality layering of vertex bit-planes 

–  Discard layers at low bit-rates based on D-R slope 
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Model 1D process 
•  Stationary 
•  Marginally Gaussian 
•  Innovations (jumps) 

−  memoriless 
−  sparse 

v 

v v v v 

v v Arcs at resolution level r 

Arcs at resolution level r-1 

Arcs at resolution level r-2 
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Scalable coding of sparse data 
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•  High rate asymptotic behaviour affected by sparsity preservation 
•  Low rate behaviour dominated by breakpoint discard process 

–  can be shown to have comparable R-D properties to 1/3 DWT 



UNSW – EE&T 

Related research 
•  Motion compensated orthogonal transforms 

      (Flierl & Girod, 2006 & 2007) (Flierl 2009) (Liu & Flierl 2012) 
–  build temporal transform from a sequence of stages 

•  each stage transforms a small set of pixels (e.g., 2 or 3) 
•  stages incrementally orthogonalized, based on motion field 

–  follow with MCOT-adapted spatial “wavelet” transform 
and EBCOT (as in JPEG2000) 

•  Lifting transforms on graphs for video coding 
                                             (Martinez Enriquez & Ortega, 2011) 
–  model video as graph with temporal & spatial weights 
–  “wavelet-like” lifting on paritioned graph 

•  Above schemes support quality scalability 
–  but visual properties of reduced scales not considered 
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Summary 
•  Scalable image compression is very effective 

–  fully embedded, no loss in efficiency, extremely flexible 
•  Prediction alone is sub-optimal for video 

–  produces more quantization noise than transform approach 
–  fails to progressively clean noise from high res, high fps content 

•  SVC standard 
–  has probably reduced the intensity of research 
–  but many fundamental issues remain to be explored 

•  Lots of interesting tools have been developed 
–  motion-compensated lifting; lifted spatial pyramids; adaptive 

inter-resolution blending; motion compensated orthogonal 
transforms; … 

•  Breaking away from block-based motion is key 
–  need to understand discontinuities as innovation process 

•  scalability needs to address the R-D properties of this process 
•  block models are riddled with artificial discontinuities 
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Dependent research directions 
•  Perceptual models for scalable video 

–  perceptually optimize allocation of bandwidth 
•  e.g., (Leung & Taubman, CSVT 2009) 

–  spatial details vs. temporal details vs. quant. artefacts 
–  conclusions are codec dependent 

•  see, e.g., (Lee, De Simone, Ramzan, Zhao, Kurutepe, Sikora, Ostermann, 
Izquierdo & Ebrahimi, ACM Multimedia 2010) 

•  room for much more research, inc development of good models  

•  Robust communication of scalable video 
–  Lossy channels, real-time constraints 
–  Explored in many different contexts 
–  PET-based schemes are appealing for open-loop scalable 

coders with packet erasure channels 
•  e.g., “Limited-Retransmission-PET” (Taubman & Thie, 2005) 
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