High Order Entropy Coding – From Conventional Video Coding to Distributed Video Coding

Wenjun (Kevin) Zeng

University of Missouri

http://people.cs.missouri.edu/~zengw/

Acknowledgements: Wei Liu, Lina Dong, Yixuan Zhang, Ce Zhu

An Old Topic! But a new life!

Exploiting high order statistics

Context modeling and conditional entropy coding

Coding performance (PSNR) for 512x512 "lena"

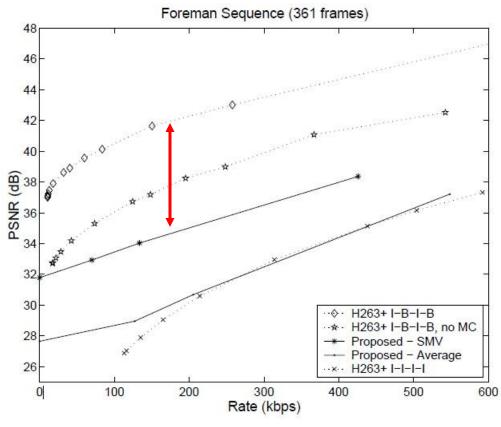
Year	1991	1986-1992	1992	1993	1996	1997	1997	1997	2000
Rate (bpp)	JPEG	Antonini '92 (*)	ECSBC (ECVQ)	EZW	SPIHT	SFQ	EQ	Wu	JPEG 2000
0.21		29.11							
0.25	31.6		33.98 (0.32)	33.17	34.13	34.33	34.57	34.81	~34
0.37		30.85							
0.5	34.9		35.96 (0.52)	36.28	37.24	37.36	37.68	37.92	
1.00	37.9			39.55	40.45	40.52	40.88	40.85	

*: Close to Woods & O'Neil'86 (SB+DPCM), Westerink'89 (SB+SQ) $_{_{2}}$

Video Coding: from Hybrid to Distributed

- New applications demand paradigm-shifting approaches
 - Low-complexity wireless video, video surveillance and camera arrays, sensor networks, compression of encrypted data, etc.
 - New structure:
 - Simple encoding, but can afford complex decoding
 - Distributed encoders/processing

Distributed video coding

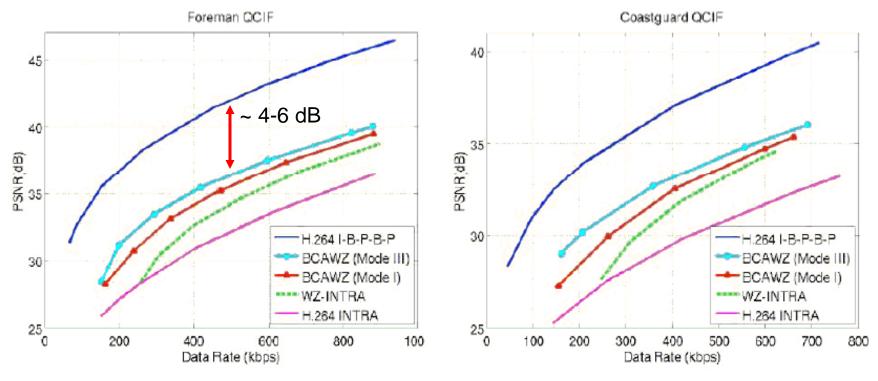

- Theoretical foundations: DSC, laid in 1970s
- Very good codes for ideal i.i.d. sources found (since 1999)
- How about real-world sources such as image/video? (since 2001)

	Coding Efficiency	Encoder Complexity	Decoder Complexity	Error Resilience	
Intra	Low	Low	Low	High	
Hybrid	Highest	High	Medium	Low	
Distributed	? 🙂	Low	High	High	

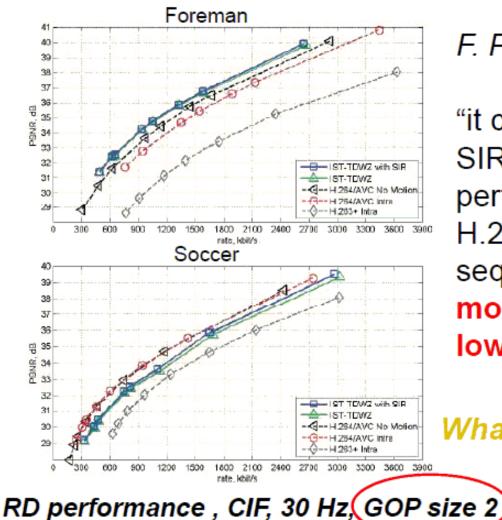
DVC Performance (2002)

Aaron et al' 2002, r-d for WZ frames only (direct quote)

5 to 7 dB gap from H.263+ inter coding



DVC Performance (2007)


Ed. Delp, Nov. 2007, Discover Workshop (direct quote) (odd frame: Decoder ME, MV sent back to encoder through backward channel even frame: WZ coded)

Real gap could be 6 - 8 dB

4 to 6 dB gap (diluted!) from H.264 inter coding

DVC Performance (2009)

F. Pereira, ICME'09 (direct quote)

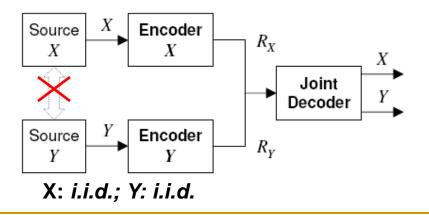
"it can be concluded that the SIR based IST-TDWZ codec performs better than H.264/AVC Intra for the sequences with Iow motion content, notably for the Iower GOP sizes."

What is wrong with the field???

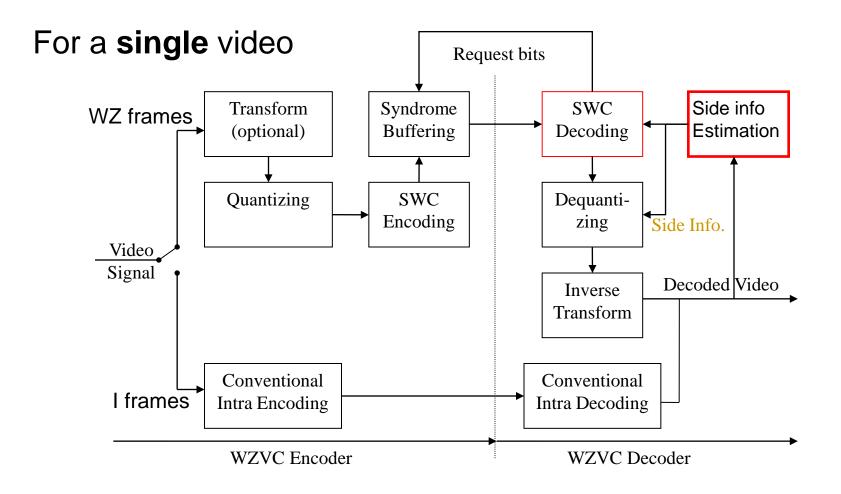
Conventional Video Coding

Major tools

- Motion compensated prediction
- Spatial transform
- High order entropy coding
 - run-length coding, end-of-block symbol
 - zero-tree coding,
 - context based coding


Distributed Source Coding (Lossless)

- Slepian and Wolf, 1973 (SWC)
 - No rate loss even if encode separately
- A practical approach: using Forward Error Correcting Code (Wyner, 1974)


 $\square R_Y = H(Y), R_X = H(X|Y) \text{ (treat Y as noisy version of X)}$

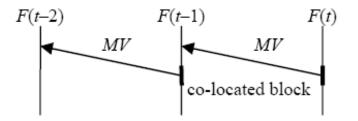
 Recent advances in channel codes produces practical SWC with capacity-approaching performance

Turbo codes, LDPC codes

A Generalized WZVC Architecture

Wyner-Ziv Video Coding

Wyner-Ziv Video Coding (WZVC)

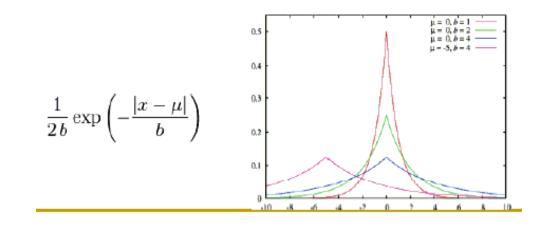

Shift the computational burden (exploiting redundancy) to the decoder side

The decoder usually does

- Generate side information Y
- Estimate the (noisy) channel statistics between Y and the frame to be decoded (X)
- Wyner-Ziv (channel) decoding
- Better performance of WZVC can be achieved if any of the above aspects is improved

Common Assumptions and Models

- Stationary motion field (?)
 - interpolation/extrapolation of motion vectors from neighboring decoded frames



Example side info frame

Common Assumptions and Models

- Correlation between source and side information (i.e., virtual channel model)
 - Virtual channel noise: independently distributed (?)
 - Laplacian distribution
 - Variance estimated from previous decoded frames

Progressive-learning-based DVC

Allow decoder learning

 Learn from lower/earlier layers and use for higher/later layers

Allow better side info estimation

- Better exploitation of local redundancy at the decoder
- Allow employment of symmetric DSC

Scalability

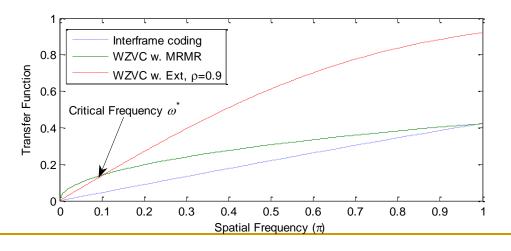
WZVC with Multi-Resolution Motion Refinement (MRMR) (Liu et al'09,10)

Basic idea

- Multi-resolution:
 - Resolution-progressive packetization and decoding
 - From low-frequency to high-frequency components.

Motion Refinement:

- Decode a low-resolution frame using current motion field
- Refine the motion field based on partially decoded frame
- Go to the next resolution level, repeat the process


Comprehensive R-D analysis

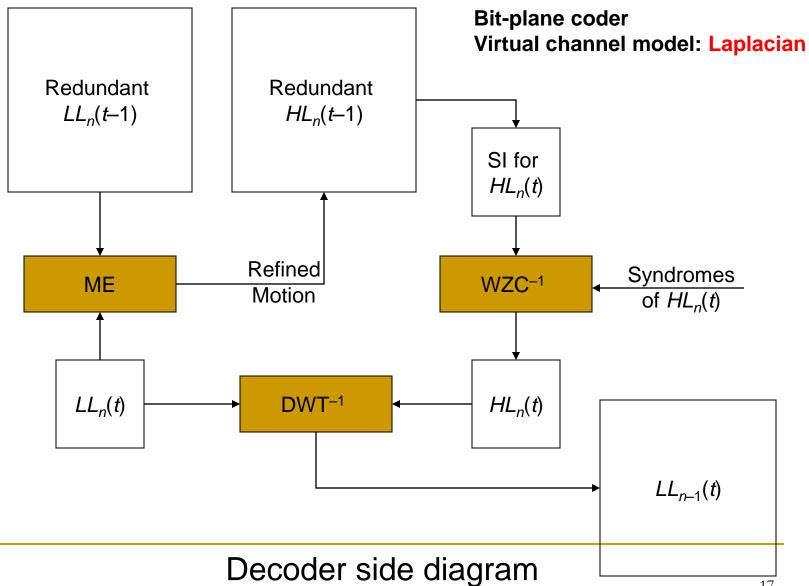
A wavelet-domain codec

Performance Comparison

Recall
$$\Delta R = R_{MCP} - R_{intra} \approx \frac{1}{8\pi^2} \iint \log_2 \left[1 - \exp(-\omega^T \omega \sigma_{\Delta d}^2)\right] d\omega$$

- An equivalent transfer function $\sqrt{1 \exp(\omega^T \omega \sigma_{\Delta d}^2(\omega))}$
- □ Smaller value → better performance
- Comparison
 - Encoder inter-frame coding is always the best.
 - MRMR is the worst in very low frequency, but overall much better than motion extrapolation (even for a large ρ).

Result: Sample SI Estimation (Residue)



Motion Extrapolation

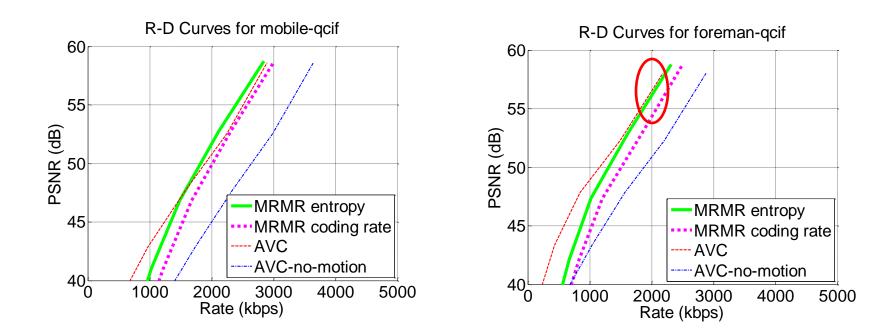
MRMR

Wavelet Domain WZVC with MRMR

Result: MRMR vs. H.264/AVC Predictor

GOP pattern: first frame I, all rest P/WZ; only one reference frame, QCIF

Saved rates	Akiyo		Con- tainer		Fore- man	Miss- Am	M&D	News	Suzie	Sales- man	Avg.
	-2.89	-1.70					-2.09	-2.80	-1.10		-2.03
AVC	-2.58	-1.88	-3.04	-0.75	-2.03	-1.53	-2.12	-2.82	-1.31	-2.54	-2.06


- For MRMR, B = 2, $q = \frac{1}{4}$, M = 8 (extensive motion exploration).
- For AVC baseline, B = 4, $q = \frac{1}{4}$, M = 1.

Estimate rate saving over intra-coding

• Calculate $\Delta R = \frac{1}{2} \log_2 \frac{MSE_1}{MSE_0}$, for each subband, then do a weighted average.

Very small gap is observed.

High Rate Coding Comparison

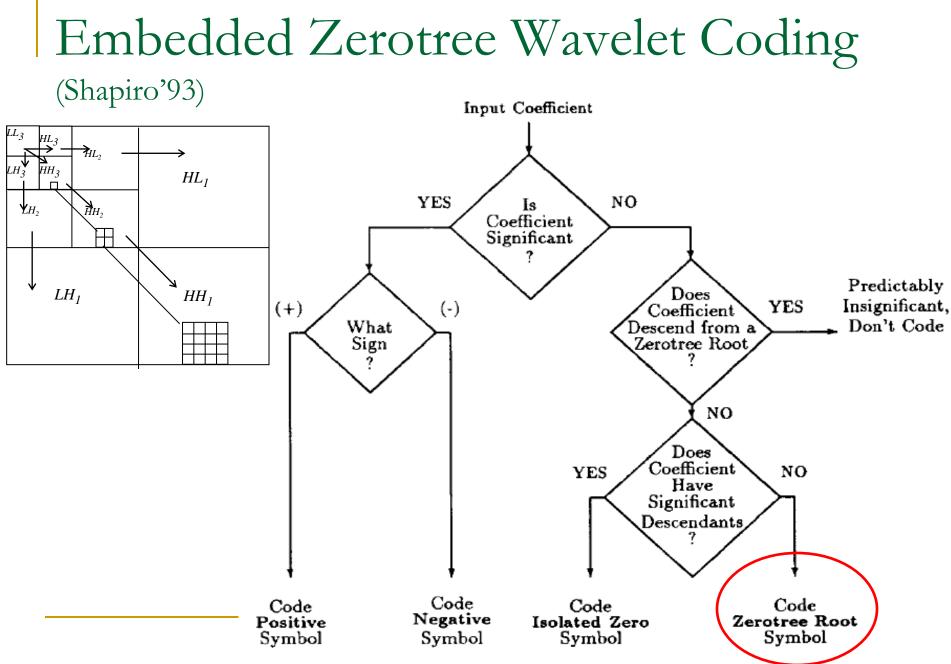
Y components of the **P/WZ-frames only** I followed by all P @30fps

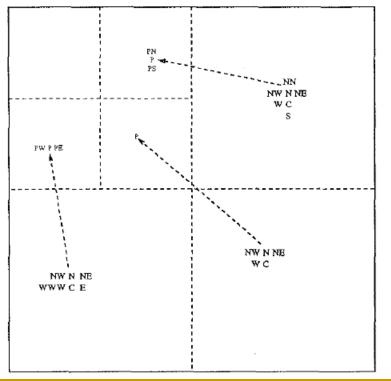
Distributed Video Coding (DVC)

- Simple encoder, complex decoder
 - burden of removing redundancy shifted to decoder
 - Hard!
- Major steps
 - Side information estimation (at decoder)
 - ill posed problem when the source is non-stationary
 - Major obstacle
 - NOT solved until recently
 - Entropy coding
 - Channel coding approach
 - Much less flexible
 - Little effort so far for high order entropy

High Order Entropy Coding for DVC

- Now is the time !
 - Side info estimation well understood/tackled
- How?
 - Design specific channel code for virtual channel
 - Complicated (Hard!)
 - Context modeling and **bit-level** conditional probability
 - Fit channel coding paradigm well
 - Borrow ideas from conventional image/video coding!!!




Fig. 6. Flow chart for encoding a coefficient of the significance map.

Can we use zero-tree in DVC???
It relies on direct coding of the tree.
Not straightforwardly!
But concept could be borrowed.

Embedded Conditional Entropy

Coding (Wu'97)

 Modeling contexts in different sub-bands

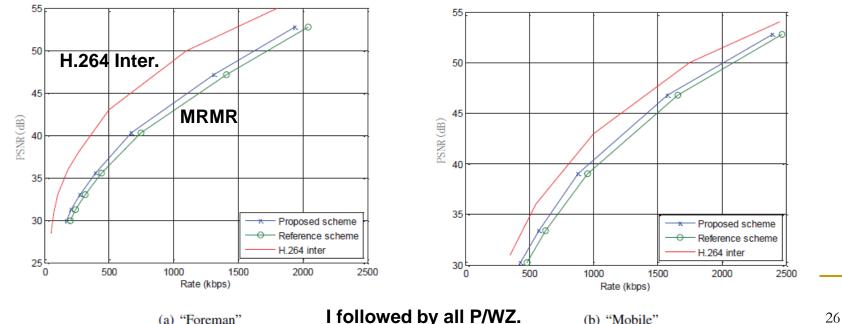
 High order statistical model at bit-level:

 $\hat{P}(\mathbf{C}_b \mid \mathbf{N}_{m..b}, \mathbf{W}_{m..b}, \mathbf{S}_{m..b+1}, \\ \mathbf{E}_{m..b+1}, \mathbf{NW}_{m..b}, \mathbf{NE}_{m..b}, \mathbf{P}_{m..b} \cdots).$

• Learn on the fly

JPEG2000: Context-based Arithmetic Coding

Neighboring States used to Form Context


D ₀	\mathbf{V}_0	D_1
H_0	х	H_1
D ₂	\mathbf{v}_1	D ₃

 Each coefficient in a codeblock has an associated binary state variable called its significance state.

Exploiting High Order Correlation for DVC (Yixuan Zhang, Ce Zhu, Wenjun Zeng' 2012)

- Exploit the inter-coefficient correlation across scales in the wavelet domain
- Modeling of the distribution of p(x_n|x_{n+1}) for current symbol x_n given its parent x_{n+1}

1 dB gain, still 4 - 5 dB from H.264 Inter.

An Old Topic! But a new life!

Coding performance (PSNR) for 512x512 "lena"

Year	1991	1986-1992	1992	1993	1996	1997	1997	1997	2000
Rate (bpp)	JPEG	Antonini '92 (*)	ECSBC (ECVQ)	EZW	SPIHT	SFQ	EQ	Wu	JPEG 2000
0.21		29.11							
0.25	31.6		33.98 (0.32)	33.17	34.13	34.33	34.57	34.81	~34
0.37		30.85							
0.5	34.9		35.96 (0.52)	36.28	37.24	37.36	37.68	37.92	
1.00	37.9			39.55	40.45	40.52	40.88	40.85	

~ 3 dB

*: Close to Woods & O'Neil'86 (SB+DPCM), Westerink'89 (SB+SQ) $_{27}$

High Order Entropy Coding for DVC

- Now is the time !
 - Side info estimation well understood/tackled
- From Conventional to Distributed Video Coding
 Leverage the past for the future !

Thanks

Q & A

References

- J. W. Woods and S. D. O'Neil, "Subband coding of images." *IEEE Trans. Acoust., Speech, Signal Processing,* vol. ASSP-34. pp. 1278-1288, Oct. 1986.
- P. H. Westerink, J. Biemond, and D. E. Boekee, "Progressive transmission of images using subband coding," in *Proc. IEEE ICASSP*, 1989, pp. 1811-1814.
- M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, "Image Coding Using Wavelet Transform," *IEEE Trans. Image Processing*, vol. I, no 2. April 1992.
- Y. H. Kim and J. W. Modestino, "Adaptive entropy coded subband coding of images," *IEEE Trans. Image Processing*, vol. I, pp. 31-48, Jan. 1992.
- J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients", *IEEE Trans. Signal Processing*, vol. 41, no. 12, pp. 3445-3462, Dec. 1993.
- A. Said and W. A. Pearlman, "New, fast, and efficient image codec based on set partitioning in hierarchical trees", *IEEE Trans. Circ.* & Sys. Video Tech., vol. 6, no. 3, pp. 243-249, June 1996.
- Z. Xiong, K. Ramchandran, and M. T. Orchard, "Space frequency quantization for wavelet image coding", *IEEE Trans. Image Processing*, 1997.
- S. M. LoPresto, K. Ramchandran, and M. T. Orchard, "Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework', *Proc.* of *I997 Data Compression Conference*, pp. 241-250, Mar. 1997.
- X. Wu, "High-Order Context Modeling and Embedded Conditional Entropy Coding of Wavelet Coefficients for Image Compression," Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997.

References

- S. S. Pradhan and K. Ramchandran, "Distributed Source Coding Using Syndromes (DISCUS): Design and Construction," *Proc. of the Data Compression Conference* (DCC), March, Snowbird, UT, 1999.
- A. Aaron, R. Zhang, and B. Girod, "Wyner-Ziv Coding of Motion Video," *Asilomar Conference on Signals, Systems & Computers*, 2002.
- B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero, "Distributed video coding," *Proceedings of the IEEE*, Special Issue on Video Coding and Delivery, vol. 93, no. 1, pp. 71–83, January 2005.
- E. J. Delp, "Distributed Video Coding: A Technique or a Toolbox?," Discover Workshop, "Recent Advances in Distributed Video Coding," November 6, 2007, Lisbon.
- F. Pereira, "Distributed video coding: Basics, main solutions and trends," *IEEE Inter. Conf. Multimedia & Expo,* 2009.
- W. Liu, Lina Dong and W. Zeng, "Motion Refinement Based Progressive Side-Information Estimation for Wyner-Ziv Video Coding," *IEEE Trans. on Cir. and Sys. for Video Technology*, Dec. 2010.
- Y. Zhang, C. Zhu, and W. Zeng, "Exploiting High-Order Correlation in Distributed Video Coding," submitted, 2012.