Geometric Computing over Uncertain Data

Subhash Suri

Computer Science
University of California, Santa Barbara

Algo 2012

Geometric Computing

- Reasoning about points, lines, polygons, hyperplanes, balls.
- Geometric abstractions, combinatorial algorithms, data structures.

Geometric Computing

- Reasoning about points, lines, polygons, hyperplanes, balls.
- Geometric abstractions, combinatorial algorithms, data structures.
- Nearest neighbors, intersections, shortest paths.
- Voronoi diagram, Delaunay triangulation, search structures.
- Sensor networks, bio-informatics, spatial DB, vision, robotics.
- Wonderful algorithms and data structures.

Geometric Computing

- Reasoning about points, lines, polygons, hyperplanes, balls.
- Geometric abstractions, combinatorial algorithms, data structures.
- Nearest neighbors, intersections, shortest paths.
- Voronoi diagram, Delaunay triangulation, search structures.
- Sensor networks, bio-informatics, spatial DB, vision, robotics.
- Wonderful algorithms and data structures.

- But typically assume precise, noiseless input data.

Geometric Computing and Uncertainty

- What can we compute when underlying data is uncertain?
- Diverse causes of uncertainty.
- Positional measurements are inherently noisy (sensing errors).
- Privacy: many location services deliberately add random noise.
- Incomplete information: avian flu, sensor awake.
- Stochastic modeling: customers for a new service, facility.

- Complexity of basic geometric questions under imperfect knowledge.
- Preliminary work. More questions than answers. (SoCG, WADS)

Uncertain Point Data: A simple model

Uncertain Point Data: A simple model

- Uncertainty: each point s_{i} active with independent prob. p_{i}.
- Prob. that node i has flu, is a client, is active sensor.
- Darker color indicates higher probability.
- What can we say about the geometric structure of this stochastic set?

Uncertain Point Data: A simple model

- Uncertainty: each point s_{i} active with independent prob. p_{i}.
- Prob. that node i has flu, is a client, is active sensor.
- Darker color indicates higher probability.
- What can we say about the geometric structure of this stochastic set?

- Length of the expected MST or TSP?
- Size of the expected Convex Hull?
- Expected distance between the Closest Pair?
- Similar questions for positional uncertainty.

Data-Driven Science

- Age of inexpensive, ubiquitous sensing and Big Data.
- Scanners (3D, LiDAR, medical, satellites), Biology, GPS, social graphs
- Enables modeling of complex phenomena (ecology, biology, social).
- But invariably, these data are "ambiguous":
- Noisy, inaccurate, approximate, incomplete

Computing with Uncertain Data

- Many computer science areas are focussed on uncertainty:
- Databases, Data mining
- Machine Learning
- Computer Vision, Sensor Networks, Optimization etc.

- Design of uncertainty-aware geometric algorithms?
- Gracefully cope with uncertainty of input.

Related Work: Geometry

Related Work: Geometry

- Classical "stochastic geometry:" limit theorems [BHH, F, S]
- Expected length for n random points etc.
- Computational complexity and worst-case distributions.

Related Work: Geometry

- Classical "stochastic geometry:" limit theorems [BHH, F, S]
- Expected length for n random points etc.
- Computational complexity and worst-case distributions.
- Imprecise Points [Loffler-van Kreveld]
- Each point can be anywhere inside a simple region
- Max or Min measures (bounding box, diameter, convex hull, etc)
- Different point positions give different answers
- Analysis of robustness, sensitivity, finite precision

Related Work: Optimization

- 2 Stage Optimization (Erdös' Random Race)
- Planning under uncertainty: Network Design.
- Cheaper to buy in stage 1, but future demand unknown
- Demand becomes known in stage 2, but more expensive to buy

- A priori optimization [Bertsimas, Jaillet].

Related Work: Databases

- Alternative Worlds
- Incomplete information
- Probability distribution over values
- Few (discrete) possible values for each datum

- Example problems.
- Ranking, Top-k, Indexing, Range Searching
- Clustering, Skyline (maxima), etc.

Uncertain Minimum Spanning Tree

Uncertain Minimum Spanning Tree

- A master set $M=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ of points in dimensions.
- Each s_{i} is active with an independent probability p_{i}.
- What is the expected MST length of M?

-. 25		- 9
- ${ }^{1}$	$0^{.2}$	
0.6		-. 08
	- ${ }^{1}$	

- Equivalently, the expected MST of a random sample of M ?

Uncertain Minimum Spanning Tree

- Outcome $A \subseteq M$ occurs with prob. $\operatorname{Pr}[A]=\prod_{s_{i} \in \mathcal{A}} p_{i} \prod_{s_{i} \notin A}\left(1-p_{i}\right)$
- The sample space has 2^{n} outcomes (sets of active points).
- Compute $\mathbb{E}[M S T]=\sum_{S \subseteq M} p(S) M S T(S)$.

Uncertain Minimum Spanning Tree

- Outcome $A \subseteq M$ occurs with prob. $\operatorname{Pr}[A]=\prod_{s_{i} \in \mathcal{A}} p_{i} \prod_{s_{i} \notin A}\left(1-p_{i}\right)$
- The sample space has 2^{n} outcomes (sets of active points).
- Compute $\mathbb{E}[M S T]=\sum_{S \subseteq M} p(S) M S T(S)$.
- Sum over exponentially many terms worrisome, but...

Computational Geometry under Uncertainty

- Geometric structure can help.
- Consider the expected size (perimeter) of convex hull
- A (directed) pair (a, b) forms an edge of CH iff
- both a and b active
- no point on the negative side of the line $a b$ active
- Weighted sum of $a b$ lengths with their prob (linearity of expectation)

- At worst, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time. Similarly, for the CH area.

Expectation for Proximity Graphs

Expectation for Proximity Graphs

- A triple (a, b, c) forms a Delaunay triangle iff
- a, b, c are all active
- no point inside circumcircle of $\triangle a b c$ is active
- Weighted sum of triangles with their prob (linearity of expectation)
- Subtract the (expected) perimeter

Back to MST and Proximity Graphs

Back to MST and Proximity Graphs

- A master set $M=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ of points in dimensions.
- Each s_{i} is active with an independent probability p_{i}.
- What is the expected MST length of M?
- MST is part of a family: NN, RNG, GG, DT.

MST and Proximity Graphs

- $\mathrm{NN} \subseteq M S T \subseteq R N G \subseteq G G \subseteq D T$
- Expected lengths of NN, GG, RNG, and DT in poly-time.
- Unfortunately, none of them good approximations of MST.
- In worst-case, DT is $\Omega(\mathrm{n}) \times$ MST, and NN arbitrarily smaller.

Results on Stochastic MST

- Complexity:
- $\mathbb{E}[M S T]$ is \#P-Hard for $\operatorname{dim} d \geqslant 2$.
- Trivial in one dimension.
- Approximation of Expectation:
- A simple randomized FPTAS in all dimensions.
- A deterministic $\mathrm{O}(1)$ factor approximation for $\mathrm{d}=2$.
- A PTAS based on shifted quadtrees and dynamic programming.
- Probability Distribution:
- Tail bounds inapproximable to any multiplicative factor.
- Hardness and approximation for locational uncertainty model.

Hardness: Reduction from Network Reliability

- 2-Terminal Network Reliability Problem (2NRP).
- $G=(V, E)$, nodes s, t, and failure prob. p_{i} for each $e_{i} \in E$.
- Compute the probability that s and t are connected.

Hardness: Reduction from Network Reliability

- 2-Terminal Network Reliability Problem (2NRP).
- $G=(V, E)$, nodes s, t, and failure prob. p_{i} for each $e_{i} \in E$.
- Compute the probability that s and t are connected.
- An (s, t)-planar graph is one that admits a planar embedding with s and t on the boundary.
- 2NRP is \#P-Hard for (s, t)-planar graphs of maximum degree 3 even if all edge failure probabilities are the same p [Provan 83].

The Construction

- Given an (s, t)-planar 2NRP, construct a stochastic set of points.
- Compute an orthogonal grid drawing of G [Tamassia '87].

- Edges of G map to "paths" in the grid, using "auxiliary" grid points. Call these paths virtual edges.
- Each virtual edge has one special (representative) point, which is active with prob. p; all others active with prob. 1.

The Construction

- Add a virtual edge (path) between s and t.
- Add \hat{s} and \hat{t} in the middle with $d(\hat{s}, \hat{t})=1.1$
(keeping unit distance to neighboring auxiliary points)
- All interpoint distances 1 (short), 1.1 (medium), or $\geqslant \sqrt{2}$ (long).

Network Reliability to MST

- H: surviving subgraph for 2NRP (an outcome).
- S_{H} : corresponding point set (without pts. of failed edges).

- Lemma 1: Nodes s and t connected in H iff $\hat{s} \hat{t} \notin \operatorname{MST}(S)$.

Finishing the Proof

- Lemma 2: The probability that $a b \in$ MST does not change if $d(\hat{s}, \hat{t})$ changes from 1.1 to 1.2 , for any other edge $a b$.

Finishing the Proof

- Lemma 2: The probability that $a b \in$ MST does not change if $d(\hat{s}, \hat{t})$ changes from 1.1 to 1.2 , for any other edge $a b$.
- Compute $\mathbb{E}[\mathrm{MST}]$ twice, with $\mathrm{d}(\hat{\mathrm{s}}, \hat{\mathrm{t}})$ equal to 1.1 and 1.2.
- $\mathbb{E}\left[\mathrm{MST}_{2}\right]-\mathbb{E}\left[\mathrm{MST}_{1}\right]=0.1 * p(\hat{\mathrm{~s}}, \hat{\mathrm{t}})$
- Probability that s, t connected in G equals $1-\mathrm{p}(\hat{\mathrm{s}}, \hat{\mathrm{t}})$.

Finishing the Proof

- Lemma 2: The probability that $a b \in \operatorname{MST}$ does not change if $d(\hat{s}, \hat{t})$ changes from 1.1 to 1.2 , for any other edge $a b$.
- Compute $\mathbb{E}[\mathrm{MST}]$ twice, with $\mathrm{d}(\hat{\mathrm{s}}, \hat{\mathrm{t}})$ equal to 1.1 and 1.2.
- $\mathbb{E}\left[\mathrm{MST}_{2}\right]-\mathbb{E}\left[\mathrm{MST}_{1}\right]=0.1 * p(\hat{\mathrm{~s}}, \hat{\mathrm{t}})$
- Probability that s, t connected in G equals $1-\mathrm{p}(\hat{\mathrm{s}}, \hat{\mathrm{t}})$.
- Computing $\mathbb{E}[M S T]$ is $\# P$-Hard for $d \geqslant 2$.

Approximation: $\mathbb{E}[\mathrm{MST}]$ by Sampling

- A sample R_{j} picks each point s_{i} with probability p_{i}
- Random variable X_{j} is length of R_{j} 's MST
- Construct k samples and output the mean length $\sum_{j=1}^{k} X_{j} / k$.
- How large should k be to get an (ε, δ) approximation?

Approximation: $\mathbb{E}[\mathrm{MST}]$ by Sampling

- A sample R_{j} picks each point s_{i} with probability p_{i}
- Random variable X_{j} is length of R_{j} 's MST
- Construct k samples and output the mean length $\sum_{j=1}^{k} X_{j} / k$.
- How large should k be to get an (ε, δ) approximation?
- Sample size depends on $\frac{\max |M S T|}{\mathbb{E}[M S T]}$, the range for the random variable.
- Problematic when point spread is large and probabilities small.

Approximation: $\mathbb{E}[\mathrm{MST}]$ by Sampling

- A sample R_{j} picks each point s_{i} with probability p_{i}
- Random variable X_{j} is length of R_{j} 's MST
- Construct k samples and output the mean length $\sum_{j=1}^{k} X_{j} / k$.
- How large should k be to get an (ε, δ) approximation?
- Sample size depends on $\frac{\max |M S T|}{\mathbb{E}[M S T]}$, the range for the random variable.
- Problematic when point spread is large and probabilities small.
- Ways to control this via conditioning.

Approximating $\mathbb{E}[$ MST $]$ by Conditioning

- Order the points as $s_{1}, s_{2}, \ldots, s_{n}$.
- L_{i} be expected MST length of $\left\{s_{i}, s_{i+1}, \ldots, s_{n}\right\}$.

Approximating $\mathbb{E}[M S T]$ by Conditioning

- Order the points as $s_{1}, s_{2}, \ldots, s_{n}$.
- L_{i} be expected MST length of $\left\{s_{i}, s_{i+1}, \ldots, s_{n}\right\}$.
- L_{i}^{\prime} be expected value of L_{i} conditioned on s_{i} being active.
- $L_{i}=p_{i} L_{i}^{\prime}+\left(1-p_{i}\right) L_{i+1}$
- Need a recursive formula for L_{i}^{\prime}.

Approximating $\mathbb{E}[$ MST $]$ by Conditioning

$$
\text { - } L_{i}=p_{i} L_{i}^{\prime}+\left(1-p_{i}\right) L_{i+1}
$$

Approximating $\mathbb{E}[$ MST $]$ by Conditioning

- $L_{i}=p_{i} L_{i}^{\prime}+\left(1-p_{i}\right) L_{i+1}$
- Now reorder $\left\{s_{i+1}, \ldots, s_{n}\right\}$ in increasing distance order from i. Assume this order is $\left\{s_{i, i+1}, \ldots, s_{i, n}\right\}$.

Approximating $\mathbb{E}[$ MST $]$ by Conditioning

- $L_{i}=p_{i} L_{i}^{\prime}+\left(1-p_{i}\right) L_{i+1}$
- Now reorder $\left\{s_{i+1}, \ldots, s_{n}\right\}$ in increasing distance order from i. Assume this order is $\left\{s_{i, i+1}, \ldots, s_{i, n}\right\}$.
- $L_{i j}^{\prime}$ expected MST length of $\left\{s_{i}, s_{i, i+1}, \ldots, s_{i, j}\right\}$ conditioned on s_{i} being active.

Approximating $\mathbb{E}[M S T]$ by Conditioning

- $L_{i}=p_{i} L_{i}^{\prime}+\left(1-p_{i}\right) L_{i+1}$
- Now reorder $\left\{s_{i+1}, \ldots, s_{n}\right\}$ in increasing distance order from i. Assume this order is $\left\{s_{i, i+1}, \ldots, s_{i, n}\right\}$.
- $L_{i j}^{\prime}$ expected MST length of $\left\{s_{i}, s_{i, i+1}, \ldots, s_{i, j}\right\}$ conditioned on s_{i} being active.
- $L_{i j}^{\prime \prime}$ expected value of $L_{i j}^{\prime}$ conditioned on both s_{i} and $s_{i, j}$ being active.

Approximating $\mathbb{E}[M S T]$ by Conditioning

- $L_{i}=p_{i} L_{i}^{\prime}+\left(1-p_{i}\right) L_{i+1}$
- Now reorder $\left\{s_{i+1}, \ldots, s_{n}\right\}$ in increasing distance order from i. Assume this order is $\left\{s_{i, i+1}, \ldots, s_{i, n}\right\}$.
- $L_{i j}^{\prime}$ expected MST length of $\left\{s_{i}, s_{i, i+1}, \ldots, s_{i, j}\right\}$ conditioned on s_{i} being active.
- $L_{i j}^{\prime \prime}$ expected value of $L_{i j}^{\prime}$ conditioned on both s_{i} and $s_{i, j}$ being active.
- Then, $L_{i, j}^{\prime}=p_{i, j} L_{i, j}^{\prime \prime}+\left(1-q_{i, j}\right) L_{i, j-1}^{\prime}$

Approximating $\mathbb{E}[$ MST $]$ by Conditioning

- $L_{i, j}^{\prime}=p_{i, j} L_{i, j}^{\prime \prime}+\left(1-q_{i, j}\right) L_{i, j-1}^{\prime}$
- When i and its farthest neighbor are active, and have distance D, then $\min |M S T|$ is $\Omega(D)$ and $\max |M S T|$ is $O(n D)$.
- $O(n)$ samples suffice for estimating $L^{\prime \prime}$
- Total running time $O(\operatorname{poly}(n / \varepsilon) \log (1 / \delta))$.

Approximating $\mathbb{E}[$ MST $]$ by Conditioning

- $L_{i, j}^{\prime}=p_{i, j} L_{i, j}^{\prime \prime}+\left(1-q_{i, j}\right) L_{i, j-1}^{\prime}$
- When i and its farthest neighbor are active, and have distance D, then $\min |M S T|$ is $\Omega(D)$ and $\max |M S T|$ is $O(n D)$.
- $O(n)$ samples suffice for estimating $L^{\prime \prime}$
- Total running time $O(\operatorname{poly}(n / \varepsilon) \log (1 / \delta))$.
- Randomized FPTAS for $\mathbb{E}[$ MST] in any metric space.

Distribution of MST Length

Distribution of MST Length

- p_{ℓ} be Prob. that MST length is at most ℓ.
- c-approximation of p_{ℓ} :

$$
\frac{1}{\mathrm{c}} \mathrm{p}_{\ell} \leqslant \mathrm{p}^{\prime} \leqslant \mathrm{c} p_{\ell}
$$

- Not possible assuming $P \neq N P$.
- Reduction from Steiner tree problem.

Tail Bound for Probabilistic MST

- A set S of points, and a subset $T \subset S$ called terminals.
- NP-complete to decide if Steiner tree of T has length ℓ.
- Set prob. 1 for points of T, and prob. $1 / 2$ for points of $S \backslash T$.
- The Prob. that MST(S) length is less than ℓ is non-zero if and only if Steiner tree of T has length less than ℓ.
- Thus, $p_{\ell}=0$ if Steiner tree answer is no, and positive otherwise.

Deterministic Approximation of $\mathbb{E}[M S T]$ in 2 D

- Relative Neighborhood Graph length can be computed but a poor approximation of $\mathbb{E}[M S T]$.
- Apply a pruning rule to RNG that
- Must be close to MST weight, and
- Must admit a probabilistic estimation
- Pruning Rule:
- Delete an edge $u v \in R N G$ if there is a pair $\mathrm{a}, \mathrm{b} \in S$ such that $u v$ is the longest edge of 4-cycle ($u, v, a, b)$.
- Complicated analysis but raises another fundamental problem.

Stochastic Closest Pair

- Stochastic point sets R and B. What is the probability that closest R-B pair has distance >1 ?

Stochastic Closest Pair

- Stochastic point sets R and B.

What is the probability that closest R-B pair has distance >1 ?

- Points fail with ind. prob. but need to analyze "edges."

Stochastic Closest Pair

- Stochastic point sets R and B.

What is the probability that closest R-B pair has distance >1 ?

- Points fail with ind. prob. but need to analyze "edges."
- A graph version of the problem:

Stochastic Closest Pair

- Stochastic point sets R and B.

What is the probability that closest R-B pair has distance >1 ?

- Points fail with ind. prob. but need to analyze "edges."
- A graph version of the problem:
- A bipartite graph $G=(U, V, E)$, each node fails with prob. p_{i}

Stochastic Closest Pair

- Stochastic point sets R and B.

What is the probability that closest R-B pair has distance >1 ?

- Points fail with ind. prob. but need to analyze "edges."
- A graph version of the problem:
- A bipartite graph $G=(U, V, E)$, each node fails with prob. p_{i}
- What is the probability that no edge survives?

Stochastic Closest Pair

- Stochastic point sets R and B.

What is the probability that closest R-B pair has distance >1 ?

- Points fail with ind. prob. but need to analyze "edges."
- A graph version of the problem:
- A bipartite graph $G=(U, V, E)$, each node fails with prob. p_{i}
- What is the probability that no edge survives?
- Graph problem is NP-Hard: related to counting vertex covers.

Complexity of Stochastic Closest Pair

- Computing Prob[Closest Pair distance in $\mathrm{S} \leqslant \ell$] is \#P-Hard, even in 2D, for either L_{2} or L_{∞} norm.
- Bi-chromatic version (R, B) also hard.

- Polynomial algorithm if R and B linearly-separable and L_{∞} norm.
- Hard if linear separability removed.
- Even linearly-separable and L_{∞} hard in 3D.

Traveling Salesman Tour Through Uncertain Regions

- Plan a shortest tour visiting geometric neighborhoods.
- Neighborhood are uncertain.
- Each region is a disk, with a known center, but random radius.

Traveling Salesman Tour Through Uncertain Regions

- Plan a shortest tour visiting geometric neighborhoods.
- Neighborhood are uncertain.
- Each region is a disk, with a known center, but random radius.

- Motivation: sensor network data collection.

Traveling Salesman Tour Through Uncertain Regions

- Buoy-mounted sensors in Southern California Blight.

- Data periodically collected by AUV robots.
- Communication (acoustic) range a stochastic variable.
- Shortest tour to visit all sensor "neighborhoods".

Traveling Salesman Tour Through Uncertain Regions

- Buoy-mounted sensors in Southern California Blight.

- Data periodically collected by AUV robots.
- Communication (acoustic) range a stochastic variable.
- Shortest tour to visit all sensor "neighborhoods".
- Online: radii learned only when disk boundary reached.

Stochastic TSP: formal model

- Input: n (fixed) disk centers, i.i.d. random radii, from distribution ϕ, with mean μ.
- Each draw is a different instance of the TSPN problem.
- Each instance I (random draw) has an optimal tour Opt(I).
- $\mathbb{E}\left[\mathrm{L}^{*}\right]$: expected value of $\operatorname{OpT}(\mathrm{I})$ over all the instances.

$$
\mathbb{E}\left[L^{*}\right]=\int_{0}^{\infty} \cdots \int_{0}^{\infty} L^{*}\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{i=1}^{n} \phi\left(x_{i}\right) \cdot d x_{1} \ldots d x_{n}
$$

- Find a traversal strategy with a provable approximation of $\mathbb{E}\left[\mathrm{L}^{*}\right]$.

The Main Idea

- M: mean instance where all the disks have radius μ. - $\operatorname{Opt}(M)$: optimal tour for M.

The Main Idea

- M: mean instance where all the disks have radius μ.
- $\operatorname{Opt}(M)$: optimal tour for M.
- Theorem: $\operatorname{Opt}(M) \leqslant 2 \mathbb{E}\left[L^{*}\right]$.

The Main Idea

- M: mean instance where all the disks have radius μ.
- $\operatorname{Opt}(M)$: optimal tour for M.
- Theorem: $\operatorname{Opt}(M) \leqslant 2 \mathbb{E}\left[L^{*}\right]$.

- Blindly following $\operatorname{Opt}(M)$ doesn't work. Only a high level clue about the visit order.

The Main Idea

- M: mean instance where all the disks have radius μ.
- $\operatorname{Opt}(M)$: optimal tour for M.
- Theorem: $\operatorname{Opt}(M) \leqslant 2 \mathbb{E}\left[L^{*}\right]$.

- Blindly following $\operatorname{Opt}(M)$ doesn't work. Only a high level clue about the visit order.
- $O(1)$ factor approximation if disks in M disjoint.
- Otherwise, $\mathrm{O}(\log \log \mathfrak{n})$ (offline) and $\mathrm{O}(\log \mathfrak{n})$ (online) approx.

Conclusions and Future Directions

- Effects of uncertainty on complexity of geometric problems
- Even basic questions (closest pair, MST) become intractable
- Although many others (DT, RNG, GG, CH etc.) tractable.
- More questions than answers
- Going beyond the measure, what about the structure?
- What to output as 'expected' MST, VoD, DT?
- Under what conditions, this makes sense?
- Many other geometric questions (clustering, shortest paths).
- Thank you!

