Philosophical Baby

What Children's Minds Tell Us About Truth, Love, and the Meaning of Life

Alison Gopnik

The Problem of Knowledge

- Abstract Structured Hierarchical Representations
- Learned From Concrete Variable Contingent Evidence
- The Nativist Solution
- The Empiricist Solution

Evolution: The Uses of

 Immaturity

Fossil Dental Evidence For Immaturity In Homo Sapiens vs Neanderthal

Smith T M et al. PNAS 2010;107:20923-20928

Human Brain
Development of Connections (Synapses)

Adapted from P. Huttenlocher et. al. (1979-1997)

Bayesian Babies

The Blicket Detector

Kushnir \& Gopnik, 2007

81\% make contact between block and toy when asked to "make it go"

Probabilistic Strength = Causal Strength?

$\square \operatorname{Blot} A$
Mean Age: 4 years, 6 months
$N=16$

Causal Strength Question:"Make it go"

Le Gare: Play as Experiment

Schulz, Gopnik, and Glymour 2007

- More complex causal structure

The Causal Possibilities

Interventions on each causal structure will produce different patterns of evidence.

Conditional interventions . . .

Knowing each gears' relationship to the switch let you determine the gears' relationship to one another . . .

Predicting the structure from patterns of evidence

Inferring Abstract Laws: Lucas, Gopnik \& Griffiths

- Framework theories
- Hierarchical Bayes-nets (Griffiths \& Tenenbaum)
- The blessing of abstraction (Goodman)

Which objects are blickets?

Is D a blicket? Is E a blicket? Is F a blicket?

What if you also saw these events?

"Or" Training

"And"Training

Test

Gopnik \& Wellman Psychological

 Bulletin, Gopnik, ScienceFour year olds (and younger) can rationally

- Infer complex causal structure from conditional probabilities
- Integrate and override prior knowledge in the face of new evidence
- Infer unobserved structure
- Infer abstract hierarchical over-hypotheses
- Infer theories of the physical, biological and psychological domains
- Etc. etc. etc.

The Algorithm Problem

Sampling Solutions

- Particle Filters
- Markov Monte Carlo Processes
- The Signature of Sampling: Variability that reflects probability distributions

General Method of Sampling Expts

Look, I've got a toy here that lights up and spins around when different colored chips go in the machine. Watch this!

General Method of Sampling Expts

Can you help remind me? What happens when...
...Okay, now let's count chips out into my bucket.

General Method of Sampling Expts

Now l'm going to mix up my chips, poor them into my bag and set my bag right here on top of the bucket.

General Method of Sampling Expts

Oh! My bag tipped over and the toy is going off! A chip dropped into the machine. What do you think fell in?

Expt. I: 3 Conditions

- Condition I: count I9 red and I blue block ($\mathrm{n}=25$)
- Condition 2: count 15 red and 5 blue blocks ($\mathrm{n}=25$)
- Condition 3: count 10 red and 10 blue blocks (n=25)
- Participants: 4- and 5-year-olds

Expt. I: Results

- Children appear to be following the predictions of probability matching more closely than other predictions.

Expt. 2A: Method

1. Two transparent buckets.
2. Two identical opaque bags.
3. Switch the bags around so child could no longer tell which bag contained which distribution.
4. Chose a bag at random, placed on top of toy and knocked it over
5. What color?
6. What bag?
7. Trials 2 and 3: Identical to T1 except new toys, new stimuli for distributions (Lego \& poker chips), new bags used.

Expt. 2A: Results

Children ($\mathrm{n}=20$; Mean age $=56 \mathrm{mo} . \mathrm{s}$) behaved in accord with S. H. Children chose "red" chip on only 32% of trials (not different from sampling prediction).

Developmental Differences in Sampling

- Flatter Priors
- Higher Temperature Search
- Childhood is evolution's way of performing simulated annealing

Collaborators and Support

- Clark Glymour
- Laura Schulz
- Tamar Kushnir
- Chris Lucas
- Tom Griffiths
- Stephanie Denison
- Elizabeth Bonawitz
- NSF
- The James S. McDonnell Foundation Causal Learning Collaborative

