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From Sydney, to Beijing and then London, safety and security is always
s for each Olympics
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Huge amount of surveillance video data

2012.7.10

1.5T/day for one HD Camera

30days~“6months storage time 45~270 Tera

ore than 4M cameras
in UK for Olympics 18,000~108,000 Peta

Huge data poses a grand challenge for transmission and
long-term storage!
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Surveillance video data inecreases extremely

faster than the compression efficiency

Compression Efficiency
of Video Coding Standards

Transcoding
Speed and
Quality

Surveillance
video data
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How to guarantee the transcoding quality

2012.7.10

v Beyond the traditional redundancy...For surveillance video, we can remove ...?

v’ Background is a special kind of
visual redundancy for surveillance
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How to guarantee the transcoding quality
and speed?
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Whenever cloudy or fog, rainy or snow, in the morning or afternoon,
¥ most surveillance cameras are always deployed at a fixed position and
/;' cover a specific range of the scene for a long time even forever
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How to guarantee the transcoding quality
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v Key idea: Separately transcoding the foreground and background!

Object-oriented
transcoding

Background
Modeling

Training video

Real-time surveillance video



Challenges in separately transcoding the
background and foreground
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How to handle these challenges in object-
oriented coding?
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Object-oriented = Hybrid Block-based
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Can we integrate object- orlented transcoding wnth
hybrid block-based methods for a best performance?
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Hybrid block-based transcoding with

The expected bitrate curve

Avg.
Bit
rate

Full-decoding-full-encoding (without long-term reference)

Transcoding with and key frame as long-term reference

e

Two key problems:
v" How to model and utilize the background for
high-efficient transcoding?

v" How to exploit the characteristics of surveillance
video for fast transcoding?




High=Efficient Transcoding:

Background Model as the Reference
N\

From: multiple past reference frames

To: background model as the reference
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High-Efficient Transcoding:

Optimal Background Model
(1) Using the high-quality=transcoded key frame (HKF) as

long-term reference
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High-Efficient Transcoding:

Optimal Background Model
(2) Using the background modeled from the reconstructed
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frames (RB) as long-term reference
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High-Efficient Transcoding:

Optimal Background Meodel

(3) Using the background modeled from the original-
decoded frames (0B) as long-term reference

Original Encoded
decoded into stream
/" Frames ’
> Modeling

Encoding the
prediction residuals

Real-time surveillance video



High=Efficient Transcoding:

Theoretical Analysis: Whyy the OB is best?

v
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Exploiting the original-decoded-frame to train the
background (OB) can achieve the best transcoding gains!
Lemma 1: The distortion of OB is minimal
DOB, A) < min{D(HKF,A),D(RB, A)}
Proof For any MB Wlth the posmon (X, y) In an input frame . €N, HKF has

We ge;[ ngh quality X { Llean Clean

ReF0B) = ZD(' (TR )simin{D 1, RB), D HKF)

By integrating results for“all frames in A, we can obtain the lemma.



High=Efficient Transcoding:

Theoretical Anal

sis: Why the OB is best?

L4

Lemma 2: The power spectral density of OB is minimal

s (A) <min{®_ (A), D, (A)]

Proof of Lemma 2 can be derived from [Leontaris & Cosman, 2007] and [Girod, 1987]
AcDOB,HKF (A) = cDOB (A) - CDHKF (A)
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After the initial several frames, the PEV of the OB becomes less than that of the HKF and RB.
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High=Efficient Transcoding:

Theoretical Analysis: Why the OB is best?

v

Theorem 1: Let RD(OB, N)/RD(RB, A)/RD(HKF, A) denote
the rate-distortion performance between an input long
surveillance sequence and OB/RB/HKF; Using the same
motion search method,

RD(OB, A) < min{RD(OB, A),RD(RB, A)}

Proof:

As stated in [Liu et al. 2010], when given two prediction reference
frames, the one with smaller prediction distortion and smaller ®O(A)
leads to a better compression efficiency.

Thus by integrating Lemma 1 and 2, we can derive Theorem 1.

So the remaining problem becomes
how to model OB from the decoded sequence?



High=Efficient Transcoding:

Low=-Complexity Background Modeling

v

“* Segment-and-Weight based Running Averaging (SWRA)

= Step 1: Divide training frames into segments

Training Frames

Pixel *

(x.y)| | | [ ] |
V\V\ /

Texture Switch Give up

= Step 2: Calculate mean value and weight for each segment

Training Frames

>
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= Step 3: Generate the background value In a running way

Training Frames
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PIXE| < WEIqht > Ienl( >
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(X, y)l | | COMPLEXITY AND HIGH-EFFICIENCY

Weight = Weight + len,? BACKGROUND MODELING FOR
SURVEILLANCE VIDEO CODING, VCIP’2012



]Ilgh-Eﬁlclent Transcoding:
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The no-delay sequence structure background updating

Super GOP 1 Super GOP 2

A - [

AVC Coding Background model Background mo/dsl based Coding
Y  Dbased Codlng I S

%/_/
Used to generate a Used to generate a Used to generatee

background frame Yor background frame for background frame for
coding Super GOP 1 coding Super GOP 2 coding Super GOP 3




Fast Transcoding:

MB Classification Based Alg
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**» Key idea: To classify MBs into three categories, and
then separately design suitable fast transcoding
methods for each MB category.

Ng
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- | |
1=1
Background data Input frame Category Distribution

The 206" frame in N

Crossroad(CIF)

The 170" frame in

Overbridge(CIF)

FM: With few background pixels
BM: With few foreground pixels
FBM: foreground border MBs




Fast Transcoding Algorithm 1:

Reference Frame Selection

2012.7.10

“*MB Category based Analysis for reference frames
* The 15t reference frame is necessary for all the MBs
* The long-term reference frame also takes up a large percent for
BMs and FBMs
“»»Candi nES Selection——
* To reduce the number of reference frames, only most frequent
rg(:j@or nce frames are used for each MB category.

Three
categories
First, Second, Long-term,

First, Long-term Reference frame from the decoded
reference frame VB

w ! H HH BN o B

Refl Ref2 Ref3 Ref4 LongTerm

Candidate




Fast Transcoding Algorithm 2:

Adaptive Motion Search Range Calculation

“* Analysis for the distribution of Real MVDs
Real MVDs: difference between decoded MV and predicted MV
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Fast Transcoding Algorithm 2:

five Motion Search Range Calculation

Input:
F_ - tha original input meotion search ranga
PMVD_ (5 the maximum value of PMVID(X) or PMVID(Y)
d,: the extra eearch range for FEMe
e thea axtra. eearch rangse for Flie
Initialization:
The cutput valus K, g Initialized to £
Calculation:
(> lageify aach ME into differant categoriss, than
A ForBM, R__, igeat to 1.
B. For Fie and FEMe:
If tha ME is an FEM sat Fiag ie 0 alea gat Flag to 1.
if (PMVD, . (5i== 0)
Fooe =1 + 1= Flag,
ales if (PMVD_[i1== 1)
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Fast Transcoding Algorithm 3:

Mode Decision Refinement
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> Meadesiefovethendistribution of candidate modes

" Biirepedsamte miadd bypesdicedariiddes andbid stepdtin almost
%%um,ME and MD compIeX|ty

16x16, SKIP

*S: Decode Mode Size={ SKIP,16x16,16x8,8x16,8x8, 116 MB},
*level1={SKIP,16x16,16x8,8x16,8%8,14MB},
*level2={SKIP,16x16,16x8,8x16,8x8,14MB,8x4,4x8},
*level3={SKIP, 16x16 16x8,8x16,8x8,14MB,8x4,4x8 ,4x4}




System Framework
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Experiments
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*»*Extensive Datasets
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Experimental Setup

Transcoding Anchors

= FDFE+AVC-SGOP: H.264 with IntraPeriod=Length of S-GOP
= FDFE+AVC-OPT: H.264 using Key Frame as long-term

reference
Parameter Value Parameter Value
Porfile Baseline Used MODE ALL
Rate Control Disable Framerate 25

Entropy Coding| UVLC |Frame Structure| IPPP

Search Range 32 IntraPeriod 0
RD Optimization| High SAD Method |Hadamard

Motion Search |Fast Full |Reference Num 5




Experimental Results (1)
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Experimental Results (2)

SNRY bank(720x576) PSNR Y crossroad(720x576)
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Experimental Results (3)
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Contribution Distribution of Different Components

= Motion search range results in significant total-time saving
Table 5. Separate contribution for each algorithm (%)

Crossroad|Overbridge [Snowroad|Snowate. | average

Search Range Calculation| 93 91 03.02 94.77 9490 | 94.15
Mode Refinement 1229 | 1069 | 16.73 | 14.00 | 13.43

34.05 31.17 47.89 42.08 | 38.80

Reference Frame Selection

Table 6. Search Points Reduction(%)

Crossroad| Overbridge [Snowroad| Snowate. [ average
8/7.42 30.00 93.48 95.35 89.06
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' SD Sequence: From 2.3M to 440k a
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Super-Compressor
for Surveillance Video

O High-efficiency: 2~10 times of H.264 HP

O Low transcoding complexity: About 5% of the
state-of-the-art encoder
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Conclusion
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@ Theoretically prove OB is a optimal reference, transcoding
< With this background model saves half the bit-rate

6 MB-classification based Analysis and design
¥ three methods to speed-up the transcoding

Contribution

6 Extensive Experiments On CIF/SD/HD Videos

N

P

. Practically co-operating with Hisense Co. LTD. for
= . Surveillance Video transcoding






