

SALIENCY-COGNIZANT ERROR CONCEALMENT IN LOSS-CORRUPTED STREAMING VIDEO

Hadi Hadizadeh and Ivan V. Bajić

Simon Fraser University Burnaby, BC, Canada

Gene Cheung

National Institute of Informatics Tokyo, Japan

The Idea

Goal: Reconstruct a missing block **b** lost during video streaming such that some fitting error cost function is minimized:

$$\min_{\boldsymbol{b}} fit_err(\boldsymbol{b})$$

Problem: The problem is under-determined.

Solution: Add a saliency term as follows:

 $\min_{\boldsymbol{b}} \{fit_err(\boldsymbol{b}) + \lambda \, saliency(\boldsymbol{b})\}$

Advantages:

- 1. Potential wrong candidates become less attention-grabbing.
- 2. It serves as a true prior in an ROI-based streaming application.

3

Loss Resilient Video Streaming

RECAP: Receiver Error Concealment using Acknowledge Preview (Thumbnail)

C. Yeo, et al. Receiver Error Concealment using Acknowledge Preview – An Approach to Resilient Video Streaming, ICASSP 2009

RECAP

The Itti Saliency Model

Frequency Analysis of the Itti Model

The Proposed Method

We implement our proposed method within a ROI-based video streaming framework. We use **RECAP** as our error concealment method.

Problem: Which candidate block should we take? Solution: Take the one that has lower saliency!

The Proposed Method

Yet a better solution: First, apply some filters on a bunch of candidates to reduce their saliency as much as possible, then select the one that has a lower saliency.

The Proposed Method

- Iteratively apply a Saliency Reduction Operator.
- Each time make sure that the solution is in good match with the thumbnail block.

Matching to Thumbnail

Saliency Reduction Operators

We propose 4 saliency reduction operators:

- 1. **Deblocking Filter**
- 2. Notch Filter
- **Frequency Outlier Filter** 3.
- Attention-Guiding Method 4.

Deblocking Filter

Deblocking reduces saliency!

Before Deblocking

After Deblocking

Notch Filter

R. Achanta, et al., "Frequency-tuned salient region detection," CVPR 2009

Frequency Outlier Filter

Clip the DCT coefficients of the central block based on the DCT coefficients of the neighboring blocks.

Attention-Guiding Method

Modify RGB values so that the region of interest becomes more/less salient.

A. Hagiwara, et al., "Saliency-Based Image Editing for Guiding Visual Attention", PETMEI 2011

A Block-Diagram of the Proposed Method

Subjective Tests

17 people

Subjective Tests

Comparing the proposed method with the RECAP method based on the subjective results at 5 different average loss rates.

Loss Rate	Method	Bus	Crew	Football	Stefan
	RECAP	7	4	9	10
2%	Proposed Method	27	30	25	24
	<i>p</i> -value	0.0006	0.0001	0.0061	0.0164
5%	RECAP	4	3	7	9
	Proposed Method	30	31	27	25
	<i>p</i> -value	0.0001	0.0001	0.0006	0.0061
10%	RECAP	7	3	10	8
	Proposed Method	27	31	24	26
	<i>p</i> -value	0.0006	0.0001	0.0164	0.0020
20%	RECAP	8	8	11	7
	Proposed Method	26	26	23	27
	<i>p</i> -value	0.0020	0.0020	0.0396	0.0006
30%	RECAP	8	10	11	10
	Proposed Method	26	24	23	24
	<i>p</i> -value	0.0020	0.0164	0.0396	0.0164

Quantitative Results

Average PSNR gain and saliency reduction amount achieved by the proposed method over RECAP.

	Bus	Crew	Football	Stefan
PSNR Gain $(d = 10)$	1.2 dB	3.2 dB	1.8 dB	0.9 dB
PSNR Gain $(d = 5)$	0.9 dB	2.8 dB	1.5 dB	0.6 dB
Saliency Reduction	10%	19%	12%	9%

Sample Results

bit rate=700kbps, loss Rate =10%

Conclusions

- 1. We introduced the concept of low-saliency prior for error concealment in a ROI-based video streaming application.
- 2. Low-saliency prior can increase the PSNR of reconstructed regions.
- 3. Reconstructed regions becomes less attention-grabbing.

 $\min_{\boldsymbol{b}} \{fit_err(\boldsymbol{b}) + \lambda \, saliency(\boldsymbol{b})\}$

Thank You! Any Question?

Presenter: Hadi Hadizadeh hha54@sfu.ca

Supplementary Slides

Frequency Range

Subjective Tests

Number of Participants: 17

• A two-sided chi-square test was used to examine the statistical significance of the results.

- Risk Level : 95% (p-value = 0.05) ٠
- Null-hypothesis: the two methods are the same. •

Video RECAP		Proposed	<i>p</i> -value	
Bus	7 votes	27 votes	0.006	

Notch Filter

27

Adaptive Window for Saliency Computation

Missing Block

Available Block

Reconstructed Block