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Before DTW 
• Speech recognition was done by means of 

pattern-matching input with reference patterns. 

• Speaking rate variations create nonlinear 
fluctuations on the time axis. 

 

 

•  Some linear transformations were tested, but 
not successfully. 

– Dynamic time warping (DTW) will be able to help 



Dynamic Time Warping - DTW 

• DTW algorithm allows the computation of the 
optimal alignment between two time series   
Xu, Yv ε ΦD  

 

 

Image by Daniel Lemire 

  

XU = (u1,...,um,...,uM )

  

XV = (v1,....,vn,..,vN )



Dynamic Time Warping (II) 
• The optimal alignment can be found in O(MN) 

complexity using dynamic programming. 

• To do so, one needs to define a cost function between 
any two points in the series and build a distance matrix: 

Image by Tsanko Dyustabanov 

  

d(i, j) = um -vn

Where usually: 

  

c(i(k), j(k))

  

F = c(1),...,c(K)Warping function:                                     where 

Euclidean distance 





Warping constraints (II) 
– Boundary condition:  

 

i.e. DTW needs prior knowledge of the start-end 
alignment points. 

– Global constraints 
  

i(1) =1

  

j(1) =1

  

i(K) =M

  

j(K) = N

Image from Keogh and Ratanamahatana 



Seminal works in DTW 

Hiroaki Sakoe and Seibi Chiba, “A dynamic 
programming approach to continuous speech 
recognition,”in 1971 Proc. 7th ICA, Paper 20 CI3, 
Aug. 1971. 

 

 

Hiroaki Sakoe and Seibi Chiba, “Dynamic 
Programming Algorithm Optimization for Spoken 
Word Recognition”, IEEE Transactions on Audio, 
Speech and Signal Processing, 26(1) pp. 43-49, 1978 



T.K.Vintsyuk, “Speech Discrimination by Dynamic 
Programming”, Kibernetiks Vol. 4, No 1, pp. 81-88, 
1968. 

Minimal length 
reference pattern 

Input query 

Even before… 



And… 

V.M. Velichko and N.G. Zagoruyko, “Automatic 
Recognition of 200 Words”, Int. Journal on Man-
Machine Studies, vol. 2, pp. 223-234, 1970. 



Substitution by HMM’s 
• In the 80’s, with the availability of computers with memory and 

possibility to better store models and statistical processing 

L.R.Rabiner and B.H.Juang, “An introduction to Hidden Markov Models”, IEEE ASSP Magazine, 
Vol. 3, no 1, pp. 4-16, 1986 



DTW vs. ASR for Speech Recognition 

Dynamic Time Warping 

• Data: Some examples, no 
labeling needed 

• Time: none for training, 
costly to test 

• Accuracy: Mid to high 

Hidden Markov Models 

• Data: Lots of labeled data at 
phoneme level is needed 

• Costly for training, light for 
testing 

• Accuracy: high 

DTW has long been abandoned in ASR for high-resourced languages, 
with one exception: 
 
De Wachter et al., “Template-based continuous speech recognition”, IEEE Trans. On Audio, 
Speech and Language Processing, 15(4) pp. 1377-1390 



The Zero-Resource Setting 

1. No transcribed training data 

2. No dictionaries 

3. No knowledge of linguistic structure 

Challenge: How can we discover linguistic structure and build useful 
applications and systems without much supervision? 

But:  Assume you have untranscribed speech 
(at least your test data) 

 



Calling DTW back 

PRO: DTW works with patterns, no need for costly 
transcriptions or knowledge of the language. 

 

CON: DTW compares patterns given a known start-end 
position -> needs that at least one of the patterns be 
well bounded 



From DTW to subsequence matching 

Given several instances of an acoustic sequence,  

Can we modify DTW to find them? 



DTW-based subsequence matching 

• Segmental-DTW by James Glass et al. at MIT 

• “image-based” DTW by Aren Jansen et al. at 
John Hopkins Univ. 

• Motif Discovery by Guillaume Gravier et al. at 
IRISA (Rennes). 

• DTW for music by Meinard Müller et al. at 
Max Planck Institut. 

• Unbounded-DTW by Xavier Anguera et al. at 
Telefonica research 



Segmental DTW 

A. Park and J. Glass, “Unsupervised Pattern Discovery in Speech”, IEEE Trans. On 
Audio, Speech and Language Processing, 2008 

Fig. 1. An illustration of segmental dynamic time warping between

two utterances with R = 2. The blue and red regions outline possi-

ble DTW warping spaces for two different starting times.

2.2. Gaussian Posteriorgram Generation

To generate Gaussian posteriorgrams, a GMM is trained on all

speech frames without any transcription, and each frame is decoded

by the trained GMM to obtain a raw posterior probability vector.

Then, a discounting-based smoothing method is employed to each

posterior probability vector to produce a Gaussian posteriorgram.

In our work, each speech frame is represented by the first 13

MFCCs. After pre-selecting the number of desired Gaussian com-

ponents, the K-means algorithm is used to determine an initial set of

mean vectors. A GMM is then trained on all speech frames. Since

we have observed uneven clustering results caused by the presence

of noise and non-speech artifacts, we use a speech/non-speech detec-

tor to remove all non-speech segments longer than one second prior

to clustering.

Once a GMM is trained, a raw Gaussian posteriorgram vector is

calculated by Equation 1. To avoid approximation errors, a proba-

bility floor is set to eliminate dimensions (i.e., set them to zero) with

very small probability values. Then, a discounting based smooth-

ing method is used to move a small portion of the probability mass

from non-zero dimensions to zero dimensions. This smoothing helps

during the time warping pairwise distance matching.

2.3. Segmental DTW

Segmental dynamic time warping (S-DTW) has been successfully

used in our prior speaker-dependent pattern discovery work [2] and

in our recent unsupervised keyword spotting research [4]. After

generating the Gaussian posteriorgrams for all speech utterances,

S-DTW is performed on every utterance pair to find candidate co-

occurring subsequences in the two utterances.

To employ S-DTW, the difference function D between Gaus-

sian posterior probability vectors p and q is defined as D (p, q) =
− log(p · q). The dot product assumes these two probability vec-

tors are drawn from the same underlying probability distribution.

Given two Gaussian posteriorgrams GPi = (p1 , p2 , · · · , pm ) and

GPj = (q1 , q2 , · · · , qn ), the warping function w(i k , j k ) can pro-

duce a m × n timing difference matrix, where i k and j k denote the

k-th coordinate of the warping path.

Two constraints are applied to the S-DTW search. One is the ad-

justment window condition that prevents the warping process from

going too far ahead or behind in either GPi or GPj . Formally, an in-

teger R is set to ensure |i k − j k | ≤ R. The other constraint is the step

length condition. It is clear that the adjustment window condition re-

stricts the shape and the ending coordinates of a warping path. Given

different start coordinates, the difference matrix can be naturally di-

vided into several continuous diagonal regions with width 2R + 1,

Fig. 2. Converting all matched fragment pairs to a graph. Each

numbered node corresponds to a temporal local maximum in frag-

ment similarity in a particular utterance (e.g., 1-5). Each matching

fragment is represented by a connection between two nodes in the

graph (e.g., 1-4, 2-4, 3-5).

as shown in Figure 1. The red warping region s2 denotes the warp-

ing process along with the j axis, while the blue warping region s3

denotes the warping process along the i axis. To avoid redundant

computation and take into account warping paths across segmenta-

tion boundaries, an overlapped sliding window moving strategy is

applied for the start coordinates, shown in the Figure 1.

2.4. Path Refinement

By moving the start coordinate along the i and j axis, for every pair

of speech utterances, we can obtain a total of n − 1
R

+ m − 1
R

warp-

ing paths, each of which represents a warping between two subse-

quences in each utterance pair. Since our goal is to find sequences of

similarity within the utterance pairs, we look for a fragment of each

warping path that has a low distortion score [2].

The warping path refinement is done in two steps. In the first

step, a length L constrained minimum average subsequence finding

algorithm [6] is used to extract consecutive warping fragments with

low distortion scores. In the second step, the extracted fragments are

extended by including neighboring frames below a certain distortion

threshold α. Specifically, we include neighboring frames with dis-

tortion scores within 1 + α percent of the average distortion of the

original fragment. The reason is that we found that the path of ex-

tracted fragments often missed several frames at the onset or offset

of a matching acoustic pattern (i.e., a particular word or words) [2].

2.5. Graph Clustering

After collecting refined warping fragments for every pair of speech

utterances, we can try to cluster similar fragments. Since each warp-

ing fragment provides an alignment between two segments, if one of

the two segments is a common speech pattern (i.e., a frequently used

word), it should appear in multiple utterance pair fragments.

The basic idea is to cast this problem into a graph clustering

framework, illustrated in Figure 2. Consider one pair of utterances

in which S-DTW determines three matching fragments (illustrated

in different colors and line styles). Each fragment corresponds to

two segments in the two speech utterances, one per utterance. Since

in general there could be many matching fragments with different

start and end times covering ever utterance, a simplification is made

to find local maxima of matching similarity in each utterance, and

to use these local maxima as the basis of nodes in the corresponding

graph [2]. As a result, each node in the graph can represent one or

more matching fragments in an utterance. Edges in the graph then

correspond to fragments occurring between utterance pairs, with an

associated weight that corresponds to a normalized matching score.

After the conversion, a graph clustering algorithm proposed by New-

man [7] is used to discover groups of nodes (segments) in terms of



“Image-based” DTW 

A. Jansen et al., “Towards spoken term discovery at scale with zero resources”, 
Interspeech 2010 

Image processing can be used to speedup the discovery of 
possible matches in the similarity matrix 



Automatic motif discovery 

A. Muscariello et al., “Towards Robust Word Discovery by Self-Similarity Matrix 
Comparison”, Proc. ICASSP 2011 

Variability tolerant audio mot if discovery 7
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F ig. 2. Band relaexd SLNDTW: the mot if completely includes the cent ral band. After

path reconst ruct ion, boundaries are refined in the start ing and ending band (dashed

lines).

In addit ion, we have applied an heurist ic for the refinement of the boundaries

that consists in extending the found match by adding new frames at the bound-

aries (following the local normalizat ion paradigm), as long as the average weight

of the extended path does not increase too much.

Formally:

1. Consider the path P with W (P) = Wo ending in (i e, j e).

2. Select in the neighbourhood of (i e, j e) (composed of (i e + 1, j e + 1), (i e +

1, j e), (i e, j e + 1)) the point that , added to P, minimizes W (P), and add it

to P as its new ending point .

3. If W (P) < Wo+ 10%Wo, then repeat theprocedure from 1, otherwise remove

the new ending point from P and stop the procedure.

The same approach applies when extending the path backward from its start ing

point (i s, j s).

2.4 Fragment al SLN D T W

Band relaxed SNLDTW does not constrain mot if and query to coincide, but

it st ill assumes the mot if to be located in the middle part of the query, such

that it completely includes the central band. A simple generalizat ion of the

previous versions of the algorithm, that we call fragmental SLNDTW, allows to

retrieve the sought mot if regardlessof its posit ion in the query, by first ret rieving

a port ion of it , e.g. a fragment. SLNDTW detects a match whenever a query

coincide with a mot if. By using queries small enough to be included in the mot if,

then there exists at least one fragment of the mot if that coincide with one of the

queries and that can be discovered by SLNDTW. Indeed, if L m i n ≤ L m ot i f ≤

L m ax , part it ioning a L m ax long query in L m i n / 2 long subqueries ensures that at

least a L m i n / 2 long fragment of the mot if coincide with one of the subqueries,

and it is therefore retrievable by convent ional SNLDTW. The ent ire match can

be recovered afterwards, by extending thecorresponding path as in the boundary
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Music structure analysis 

Meinard Müller, “Information Retrieval for Music and Motion”, Springer-Verlag, ISBN 978-3-
540-74047-6, pp. 147-150, 2010 



Unbounded-DTW 

X. Anguera et al., “Partial Sequence Matching using an Unbounded Dynamic Time Warping 
Algorithm”, ICASSP 2010 



Unbounded-DTW 



The search for speed and scalability 

• Coarse-to-fine approximation of DTW 
– S. Salvador and P. Chan, “FastDTW: Toward accurate dynamic time 

warping in linear time and space”. 3rd Wkshp. On Mining Temporal 
and Sequential Data, ACM KDD 2004 

• Intelligent bounding of DTW 
– Work by Eamon Keogh (pure DTW, no subsequences) 

– Y. Zhang and J. Glass, “A Piecewise Aggregate Approximation Lower-
Bound Estimate for Posteriorgram-based Dynamic Time Warping”, 
Interspeech 2011 

• Use of IR techniques 
– A. Jansen et al., “Efficient Spoken Term Discovery using Randomized 

Algorithms”, ASRU 2011 

 



(some) applications of the technology 

• Finding structure in an unknown language -> Zero-
resources approaches (JHU Workshop this summer) 
– Helping ASR by increase of training data (Jansen_2011) 

• Acoustic documents comparison and topic detection  
– NLP on speech (Drezde_2010) 

• Query-by-example search (Metze_2011) 

• Spoken term discovery (Muscariello_2011) 

• Spoken Summarization (Jansen_2010, Flamary_2011) 

• Acoustic indexing enhancement via transcription 
propagation 

 



Conclusion 

• The old DTW is back 

– It will not reclaim ASR, but it takes on new 
challenges 

• Lots of research to be done 

– On scalability (matching patterns is still expensive) 

– On generality 

– Robustness 
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