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William Macready 

Quantum Annealing meets Machine 
Learning 



The good news 

• Exploiting quantum mechanics can dramatically accelerate certain 
computations 

– Factoring of an 𝑛 bit integer 

•Classically: 𝑂 exp(𝑛1/3)(log 𝑛)2/3  

•Quantum: 𝑂 𝑛3   [Shor’s algorithm] 

– Blind search in database of 𝟐𝒏 items 

•Classically: 𝑂 2𝑛  

•Quantum: 𝑂 2𝑛/2   [Grover search] 
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The bad news 

• It is difficult to build hardware that can support quantum algorithms 

• Largest experimentally realized version of Shor’s algorithm factored 21=7x3 

 



The good news 

• A recent computational model may offer a faster path to scalable 
quantum computation 

– Quantum annealing 

– A specialization of adiabatic quantum computation 

• Certain problems (e.g. Grover search) can be accelerated now 

– In a nutshell: programmable hardware exploits quantum mechanics to quickly 
equilibrate to a Boltzmann-like distribution which can be rapidly sampled 

 

• QA→ML:  

– new sampling and optimization capabilities may be used in machine learning 
applications 

•ML→QA:  

– circumvent practical limitations of current hardware platforms 
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What’s ahead? 

• QC introduction 

• Quantum annealing 

• Hardware implementation 

– benchmarking 

• Domains of application (QC→ML): 

– Binary and structured classification 

– Sparse unsupervised learning 

• Challenges (ML→QC) : 

– Circumventing connectivity; richer models with hidden variables 

– Sampling when the sampling distribution is imperfectly known 

– Extending the range of applicability 
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Idealized Quantum Mechanics (zero temperature, no environment) 

• Key new ingredients: 

– The state describing a physical system is a vector and measurements on the system 
are matrices which can potentially alter the state vector 

– QM is non-commutative 

 

• Single qubit system 

– The qubit is the quantum analog of a bit and is described with a normalized 2-
dimensional vector 
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|0  

|1  

𝜑 = 𝛼0 0 + 𝛼1|1  

If you measured a qubit in state |𝜑  you 
would observe 0 with probability 𝛼0

2 and 
1 with probability 𝛼1

2 



Dynamics of many qubits 

•With 𝒏 qubits there are 𝟐𝒏 basis state vectors: |𝟎𝟎⋯𝟎𝟎  to |𝟏𝟏⋯𝟏𝟏  

• An arbitrary state is a normalized vector |𝝋 =  𝜶𝒃|𝒃 𝒃  

– 𝜶𝒃 𝟐 is the probability of observing joint configuration 𝒃 = 𝒃𝟏𝒃𝟐⋯𝒃𝒏 

 

• An important operator acting on a state vector gives the energy, called 
the Hamiltonian, 𝐻 

– 𝑯 is a Hermitian 𝟐𝒏 × 𝟐𝒏 matrix; in general 𝑯(𝒕) may vary with time 
• Eigenvalues are real 

– 𝑯(𝒕) determines how a state vector evolves in time: 

                       𝝏𝒕|𝝋 = −𝒊𝑯 𝒕 |𝝋    [Schrodinger equation] 

– When excess energy may be exchanged with an environment this dynamics 
acts to evolve state vectors to the eigenvector corresponding to lowest 
eigenvalue of 𝑯 (minimize the energy) 
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Hamiltonians and Minimization 

•We can solve an energy minimization problem 𝑃 by encoding the energy 
function on the diagonal of 𝐻 

            𝑯𝑷 =

𝑬𝟎⋯𝟎𝟎 𝟎 𝟎         𝟎
𝟎 𝑬𝟎⋯𝟎𝟏 𝟎         𝟎

𝟎
𝟎

𝟎
𝟎

𝑬𝟎⋯𝟏𝟎 𝟎
𝟎 𝑬𝟎⋯𝟏𝟏

⋯

𝟎
𝟎
𝟎
𝟎

⋮ ⋱ ⋮
𝟎         𝟎          𝟎          𝟎 ⋯ 𝑬𝟏⋯𝟏𝟏

 

– lowest energy state |𝒃∗  satisfies 𝑯𝑷|𝒃
∗ = 𝑬𝒃∗|𝒃

∗ ; diagonalizing 𝑯𝑷 equivalent to 
minimizing 𝑬𝒃 

 

•We’ll be focused on Ising energy functions: 

𝑬𝒃 = 𝒉𝒊𝒃𝒊
𝒊𝝐𝑽

+ 𝑱𝒊,𝒊′𝒃𝒊𝒃𝒊′
(𝒊,𝒊′)𝝐𝑬

 

   where 𝑮 = (𝑽, 𝑬) is a graph of allowed variable interactions 
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Lowest eigenvector 
identifies the minimizer; 
eigenvector is aligned with 
a classical basis state 

 



Adding quantum mechanics… 

• Quantum mechanics includes off-diagonal elements in 𝐻 

– Example realized in hardware acts to flip bits 

    𝑯 =

𝑬𝟎⋯𝟎𝟎 𝚫 𝚫          𝟎
𝚫 𝑬𝟎⋯𝟎𝟏 𝟎          𝚫

𝚫
𝟎

𝟎
𝚫

𝑬𝟎⋯𝟏𝟎 𝚫
𝚫 𝑬𝟎⋯𝟏𝟏

⋯

𝟎
𝟎
𝟎
𝟎

⋮ ⋱ ⋮
𝟎         𝟎         𝟎        𝟎 ⋯ 𝑬𝟏⋯𝟏𝟏

= 𝑯𝑷 + 𝑯𝒐𝒅 
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Lowest eigenvector not 
aligned with any classical 
basis vector -- superposition 

 



Quantum annealing 

• The optimization problem we want to solve is defined by 𝑯𝑷 

• The inclusion of 𝑯𝒐𝒅 gives ground state eigenvectors which are 
linear combinations of classical states 

– Superposition: quantum mechanically we explore qubits assuming states 
which are both 0 and 1 

– This mechanism can be used to tunnel out of local minima in favour of better 
local minima 
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 Diego de Falco and Dario Tamascelli [RAIRO-Theor. Inf. Appl. 45, 99 (2011)] 



Use quantum effects to explore the search space 

• Look to simulated annealing to exploit the exploration offered by 
quantum superposition 

• Take time varying Hamiltonian 

                 𝑯 𝒕 = 𝑨 𝒕/τ 𝑯𝑷 + 𝑩 𝒕/τ 𝑯𝒐𝒅 

• Eigenbasis: 𝑯 𝒕 |𝝋𝒏(𝒕) = 𝝀𝒏(𝒕)|𝝋𝒏(𝒕)  

 

• Start in a ground state of 𝑯𝒐𝒅 

– For this state all configurations |𝒃  are equally likely to be observed 

• Slowly evolve ground state by turning up 𝑯𝑷 and turning down 
quantum effects 𝑯𝒐𝒅 
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Farhi et al., Science 292, 472 (2001) 

 𝑯 𝒕 = 𝑨 𝒕/τ 𝑯𝑷 + 𝑩 𝒕/τ 𝑯𝒐𝒅 

t/τ 
1 0 

𝝀𝟎(𝒕) 

𝝀𝟏(𝒕) 

𝝀𝟐(𝒕) 
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What limits the speed of QA? 

Evolution time: 
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gap 

  t/τ 
1 0 

• Hardness of optimization problem 
manifested in a gap which may go to 
zero exponentially fast with the 
problem size 

 
Like simulated (thermal) annealing: 

Equilibration time related to 
eigenvalue difference of transition 
matrix  

𝜏 ≈
max
𝒕
| 𝝋𝟏 𝒕 𝑯𝒐𝒅 𝝋𝟎 𝒕 |

𝑔𝑎𝑝2
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How fast is QA? 

• QA gives Grover’s quadratic speedup (Farhi et. al., Childs et. al.) 

• QA easily simulates SA (Somma et. al.) 

• There is also other experimental, numerical and theoretical evidence of 
speedups. (Brooke at. al., Kodawaki et. al., Matsuda et. al.) 
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Note: not simulating quantum annealing on classical 
hardware, but running on quantum hardware 



A physical qubit 

• Qubits are loops of superconducting 
wire (Josephson junctions) 

• Direction of circulating current 
indicates the qubit states |𝟎  and |𝟏   

•With external magnetic field we can 
bias towards one state or the other; 
linear terms in Ising model 

• Auxiliary loop allows control of off-
diagonal elements 
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Control the amount of 
superposition from quantum to 
classical bit; the Δ terms of 𝐻𝑜𝑑 



Coupling qubits: a unit cell 

• Qubits are stretched into 
long thin loops and coupled 
together 

• Couplers give programmable 
pairwise coupling terms in 
Ising model 

• Unit cell consists of 8 qubits 
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Tiling the chip with unit cells 
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vertical qubits 

horizontal qubits 

4x4 array 



C8 chip 

• Next chip (available in September) has 8x8 array of 
unit cells 

– 512 qubits 

– Programmability: 512 h values;  1472 J values 

 

• Duty cycle: 

– Programme h/J 

– Anneal 

– Readout 

 

• Timing: 

– Programme + 1000 anneal/readout loops in <100ms 

 

• Treewidth is 33 
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The full package 

• Processor packaged on motherboard to connect to off chip elements 
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• Inputs coming from room 
temperature are filtered 
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• and system cooled to 20mK in a magnetically 
shielded environment (50000x smaller than 
earth’s magnetic field) 
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Practical realities: from ideal to realistic QM 

• At non-zero 𝑇 an equilibrium system is described the density 
matrix: 𝝔 = 𝒆𝒙𝒑 −𝜷𝑯 /𝐙(𝜷) 

– Like probability density 𝒕𝒓 𝝔 = 𝟏 and 𝝆 ≻ 𝟎 

– Interactions in Hamiltonian’s are typically sparse and pairwise. 

– Quantum versions of conditional independence, Markov random fields, 
belief propagation etc. 

– Significantly complicated by the fact that “clique potentials” are 
operators and do not commute 

 

• System never completely isolated from its environment 

– There is an interaction Hamiltonian with the environment and the hidden 
variables of the environment must be marginalized out 
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finite 𝑇 

environment 



Prognosis: scalable quantum annealing? 

• Speedups from quantum annealing still apply at non-zero temperature 

– In some cases inclusion of low  temperature can help 

– At high temperature gains of QM are lost 

– Can get to low temperatures 𝑬/𝒌𝑩𝑻 ≈ 𝟑-5 

 

• Environmental coupling is more problematic 

– Shielding eliminates stray magnetic fields  

– Chip fabrication defects/impurities most significant 

– Modeling suggests current chip should work well at 512 qubits, but performance may 
degrade as chip scales unless chip imperfections can be reduced 

– Fortunately, noise reduction is linearly proportional to fidelity 
• If we can halve noise then we should obtain the same performance at 1024 qubits as available at 512 qubits 

• 10x noise reduction should be possible in the near term 
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Benchmarking 

•Random Ising models on 4x4 chip 

– 𝒉 ∈ {−𝟑,−𝟐,−𝟏, 𝟎, 𝟏, 𝟐, 𝟑} 
– 𝑱 ∈ −𝟑,−𝟐,−𝟏, 𝟎, 𝟏, 𝟐, 𝟑  on hardware edges 

• Exact grounds states determined by belief propagation / MIP 

•Calculated run time to find ground state with 99% certainty 
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For small N annealing time 

scaling linearly on 4x4 hardware 
Early version of 8x8 hardware 



Annealing time 
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S. Boixo, Z. Wang, D. Lidar  

𝑇 (μ𝑠) 

A 108 variable 

Ising problem 



Putting QA to work 

• <speculation> 

– There will be QA hardware more widely available in the next 5 years that 

can address sparse Ising problems of up to 5000-10000 variables 

– Time to low energy solutions likely to be dramatically faster than is 

possible using classical hardware 

– The machines will be stochastic; i.e. returned values will be samples from 

some distribution 

  </speculation> 

• These machines will have constraints on the types of problems 

that can be natively addressed 

– Sparsely connected, but treewidth may be high (i.e. tw>120) 

– Optimization will be unconstrained 

– Pairwise interactions 

– Problems requiring high precision specification of h/J will be more difficult 

– There will be no closed form description of the sampling distribution 
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QA→ML: applications of QA 

• Lots of optimization in ML, but the vast majority is continuous 
optimization 

– Relatively little exploitation of combinatorial optimization 

• A few things we + collaborators have tried: 

– Structured classification 
• SSVM: 𝒚(𝒙) = argmin

𝑦
 𝒉(𝒙)|𝒚 + 𝒚 𝑱(𝒙) 𝒚  

– Use standard approach to learn 𝒉(𝒙) and 𝑱(𝒙) from training set; subgradients evaluated by quantum annealing 

– Convex optimization algorithms need to be slightly improved to accommodate potentially noisy subgradients 

• CRF: 𝑃(𝒚|𝒙) ≈ exp − 𝒉(𝒙)|𝒚 − 𝒚 𝑱(𝒙) 𝒚  
– Gradient with respect to fitting parameters requires expectations which we evaluate in hardware using importance sampling 

– Binary classification with new regularization (Neven et al) 
• 𝒚 = sign( 𝒘 𝒄(𝒙) ) where weights {𝒘𝜶} are Boolean valued, and {𝒄𝜶(𝒙)} are weak classifiers  

• Regularize using 𝑅 𝒘 = 𝒘 0 = 𝟏 𝒘  

• Use squared loss 𝐿 𝒘 =  𝑚𝑖 𝒘 − 1
2

𝑖  where the margin is 𝑚𝑖 𝒘 = 𝑦𝑖 𝒘 𝒄(𝒙𝑖)  then minimizing 
𝐿 𝒘 + λ𝑅(𝒘) is an Ising optimization problem for the optimal weights 𝒘 

– Unsupervised L0 dictionary learning 
• Factor a matrix 𝑿 as 𝑿 = 𝑫𝑾 by minimizing  𝑿 − 𝑫𝑾 𝐹𝑟𝑜 + λ 𝑾 0; all elements of 𝑾 are Boolean-valued 

• Block coordinate descent on 𝑫 then 𝑾; each column of 𝑾 is an Ising optimization 
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ML→QA: outstanding problems 

• Extend applicability of QA hardware 

– Given a fixed factor graph develop methods to optimize objectives defined 

with different factor graphs 

– Blackbox optimization: develop methods for objectives not having a factor 

graph 
• i.e. black box optimization where objective function is code without a closed form expression 

 

•Monte Carlo methods 

– Hardware is stochastic and we can sample i.i.d. very quickly 

– Unfortunately, the sampling distribution is not known exactly; although to 

lowest order it is roughly Boltzmann 
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Circumventing a sparse pairwise factor graph 

• Native problems are pairwise and sparse 

• Can always reduce higher-order interactions to pairwise, but 
at the cost of additional qubits 

– Qubits are a scarce resource: for certain problem types are there more 
efficient reductions? 

 

•We can simulate connectivity by slaving qubits 

– Strong ferromagnetic couplings −𝝀𝒔𝒊𝒔𝒋 (𝛌 > 𝟎) sets 𝒔𝒊 = 𝒔𝒋 in low 

energy solutions 

– New variables mediate interactions creating qubit “wires” 

– Not scalable as finding embeddings is NP hard 

– What to do? 
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Problem decomposition 

• Even 10 000 qubits may be too small for many applications 

•What are good approaches for decomposing large optimization 

problems down to a sequence of smaller problems 

– Lagrangian relaxation: ok for relatively simple problems; not very effective 

for harder problems 
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Monte Carlo 

• Hardware acts as a source of fast i.i.d. samples from a tunable 

Boltzmann-like distribution 

– However, we do not have a closed form description of the sampling 

distribution 

– Are there methods to exploit hardware to adaptively shape the h/J input 

parameters to certain tasks? 
• Creating a proposal distribution for MCMC 

• Evaluating expectations 

• Estimating partition functions 
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Summary 

•Quantum annealing machines offer opportunities for new 

classes of “tractable” problems 

– What new learning algorithms can be constructed that rely on solving 

sparsely connected combinatorial optimization problems? 

– Can Monte Carlo algorithms take advantage of samples from Ising models 

that are roughly Boltzmann distributed? 

 

• For broadest applicability a number of key problems need to be 

addressed: 

– How can we effectively apply pairwise fixed-connectivity solvers to the 

solution of higher-order models and/or models with alternate variable 

connectivity? 

– How can we decompose larger problems into smaller manageable chunks 

 

•Not new problems, but certainly new incentives for tackling 

some of these issues 
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