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The good news

* Exploiting quantum mechanics can dramatically accelerate certain
computations

— Factoring of an n bit integer
*Classically: 0(exp(n'/3)(log n)%/3)
*Quantum: 0(n3) [Shor’s algorithm]

— Blind search in database of 2" items
® Classically: 0(2™)
® Quantum: 0(2”/2) [Grover search]

The bad news

* It is difficult to build hardware that can support quantum algorithms

* Largest experimentally realized version of Shor’s algorithm factored 21=7x3
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The good news

* A recent computational model may offer a faster path to scalable
quantum computation

— Quantum annealing
— A specialization of adiabatic quantum computation

® Certain problems (e.g. Grover search) can be accelerated now

— In a nutshell: programmable hardware exploits quantum mechanics to quickly
equilibrate to a Boltzmann-like distribution which can be rapidly sampled

°* QA->ML:

— new sampling and optimization capabilities may be used in machine learning
applications

°* ML->QA:

— circumvent practical limitations of current hardware platforms
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What’s ahead?

®* QC introduction
®* Quantum annealing

®* Hardware implementation

— benchmarking

* Domains of application (QC->ML):

— Binary and structured classification
— Sparse unsupervised learning

*® Challenges (ML->QC) :

— Circumventing connectivity; richer models with hidden variables
— Sampling when the sampling distribution is imperfectly known
— Extending the range of applicability
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Idealized Quantum Mechanics (zero temperature, no environment)

* Key new ingredients:

— The state describing a physical system is a vector and measurements on the system
are matrices which can potentially alter the state vector

— QM is non-commutative

* Single qubit system

— The qubit is the quantum analog of a bit and is described with a normalized 2-
dimensional vector

1)

If you measured a qubit in state | @) you
lo) = a,|0) + aq|1) would observe 0 with probability |ay|? and
1 with probability | a4 |?

0)
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Dynamics of many qubits

* With n qubits there are 2" basis state vectors: |00 -:- 00) to [11:--11)

° An arbitrary state is a normalized vector |@) = )., a,|b)

— |ay|? is the probability of observing joint configuration b = b{b, --- b,

®* An important operator acting on a state vector gives the energy, called
the Hamiltonian, H

— H is a Hermitian 2™ X 2™ matrix; in general H(t) may vary with time

® Eigenvalues are real
— H(t) determines how a state vector evolves in time:
d;|@) = —iH(t)|¢@) [Schrodinger equation]

— When excess energy may be exchanged with an environment this dynamics
acts to evolve state vectors to the eigenvector corresponding to lowest
eigenvalue of H (minimize the energy)
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Hamiltonians and Minimization

®* We can solve an energy minimization problem P by encoding the energy
function on the diagonal of H

_Eo...oo 0 0 0 0
0 Ep...0o1 0 0 0 Lowest eigenvector
Ho — 0 0 Ey...10 0 0 identifies the minimizer;
P 0 0 0 Eo..11 0 eigenvector is aligned with
: “ : a classical basis state
0 0 0 0 o Eq.q1.

— lowest energy state |b*) satisfies Hp|b*) = E}+|b*); diagonalizing Hp equivalent to
minimizing E,

* We'll be focused on Ising energy functions:
Ey, = z hib; + z Jiibiby
ieV (i,i"eE

here G = (V, E) is a graph of allowed variable interactions
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Adding quantum mechanics...

®* Quantum mechanics includes off-diagonal elements in H

— Example realized in hardware acts to flip bits

Ey...00 A A 0 0
A Eo...01 0 A 0
. A 0 Eg...10 A 0 .
H = 0 A A Eg..11 0 =Hp + Hoa
0 0 0 0 o Eq.41.

Lowest eigenvector not
aligned with any classical
basis vector -- superposition
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Quantum annealing

* The optimization problem we want to solve is defined by Hp

* The inclusion of H ,; gives ground state eigenvectors which are
linear combinations of classical states
— Superposition: qguantum mechanically we explore qubits assuming states
which are both 0 and 1

— This mechanism can be used to tunnel out of local minima in favour of better
local minima

4k
Inf. Appl. 45, 99 (2011)

0 and Dario Tamascelli [RAIRO-Theor.
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Use quantum effects to explore the search space

* Look to simulated annealing to exploit the exploration offered by
guantum superposition

* Take time varying Hamiltonian 1] A(t/T)
H(t) — A(t/T)HP + B(t/T)Hod B(t/t)

. . 0 >

® Eigenbasis: H(t)|@, (1)) = 1,(t)|@n (1)) 0o uT 1

® Start in a ground state of H ;4

— For this state all configurations |b) are equally likely to be observed

* Slowly evolve ground state by turning up Hp and turning down
quantum effects H 4
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Quantum Annealing

Farhi et al., Science 292, 472 (2001)

energy levels

!
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What limits the speed of QA?

>

* Hardness of optimization problem
manifested in a gap which may go to
zero exponentially fast with the
problem size

energy levels

Like simulated (thermal) annealing:
Equilibration time related to
eigenvalue difference of transition
matrix

&
—
N
N
-

max (@1 ()| Hoal@o (1))
gap*

Evolution time: 1=
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How fast is QA?

® QA gives Grover’s quadratic speedup (Farhi et. al., Childs et. al.)
® QA easily simulates SA (Somma et. al.)

® There is also other experimental, numerical and theoretical evidence of
speedups. (Brooke at. al., Kodawaki et. al., Matsuda et. al.)

Note: not simulating quantum annealing on classical
hardware, but running on quantum hardware
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A physical qubit

® Qubits are loops of superconducting
wire (Josephson junctions)

* Direction of circulating current
indicates the qubit states |0) and |1)

* With external magnetic field we can
bias towards one state or the other;
linear terms in Ising model

Control the amount of * Auxiliary loop allows control of off-

superposition from quantum to diagonal elements
classical bit; the A terms of H,4
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Coupling qubits: a unit cell

® Qubits are stretched into
long thin loops and coupled
together

® Couplers give programmable
pairwise coupling terms in
Ising model

* Unit cell consists of 8 qubits
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Tiling the chip with unit cells

4x4 array

horizontal qubits

vertical qubits
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C8 chip

* Next chip (available in September) has 8x8 array of
unit cells

— 512 qubits
— Programmability: 512 h values; 1472 J values

® Duty cycle:

— Programme h/)
— Anneal <«

— Readout

®* Timing:

— Programme + 1000 anneal/readout loops in <100ms

Treewidth is 33
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The full package

® Processor packaged on motherboard to connect to off chip elements
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® Inputs coming from room
temperature are filtered
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® and system cooled to 20mK in a magnetically
shielded environment (50000x smaller than
earth’s magnetic field)
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Practical realities: from ideal to realistic QM

—

® At non-zero T an equilibrium system is described the density
matrix: 0 = exp(—BH)/Z(f)
— Like probability density tr(¢) = 1andp > 0
— Interactions in Hamiltonian’s are typically sparse and pairwise.

— Quantum versions of conditional independence, Markov random fields, finite T
belief propagation etc.
— Significantly complicated by the fact that “clique potentials” are
operators and do not commute
* System never completely isolated from its environment —

— There is an interaction Hamiltonian with the environment and the hidden
variables of the environment must be marginalized out

— environment
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Prognosis: scalable quantum annealing?

* Speedups from quantum annealing still apply at non-zero temperature

— In some cases inclusion of low temperature can help
— At high temperature gains of QM are lost
— Can get to low temperatures E/kgT ~ 3-5

® Environmental coupling is more problematic

— Shielding eliminates stray magnetic fields
— Chip fabrication defects/impurities most significant

— Modeling suggests current chip should work well at 512 qubits, but performance may
degrade as chip scales unless chip imperfections can be reduced

— Fortunately, noise reduction is linearly proportional to fidelity

* If we can halve noise then we should obtain the same performance at 1024 qubits as available at 512 qubits
® 10x noise reduction should be possible in the near term
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Benchmarking

* Random Ising models on 4x4 chip

- he{-3,-2,-1,0,1,2,3}
- J€e{-3,-2,—-1,0,1,2,3} on hardware edges

* Exact grounds states determined by belief propagation / MIP

* Calculated run time to find ground state with 99% certainty
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iInearly on 4x4 hardware
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Annealing time

A 108 variable
Ising problem

180 1

100
n.
)
50 -
e Cdncl_u_sion: prob. distribjution peak
0 - shifts to right as interp. time increases
b .Cphsiét@antwith adiabatic evolution
number of '

times success
probability p.
observed per
10" experiments

success e @
probability s T(MS)

ang, D. Lidar D:LJDUR
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Putting QA to work
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® <speculation>
— There will be QA hardware more widely available in the next 5 years that
can address sparse Ising problems of up to 5000-10000 variables

— Time to low energy solutions likely to be dramatically faster than is
possible using classical hardware

— The machines will be stochastic; i.e. returned values will be samples from
some distribution

</speculation>

* These machines will have constraints on the types of problems
that can be natively addressed

— Sparsely connected, but treewidth may be high (i.e. tw>120)
— Optimization will be unconstrained

— Pairwise interactions
— Problems requiring high precision specification of h/J will be more dlfflcult

There will be no closed form description of the s
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QA->ML: applications of QA

® Lots of optimization in ML, but the vast majority is continuous
optimization

— Relatively little exploitation of combinatorial optimization

* A few things we + collaborators have tried:

— Structured classification
* SSVM: y(x) = arg rnyin {(h(x)|y) + YIJ(0)|y)}

— Use standard approach to learn h(x) and J(x) from training set; subgradients evaluated by quantum annealing
— Convex optimization algorithms need to be slightly improved to accommodate potentially noisy subgradients

* CRF: P(y]x) ~ exp{—(h(@)[y) — (YU (0)1y)}
— Gradient with respect to fitting parameters requires expectations which we evaluate in hardware using importance sampling
— Binary classification with new regularization (Neven et al)
* y = sign({w|c(x))) where weights {w,} are Boolean valued, and {c,(x)} are weak classifiers
* Regularize using R(w) = |[lw]|, = (1|w)
* Use squared loss L(w) = Y;[m;(w) — 1] where the margin is m;(w) = y;{(w|c(x;)) then minimizing
L(w) + AR(w) is an Ising optimization problem for the optimal weights w

— Unsupervised LO dictionary learning
® Factor a matrix X as X = DW by minimizing || X — DW|| -, + Al|[W]|y; all elements of W are Boolean-valued
® Block coordinate descent on D then W; each column of W is an Ising optimization
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ML-QA: outstanding problems

* Extend applicability of QA hardware

— Given a fixed factor graph develop methods to optimize objectives defined
with different factor graphs

— Blackbox optimization: develop methods for objectives not having a factor
graph

* i.e. black box optimization where objective function is code without a closed form expression

* Monte Carlo methods

— Hardware is stochastic and we can sample i.i.d. very quickly

— Unfortunately, the sampling distribution is not known exactly; although to
lowest order it is roughly Boltzmann
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Circumventing a sparse pairwise factor graph

* Native problems are pairwise and sparse

® Can always reduce higher-order interactions to pairwise, but
at the cost of additional qubits

— Qubits are a scarce resource: for certain problem types are there more
efficient reductions?

®* We can simulate connectivity by slaving qubits

— Strong ferromagnetic couplings —4s;s; (A > 0) sets s; = s; in low
energy solutions

— New variables mediate interactions creating qubit “wires”

— Not scalable as finding embeddings is NP hard

What to do?
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Problem decomposition

°* Even 10 000 qubits may be too small for many applications

* What are good approaches for decomposing large optimization
problems down to a sequence of smaller problems

— Lagrangian relaxation: ok for relatively simple problems; not very effective
for harder problems
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Monte Carlo

* Hardware acts as a source of fasti.i.d. samples from a tunable
Boltzmann-like distribution

— However, we do not have a closed form description of the sampling
distribution

— Are there methods to exploit hardware to adaptively shape the h/J input
parameters to certain tasks?
* Creating a proposal distribution for MCMC
* Evaluating expectations
* Estimating partition functions
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Summary

* Quantum annealing machines offer opportunities for new
classes of “tractable” problems

— What new learning algorithms can be constructed that rely on solving
sparsely connected combinatorial optimization problems?

— Can Monte Carlo algorithms take advantage of samples from Ising models
that are roughly Boltzmann distributed?

* For broadest applicability a number of key problems need to be
addressed.:

— How can we effectively apply pairwise fixed-connectivity solvers to the
solution of higher-order models and/or models with alternate variable
connectivity?

— How can we decompose larger problems into smaller manageable chunks

* Not new problems, but certainly new incentives for tacklin
of these issues
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