

Quantum Annealing meets Machine Learning

William Macready

The good news

- Exploiting quantum mechanics can dramatically accelerate certain computations
 - Factoring of an n bit integer
 - Classically: $O\left(\exp(n^{1/3})(\log n)^{2/3}\right)$
 - Quantum: $O(n^3)$ [Shor's algorithm]
 - Blind search in database of 2^n items
 - Classically: $O(2^n)$
 - Quantum: $O(2^{n/2})$ [Grover search]

The bad news

- It is difficult to build hardware that can support quantum algorithms
 - Largest experimentally realized version of Shor's algorithm factored 21=7x3

The good news

- A recent computational model may offer a faster path to scalable quantum computation
 - Quantum annealing
 - A specialization of adiabatic quantum computation
- Certain problems (e.g. Grover search) can be accelerated now
 - In a nutshell: programmable hardware exploits quantum mechanics to quickly equilibrate to a Boltzmann-like distribution which can be rapidly sampled
- QA→ML:
 - new sampling and optimization capabilities may be used in machine learning applications
- $ML \rightarrow QA$:
 - circumvent practical limitations of current hardware platforms

What's ahead?

- QC introduction
- Quantum annealing
- Hardware implementation
 - benchmarking
- Domains of application (QC→ML):
 - Binary and structured classification
 - Sparse unsupervised learning
- Challenges (ML→QC) :
 - Circumventing connectivity; richer models with hidden variables
 - Sampling when the sampling distribution is imperfectly known
 - Extending the range of applicability

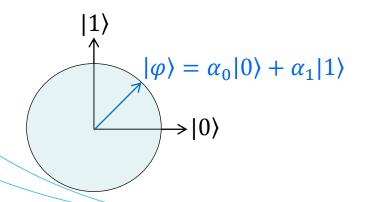
Idealized Quantum Mechanics (zero temperature, no environment)

Key new ingredients:

- The state describing a physical system is a vector and measurements on the system are matrices which can potentially alter the state vector
- QM is non-commutative

Single qubit system

 The qubit is the quantum analog of a bit and is described with a normalized 2dimensional vector



If you measured a qubit in state $|\phi\rangle$ you would observe 0 with probability $|\alpha_0|^2$ and 1 with probability $|\alpha_1|^2$

Dynamics of many qubits

- With n qubits there are 2^n basis state vectors: $|00\cdots 00\rangle$ to $|11\cdots 11\rangle$
- An arbitrary state is a normalized vector $|m{\varphi}\rangle = \sum_{m{b}} \alpha_{m{b}} |m{b}\rangle$
 - $\ |lpha_b|^2$ is the probability of observing joint configuration $b = b_1 b_2 \cdots b_n$
- ullet An important operator acting on a state vector gives the energy, called the Hamiltonian, H
 - H is a Hermitian $2^n \times 2^n$ matrix; in general H(t) may vary with time Eigenvalues are real
 - -H(t) determines how a state vector evolves in time:

$$\partial_t | \phi \rangle = -i H(t) | \phi \rangle$$
 [Schrodinger equation]

 When excess energy may be exchanged with an environment this dynamics acts to evolve state vectors to the eigenvector corresponding to lowest eigenvalue of H (minimize the energy)

Hamiltonians and Minimization

 We can solve an energy minimization problem P by encoding the energy function on the diagonal of H

$$H_P = \begin{bmatrix} E_{0\cdots 00} & 0 & 0 & 0 & 0 \\ 0 & E_{0\cdots 01} & 0 & 0 & \cdots & 0 \\ 0 & 0 & E_{0\cdots 10} & 0 & \cdots & 0 \\ 0 & 0 & 0 & E_{0\cdots 11} & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & E_{1\cdots 11} \end{bmatrix}$$
 Lowest eigenvector identifies the minimizer; eigenvector is aligned with a classical basis state

- lowest energy state $|b^*\rangle$ satisfies $H_P|b^*\rangle=E_{h^*}|b^*\rangle$; diagonalizing H_P equivalent to minimizing E_h
- We'll be focused on Ising energy functions:

$$E_b = \sum_{i \in V} h_i b_i + \sum_{(i,i') \in E} J_{i,i'} b_i b_{i'}$$

where G = (V, E) is a graph of allowed variable interactions

Adding quantum mechanics...

- ullet Quantum mechanics includes off-diagonal elements in H
 - Example realized in hardware acts to flip bits

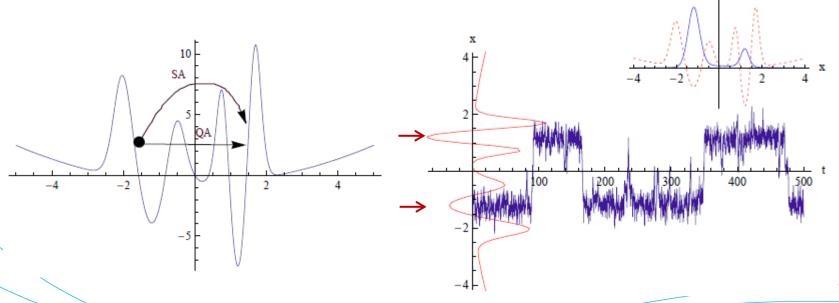
$$H = \begin{bmatrix} E_{0\cdots00} & \Delta & \Delta & 0 & & 0 \\ \Delta & E_{0\cdots01} & 0 & \Delta & \cdots & 0 \\ \Delta & 0 & E_{0\cdots10} & \Delta & \cdots & 0 \\ 0 & \Delta & \Delta & E_{0\cdots11} & & 0 \\ & & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & E_{1\cdots11} \end{bmatrix} = H_P + H_{od}$$

Lowest eigenvector not aligned with any classical basis vector -- superposition

Quantum annealing

- ullet The optimization problem we want to solve is defined by H_P
- The inclusion of H_{od} gives ground state eigenvectors which are linear combinations of classical states
 - Superposition: quantum mechanically we explore qubits assuming states which are both 0 and 1

 This mechanism can be used to tunnel out of local minima in favour of better local minima



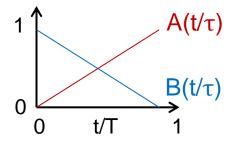
Diego de Falco and Dario Tamascelli [RAIRO-Theor. Inf. Appl. 45, 99 (2011)]

Use quantum effects to explore the search space

- Look to simulated annealing to exploit the exploration offered by quantum superposition
- Take time varying Hamiltonian

$$H(t) = A(t/\tau)H_P + B(t/\tau)H_{od}$$

ullet Eigenbasis: $H(t)|arphi_n(t)
angle=\lambda_n(t)|arphi_n(t)
angle$

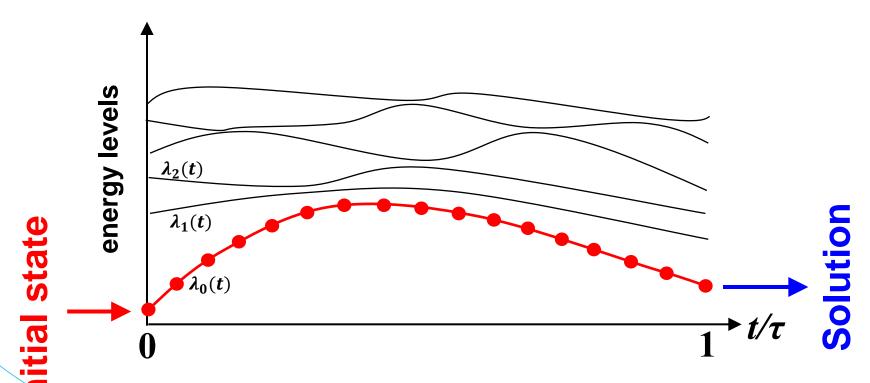


- ullet Start in a ground state of $oldsymbol{H_{od}}$
 - For this state all configurations $|b\rangle$ are equally likely to be observed
- Slowly evolve ground state by turning up H_P and turning down quantum effects H_{od}

Quantum Annealing

Farhi et al., Science 292, 472 (2001)

$$H(t) = A(t/\tau)H_P + B(t/\tau)H_{od}$$



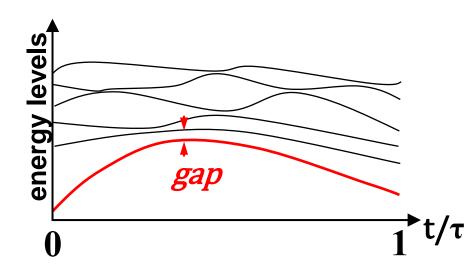
What limits the speed of QA?

 Hardness of optimization problem manifested in a gap which may go to zero exponentially fast with the problem size

Like simulated (thermal) annealing:

Equilibration time related to

eigenvalue difference of transition
matrix



Evolution time:

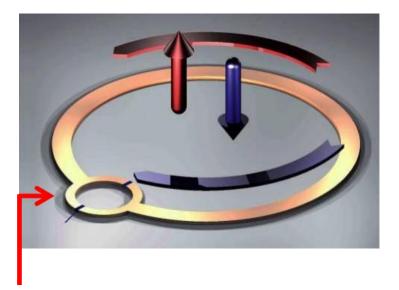
$$\tau \approx \frac{\max_{t} |\langle \boldsymbol{\varphi_1}(t) | \boldsymbol{H_{od}} | \boldsymbol{\varphi_0}(t) \rangle|}{gap^2}$$

How fast is QA?

- QA gives Grover's quadratic speedup (Farhi et. al., Childs et. al.)
- QA easily simulates SA (Somma et. al.)
- There is also other experimental, numerical and theoretical evidence of speedups. (Brooke at. al., Kodawaki et. al., Matsuda et. al.)

Note: not simulating quantum annealing on classical hardware, but running on quantum hardware

A physical qubit

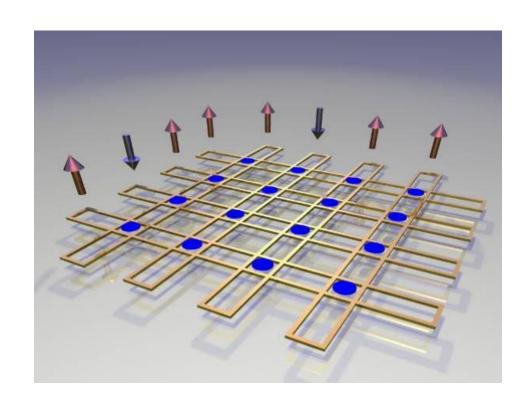


Control the amount of superposition from quantum to classical bit; the Δ terms of H_{od}

- Qubits are loops of superconducting wire (Josephson junctions)
- Direction of circulating current indicates the qubit states $|0\rangle$ and $|1\rangle$
- With external magnetic field we can bias towards one state or the other; linear terms in Ising model
- Auxiliary loop allows control of offdiagonal elements

Coupling qubits: a unit cell

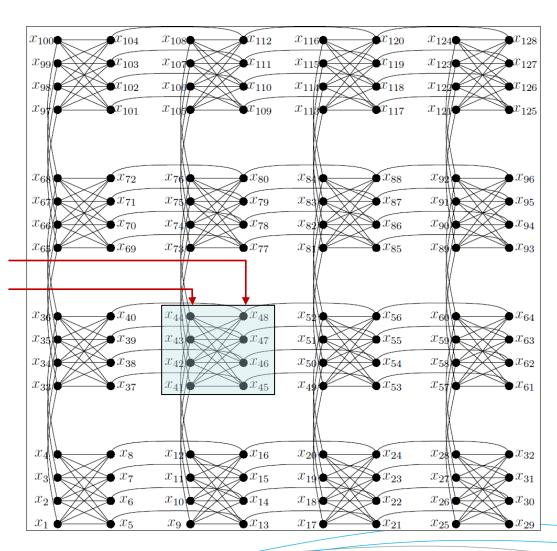
- Qubits are stretched into long thin loops and coupled together
- Couplers give programmable pairwise coupling terms in Ising model
- Unit cell consists of 8 qubits



Tiling the chip with unit cells

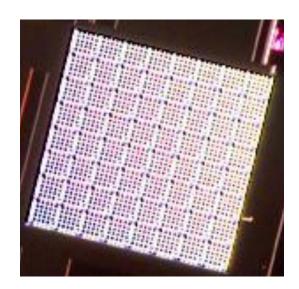
4x4 array

horizontal qubits vertical qubits



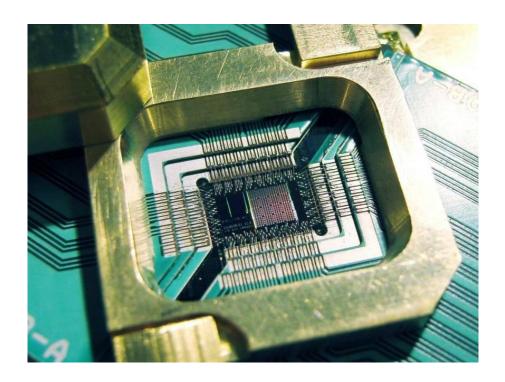
C8 chip

- Next chip (available in September) has 8x8 array of unit cells
 - 512 qubits
 - Programmability: 512 h values; 1472 J values
- Duty cycle:
 - Programme h/J
 - Anneal
 - Readout ___
- Timing:
 - Programme + 1000 anneal/readout loops in <100ms</p>
- Treewidth is 33

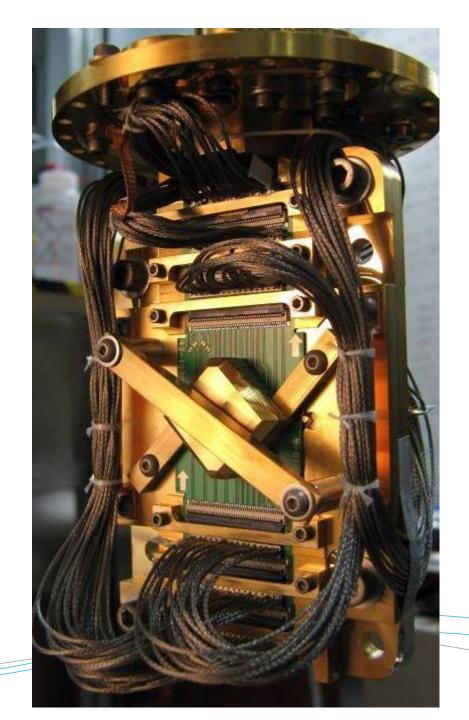


The full package

• Processor packaged on motherboard to connect to off chip elements



 Inputs coming from room temperature are filtered



 and system cooled to 20mK in a magnetically shielded environment (50000x smaller than earth's magnetic field)

Practical realities: from ideal to realistic QM

- At non-zero T an equilibrium system is described the density matrix: $\varrho = exp(-\beta H)/\mathbf{Z}(\boldsymbol{\beta})$
 - Like probability density $tr(\varrho)=1$ and ho>0
 - Interactions in Hamiltonian's are typically sparse and pairwise.
 - Quantum versions of conditional independence, Markov random fields, belief propagation etc.
 - Significantly complicated by the fact that "clique potentials" are operators and do not commute
- System never completely isolated from its environment
 - There is an interaction Hamiltonian with the environment and the hidden variables of the environment must be marginalized out

finite *T*

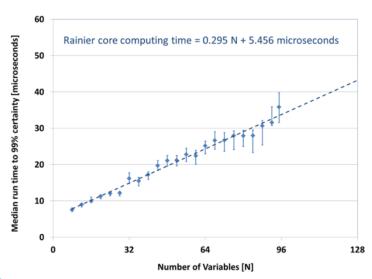
environment

Prognosis: scalable quantum annealing?

- Speedups from quantum annealing still apply at non-zero temperature
 - In some cases inclusion of low temperature can help
 - At high temperature gains of QM are lost
 - Can get to low temperatures $E/k_BT \approx 3-5$
- Environmental coupling is more problematic
 - Shielding eliminates stray magnetic fields
 - Chip fabrication defects/impurities most significant
 - Modeling suggests current chip should work well at 512 qubits, but performance may degrade as chip scales unless chip imperfections can be reduced
 - Fortunately, noise reduction is linearly proportional to fidelity
 - If we can halve noise then we should obtain the same performance at 1024 qubits as available at 512 qubits
 - 10x noise reduction should be possible in the near term

Benchmarking

- Random Ising models on 4x4 chip
 - $-h \in \{-3, -2, -1, 0, 1, 2, 3\}$
 - $-J \in \{-3, -2, -1, 0, 1, 2, 3\}$ on hardware edges
- Exact grounds states determined by belief propagation / MIP
- Calculated run time to find ground state with 99% certainty

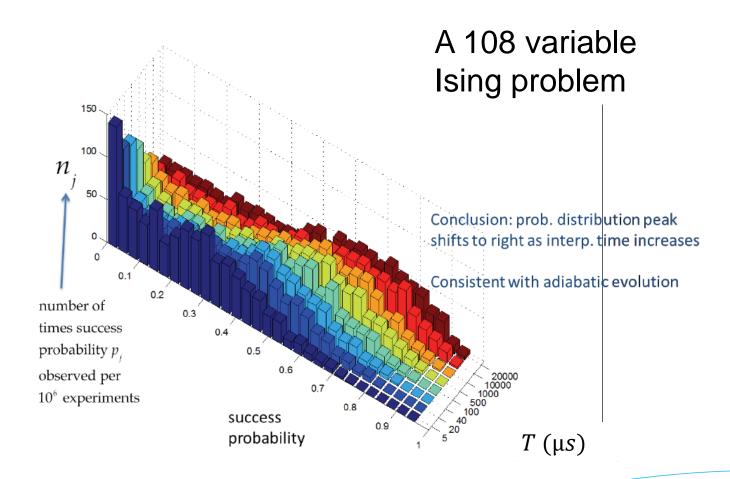


1.E+17 Median Time to 99% Probability of Finding Best Possible Solution [microseconds] 1.E+15 1.E+13 1.E+11 1.E+09 1.E+07 1.E+05 D-Wave Two wallclock time, assuming linear scaling of core computing time 1.E+03 1.E+01Linear fit, projected forward 1.E-01 128 512 **Number of Qubits**

For small N annealing time scaling linearly on 4x4 hardware

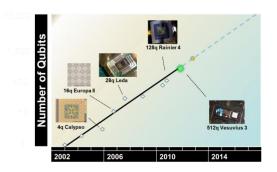
Early version of 8x8 hardware

Annealing time



S. Boixo, Z. Wang, D. Lidar

Putting QA to work



• <speculation>

- There will be QA hardware more widely available in the next 5 years that can address sparse Ising problems of up to 5000-10000 variables
- Time to low energy solutions likely to be dramatically faster than is possible using classical hardware
- The machines will be stochastic; i.e. returned values will be samples from some distribution

</speculation>

- These machines will have constraints on the types of problems that can be natively addressed
 - Sparsely connected, but treewidth may be high (i.e. tw>120)
 - Optimization will be unconstrained
 - Pairwise interactions
 - Problems requiring high precision specification of h/J will be more difficult
 - There will be no closed form description of the sampling distribution

QA → ML: applications of QA

- Lots of optimization in ML, but the vast majority is continuous optimization
 - Relatively little exploitation of combinatorial optimization
- A few things we + collaborators have tried:
 - Structured classification
 - SSVM: $y(x) = \arg\min_{y} \{\langle h(x)|y\rangle + \langle y|J(x)|y\rangle\}$
 - Use standard approach to learn h(x) and J(x) from training set; subgradients evaluated by quantum annealing
 - Convex optimization algorithms need to be slightly improved to accommodate potentially noisy subgradients
 - CRF: $P(y|x) \approx \exp\{-\langle h(x)|y\rangle \langle y|J(x)|y\rangle\}$
 - Gradient with respect to fitting parameters requires expectations which we evaluate in hardware using importance sampling
 - Binary classification with new regularization (Neven et al)
 - $y = \operatorname{sign}(\langle w | c(x) \rangle)$ where weights $\{w_{\alpha}\}$ are Boolean valued, and $\{c_{\alpha}(x)\}$ are weak classifiers
 - Regularize using $R(\mathbf{w}) = \|\mathbf{w}\|_0 = \langle \mathbf{1} | \mathbf{w} \rangle$
 - Use squared loss $L(w) = \sum_i [m_i(w) 1]^2$ where the margin is $m_i(w) = y_i \langle w | c(x_i) \rangle$ then minimizing $L(w) + \lambda R(w)$ is an Ising optimization problem for the optimal weights w
 - Unsupervised L0 dictionary learning
 - Factor a matrix X as X = DW by minimizing $||X DW||_{Fro} + \lambda ||W||_0$; all elements of W are Boolean-valued
 - ullet Block coordinate descent on $oldsymbol{D}$ then $oldsymbol{W}$; each column of $oldsymbol{W}$ is an Ising optimization

ML→QA: outstanding problems

Extend applicability of QA hardware

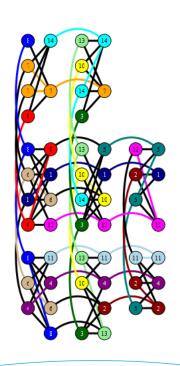
- Given a fixed factor graph develop methods to optimize objectives defined with different factor graphs
- Blackbox optimization: develop methods for objectives not having a factor graph
 - i.e. black box optimization where objective function is code without a closed form expression

Monte Carlo methods

- Hardware is stochastic and we can sample i.i.d. very quickly
- Unfortunately, the sampling distribution is not known exactly; although to lowest order it is roughly Boltzmann

Circumventing a sparse pairwise factor graph

- Native problems are pairwise and sparse
- Can always reduce higher-order interactions to pairwise, but at the cost of additional qubits
 - Qubits are a scarce resource: for certain problem types are there more efficient reductions?
- We can simulate connectivity by slaving qubits
 - Strong ferromagnetic couplings $-\lambda s_i s_j$ ($\lambda > 0$) sets $s_i = s_j$ in low energy solutions
 - New variables mediate interactions creating qubit "wires"
 - Not scalable as finding embeddings is NP hard
 - What to do?



Problem decomposition

- Even 10 000 qubits may be too small for many applications
- What are good approaches for decomposing large optimization problems down to a sequence of smaller problems
 - Lagrangian relaxation: ok for relatively simple problems; not very effective for harder problems

Monte Carlo

- Hardware acts as a source of fast i.i.d. samples from a tunable Boltzmann-like distribution
 - However, we do not have a closed form description of the sampling distribution
 - Are there methods to exploit hardware to adaptively shape the h/J input parameters to certain tasks?
 - Creating a proposal distribution for MCMC
 - Evaluating expectations
 - Estimating partition functions

Summary

- Quantum annealing machines offer opportunities for new classes of "tractable" problems
 - What new learning algorithms can be constructed that rely on solving sparsely connected combinatorial optimization problems?
 - Can Monte Carlo algorithms take advantage of samples from Ising models that are roughly Boltzmann distributed?
- For broadest applicability a number of key problems need to be addressed:
 - How can we effectively apply pairwise fixed-connectivity solvers to the solution of higher-order models and/or models with alternate variable connectivity?
 - How can we decompose larger problems into smaller manageable chunks
- Not new problems, but certainly new incentives for tackling some of these issues

wgm@dwavesys.com

