Overview

- Introduction to scalable media compression
 - emerging trends
 - scalability and accessibility
 - things that work well
- The SVC extension to H.264
- Beyond prediction
 - motion compensated temporal transforms and their merits
- Spatio-temporal transform structures for scalable video
 - wavelets, pyramids and lifting structures
- Beyond video
 - other media types
- Motion models for scalable video
 - important properties
 - block-based and block-free motion schemes
 - scalable compression of sparse innovations (discontinuities)
- Related research directions and themes

The Changing Landscape of Video

- Video formats
 - QCIF (25 Kpel), CIF (100 Kpel),
 4CIF/SDTV (½ Mpel), HDTV (2 Mpel)
 UHDTV 4K (10 Mpel) and 8K (32 Mpel) ITU, June 2012
 - Cinema: 24/48/60 fps; UHDTV: potentially up to 120 fps
- Displays
 - "retina" resolutions (200 to 400 pixels/inch)
 - what resolution video do I need for an iPad? (2048x1536?)
- Internet and mobile devices
 - ~80% of internet traffic is video
 - YouTube 2nd most popular web-site 4 billion views/day
 - Global mobile TV subscribers to reach ~800M by 2014
- New media: multi-view video, 2.5D (texture+depth)

Accessibility – disjoint subsets of interest

• Spatial region of interest

• Temporal region (or frames) of interest

- Implications:
 - need to break or localize dependencies

Scalable images – things that work well

- Multi-resolution transforms
 - 2D wavelet transforms work well
- Embedded coding
 - Successive refinement through bit-plane coding
 - Multiple coding passes/bit-plane improve embedding

- Accessibility through partitioned coding of subbands
 - Region of interest access without any blocking artefacts

ICME'12, Melbourne

JPEG2000 – more than compression

Decoupling and embedding

ICME'12, Melbourne

JPEG2000 – more than compression

Spatial random access

ICIP'06, Atlanta

JPEG2000 – more than compression Quality and resolution scalability

UNSW – EF&T JPEG2000 – JPIP interactivity (IS15444-9) JPIP stream + response headers window Application JPIP Server JPIP Client status window request window imagery Target (file or code-stream) **Client Cache** Decompress/render Cache Model

- Client sends "window requests"
 - spatial region, resolution, components, ...
- Server sends "JPIP stream" messages
 - self-describing, arbitrarily ordered
 - pre-emptable, server optimized data stream
- Server typically models client cache
 - avoids redundant transmission

What can you do with JPIP?

- Highly efficient interactive navigation within
 - large images (giga-pixel, even tera-pixel) Aerial Demo
 - medical volumes
 - virtual microscopy
 - window of interest access, progressive to lossless
 - interactive metadata
- Interactive video
 - frame of interest

Panoramic Video Demo

Album Demo

- region of interest
- frame rate and resolution of interest
- quality improves each time we go back over content

Campus Demo

11

Scalable video standardization

- SVC extension to H.264/AVC
- Lots of prediction
 - good adaptation of the prediction strengths of H.264
 - new macro-block modes and slice options
- Supports temporal, spatial and quality scalability

 also supports combinations of these scalabilities
- Key design objectives
 - relatively small set of defined "access layers"
 - minimal increase in decoding complexity w.r.t. H.264
 - minimal loss in coding efficiency from scalability
 - has to be much better than "simulcast"

Temporal scalability in SVC

- Essentially hierarchical B-frames
 - Temporal prediction only: no temporal update steps
 - Not limited to the B-frame structure
 - use prev coded frames at the same or a coarser temporal level
 - allows non-dyadic frame-rates
- Encoding typically not open-loop
 - prediction residuals based on quantized reference frames

- Multi-resolution pyramid redundant sampling
- Macro-block modes allow optional re-use of:
 - motion and macro-block modes from lower layer
 - intra-coded samples from lower layer (for intra-blocks)
 - prediction residues from lower layer (for non-intra blocks)
 - decoder runs only one motion compensation loop

- Similar to CGS, but
 - One dependency layer formed from multiple quality layers
 - Dependent (higher spatial resolution) layers use highest available quality for prediction
 - Except where use of lower quality forced by "key frames"
 - Decoder still runs one motion compensation loop

SVC Efficiency

Can come within ~10% of H.264/AVC bit-rate

(Schwarz, Marpe & Wiegand, 2007)

- depends on number of quality layers
- Not easy to optimize at encoder
 - multiple coupled closed-loop encoders: one per layer
 - bottom-up approach (layer by layer) not optimal
- Performance of spatial scalability

ICME'12, Melbourne

Limitations of SVC

- Prediction only solution inherently sub-optimal
 - in time (hierarchical B-frame prediction)
 - in space (prediction across scales)
 - in motion (prediction across scales) least effective
- Redundant sampling with multi-resolution pyramids
- Not fully embedded
 - high res stream includes only some low res info
 - depends on relative quality (SNR) of low res layers
 - partially simulcast
 - having high quality content for low spatial resolution
 - may not help a lot if we then decide we want high resolution
 - oriented toward provision of a small set of access layers
 - as opposed to progressive build-up during interactive browsing
- Block-based motion modeling is not physical
 - motion does not scale well

Temporal transforms: Why prediction alone is sub-optimal

ICME'12, Melbourne

Reduced noise power through lifting

- Inject –ve fraction of high band into low band synthesis path
 - removes low freq. noise power from synthesized high band
- Add compensating step in the forward transform
 - does not affect energy compacting properties of prediction

Motion compensated lifting

- Motion compensate each lifting step
 - transform remains reversible
- Proposed in 2001:
 (Pesquet-Popescu & Bottreau)
 (Secker & Taubman)
 (Luo, Li, Li, Zhuang, Zhang)
- All FIR subband/wavelet transforms have lifting factorizations
- MC warped lifting steps \Rightarrow xform is applied along motion trajectories:
 - provided trajectories exist (motion model is invertible);

Temporal analysis reduces noise & aliasing power

- Improves energy compaction in next level of temporal transform
- Improves visual appearance at reduced temporal resolutions

- Start with spatial multi-resolution transform
- Apply temporal transform to each spatial resolution
 - use only information from same or lower resolution (Andreopoulis, Van der Schaar, Munteaneau, Barbarien, Schelkens, Cornelis – 2003)
- Frequency leakage limits low-res energy compaction
- Each frame contributes its own aliasing at low-res

Wavelet transforms – critically sampled

ICME'12, Melbourne

Lifted Pyramid transforms – variations

(Flierl and Vandergeist, 2005)

Wavelets with energy exchange – 2D+t

- Key: video spectrum rolls off quickly with frequency
 - Property not preserved by DWT at reduced resolution
- Modulated lifting steps can move spectral content (Gan and Taubman, 2007)

ICME'12, Melbourne

Wavelet energy exchange – variations

- Start with Packet Wavelet transform
 - transfer step moves aliased content to "acceptor packets"
 - cancel step cancels aliased content in "donor packets"
- Can make transfer step adaptive
 - modulate by local estimate of aliasing energy in donor packets

(Gan and Taubman, 2009)

- Temporal transform uses full spatial resolution
- At reduced spatial resolution
 - Temporal synthesis steps missing high-resolution info
 - If motion trajectories wrong/non-physical
 ghosting
 - If trajectories valid \rightarrow temporal synthesis reduces aliasing
 - less aliasing power (relative to 2D+t case)
 - aliasing content changes slowly over time

Adaptive Schemes – t+2D vs 2D+t

- Adaptively use hi-res info in low-res temporal lifting
 - to the extent that this is "safe" (from ghosting)

(Mehrseresht & Taubman, 2004)

- Could further reduce aliasing effects
 - by combining with adaptive energy exchange schemes

Aliasing suppression – t+2D

(Wu & Woods, 2007)

- Temporal transform performed at full res
- Spatial DWT applied to temporal subband frames
- High-pass subband samples "attenuated"
 - attenuation undone to reconstruct higher resolutions
 - reduces aliasing effects in low-res reconstructions
 - no loss of full-res coding efficiency
 - done through bit-plane shifting
- Attenuated subband samples get less bits
 - not just decoder-side post-processing
- Best with wavelet packet transforms
 - more control over frequency roll-off produced by subband sample attenuation

Summary of transform effects

- 2D+t pyramid schemes are simplest
 - but, redundant sampling hurts performance
 - especially at high bit-rates
 - lifting important for open loop pyramids
 - wavelets with energy exchange present an interesting alternative
- t+2D schemes always the most efficient
 - full resolution motion compensation
 - can produce ghosting at reduced spatial resolutions
 - t+2D DWT schemes produce aliasing at reduced resolutions
 - reduced by good motion models
 - still not clear that this is a real issue in practice
- 5/3 temporal transform superior to hierarchical B-frames
 - reduced quantization noise power
 - less noise/artefacts passed to lower temporal resolutions
 - but, dangerous with some 2D+t schemes
 - can damage low-temporal, high-spatial resolution
 - high quality motion is very important
 - adaptive schemes required to reep benefits "safely"

Beyond video

- Object-based video
 - MC shape-adaptive lifting

Scalable volume compression

- MC lifting on slices (Taubman, Leung & Secker, 2002)
- DC (disparity comp) lifting on volume views (Marcellin, Bilgin et al. 2008)

• Worth noting:

- above schemes generally based on 3/4D DWT with 5/3 "temporal/ inter-view" lifting, using motion/geometry compensation
- competitive with H.264, especially when motion/geometry smooth
- Light fields and free view-point video
 - DC (disparity comp) lifting on scene views (Girod, Chang, et al. 2003)
 - MC/DC lifting on views
 (Garbas, Fecker, Troger & Kaup 2006)
 (Garbas, Pesquet-Popescu & Kaup 2011)
- Scalable depth fields for 2.5D media
 - closely related to motion compression; see later

(Liu, Ngan, Wu, 2007 & 2008)

Motion for Scalable Video

- Fully scalable video requires scalable motion
 - reduce motion bit-rate as video quality reduces
 - reduce motion resolution as video resolution reduces
- First demonstration (Taubman & Secker, 2003)
 - 16x16 triangular mesh motion model
 - Wavelet transform of mesh node vectors
 - EBCOT coding of mesh subbands
 - Model-based allocation of motion bits to quality layers
 - Pure t+2D motion-compensated temporal lifting

Scalable motion – very early results

On the road to better motion

- Issues:
 - smooth motion fields scale well
 - mesh is guaranteed to be smooth and invertible everywhere
 - but, real motion fields have discontinuities
- Hierarchical block-based schemes
 - produce a massive number of artificial discontinuities
 - not invertible i.e., there are no motion trajectories
 - non-physical hence, not easy to scale
 - but, easy to optimize for energy compaction
 - particularly effective at lower bit-rates
- Objectives
 - minimize artificial discontinuities
 - encourage smooth models wherever possible
 - pure translation not generally sufficient

Block-based schemes with merging

(Mathew and Taubman, 2006)

- Linear & affine models
 - encourages larger blocks
- Merging of quad-tree nodes
 - encourages larger regions and improves efficiency
 - merging approach later picked up by the HEVC standard
- Hierarchical coding
 - works very well with merging; provides resolution scalability

Boundary geometry and merging

- Model motion & boundary
- No merging
 - Hung et al. (2006)
 - Escoda et al. (2007)
- With merging
 - Mathew & Taubman (2007)
 - separate quad-trees (2008)

Separate quad-trees

ICME'12, Melbourne

Indicative Performance

- Things that reduce artificial discontinuities:
 - modeling geometry as well as motion
 - separately pruned trees for geometry and motion
 - merging nodes from the pruned quad-trees
- These schemes are practical and resolution scalable
 - readily optimized across the hierarchy

A new approach – currently implemented only for depth maps; very similar to motion maps

JPEG 2000, 50 k bits

- Resolution scalable
- Quality scalable
- No blocks

Poorly suited to discontinuities in depth/motion fields

Proposed, 50 k bits

- Resolution scalable
- Quality scalable
- No blocks

Well suited to discontinuous depth/motion fields

ICME'12, Melbourne

Highly scalable depth/motion coding (Mathew, Taubman, Zanuttigh, 2012)

- No explicit segmentation
- No parametric models of boundaries
- Explicit signalling of discontinuities along "arcs"
 - Spatial hierarchy of arcs that may contain breakpoints
 - · introduces resolution scalability to discontinuity field
 - Position of breakpoints on arcs successively refined
 - introduces quality scalability to discontinuity field
 - Breakpoint adaptive DWT of depth/motion field values

ICME'12, Melbourne

Vertices & Induced Breakpoints

Original field samples

- Only a subset of breakpoints communicated
- □ We call these "vertices"
- Vertices induce remaining breakpoints
- Breakpoints at a coarser resolution level can induce breakpoints on arcs at finer levels (recursive)

Arc Breakpoint Pyramid

Vertices & Induced Breakpoints

Arc Breakpoint Pyramid

Vertices & Induced Breakpoints

Original field samples

□ Breakpoints induced on "root arcs"

Vertex on a root arcs overrides induced breakpoints

Inducing Policy

2. Inferred edge

1. Parent to child arc

□ Good for compression & scalable decoding

Arc Breakpoint Pyramid

Embedded Block Coding – for scalability and ROI accessibility

- Sub-band stream (field samples)
 - Sub-bands divided into code blocks
 - Coded using EBCOT (JPEG2000)
 - Bitplanes assigned to quality layers
- Vertex Stream
 - Arc-bands divided into code blocks
 - Coding scheme similar to EBCOT
 - Bitplanes refine vertex locations
 - Bitplanes assigned to quality layers

stream

Vertex

stream

Indicative performance – depth coding

- Scaled by discarding sub-band quality layers only
 - vertex coding cost hurts low bit-rate performance

Indicative performance – depth coding

- Scaled by discarding sub-band and arc-band quality layers
 - fully automatic model-based quality layer formation
 - model-based interleaving of all quality layers for optimal embedding

Indicative performance – depth coding

- (Zanuttigh & Cortelazzo, 2009)
- not scalable; sensitive to initial choice of segmentation complexity

Scalable coding of sparse data

- Breakpoint adaptive DWT simple in 1D
- Breakpoints coded at vertices (v)
 - Successive bit-planes refine accuracy of breakpoint
- Model based quality layering of vertex bit-planes
 - Discard layers at low bit-rates based on D-R slope

Scalable coding of sparse data

- High rate asymptotic behaviour affected by sparsity preservation
- Low rate behaviour dominated by breakpoint discard process
 - can be shown to have comparable R-D properties to 1/3 DWT

Related research

- Motion compensated orthogonal transforms
 (Flierl & Girod, 2006 & 2007) (Flierl 2009) (Liu & Flierl 2012)
 - build temporal transform from a sequence of stages
 - each stage transforms a small set of pixels (e.g., 2 or 3)
 - stages incrementally orthogonalized, based on motion field
 - follow with MCOT-adapted spatial "wavelet" transform and EBCOT (as in JPEG2000)
- Lifting transforms on graphs for video coding (Martinez Enriquez & Ortega, 2011)
 - model video as graph with temporal & spatial weights
 - "wavelet-like" lifting on paritioned graph
- Above schemes support quality scalability
 - but visual properties of reduced scales not considered

Summary

- Scalable image compression is very effective
 - fully embedded, no loss in efficiency, extremely flexible
- Prediction alone is sub-optimal for video
 - produces more quantization noise than transform approach
 - fails to progressively clean noise from high res, high fps content
- SVC standard
 - has probably reduced the intensity of research
 - but many fundamental issues remain to be explored
- Lots of interesting tools have been developed
 - motion-compensated lifting; lifted spatial pyramids; adaptive inter-resolution blending; motion compensated orthogonal transforms; ...
- Breaking away from block-based motion is key
 - need to understand discontinuities as innovation process
 - scalability needs to address the R-D properties of this process
 - block models are riddled with artificial discontinuities

Dependent research directions

- Perceptual models for scalable video
 - perceptually optimize allocation of bandwidth
 - e.g., (Leung & Taubman, CSVT 2009)
 - spatial details vs. temporal details vs. quant. artefacts
 - conclusions are codec dependent
 - See, e.g., (Lee, De Simone, Ramzan, Zhao, Kurutepe, Sikora, Ostermann, Izquierdo & Ebrahimi, ACM Multimedia 2010)
 - room for much more research, inc development of good models
- Robust communication of scalable video
 - Lossy channels, real-time constraints
 - Explored in many different contexts
 - PET-based schemes are appealing for open-loop scalable coders with packet erasure channels
 - e.g., "Limited-Retransmission-PET" (Taubman & Thie, 2005)