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Geometric Computing

Reasoning about points, lines, polygons, hyperplanes, balls.

Geometric abstractions, combinatorial algorithms, data structures.

I Nearest neighbors, intersections, shortest paths.
I Voronoi diagram, Delaunay triangulation, search structures.
I Sensor networks, bio-informatics, spatial DB, vision, robotics.
I Wonderful algorithms and data structures.

But typically assume precise, noiseless input data.
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Geometric Computing and Uncertainty

What can we compute when underlying data is uncertain?

Diverse causes of uncertainty.
I Positional measurements are inherently noisy (sensing errors).
I Privacy: many location services deliberately add random noise.
I Incomplete information: avian flu, sensor awake.
I Stochastic modeling: customers for a new service, facility.

Complexity of basic geometric questions under imperfect knowledge.

Preliminary work. More questions than answers. (SoCG, WADS)
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Uncertain Point Data: A simple model

Uncertainty: each point si active with independent prob. pi.
I Prob. that node i has flu, is a client, is active sensor.
I Darker color indicates higher probability.
I What can we say about the geometric structure of this stochastic set?

I Length of the expected MST or TSP?
I Size of the expected Convex Hull?
I Expected distance between the Closest Pair?
I Similar questions for positional uncertainty.
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Data-Driven Science

Age of inexpensive, ubiquitous sensing and Big Data.
I Scanners (3D, LiDAR, medical, satellites), Biology, GPS, social graphs

Enables modeling of complex phenomena (ecology, biology, social).

But invariably, these data are “ambiguous”:
I Noisy, inaccurate, approximate, incomplete
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Computing with Uncertain Data

Many computer science areas are focussed on uncertainty:
I Databases, Data mining
I Machine Learning
I Computer Vision, Sensor Networks, Optimization etc.

Design of uncertainty-aware geometric algorithms?
I Gracefully cope with uncertainty of input.
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Related Work: Geometry

Classical “stochastic geometry:” limit theorems [BHH, F, S]
I Expected length for n random points etc.
I Computational complexity and worst-case distributions.

Imprecise Points [Loffler-van Kreveld]
I Each point can be anywhere inside a simple region
I Max or Min measures (bounding box, diameter, convex hull, etc)
I Different point positions give different answers
I Analysis of robustness, sensitivity, finite precision
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Related Work: Optimization

2 Stage Optimization (Erdös’ Random Race)
I Planning under uncertainty: Network Design.
I Cheaper to buy in stage 1, but future demand unknown
I Demand becomes known in stage 2, but more expensive to buy

A priori optimization [Bertsimas, Jaillet].
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Related Work: Databases

Alternative Worlds
I Incomplete information
I Probability distribution over values
I Few (discrete) possible values for each datum

Job security

S
al
ar
y

0

Company A

Company B

Company C

Company D

e1
e2

e3 e4
e5

Company E

Example problems.
I Ranking, Top-k, Indexing, Range Searching
I Clustering, Skyline (maxima), etc.
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Uncertain Minimum Spanning Tree

A master set M = {s1, s2, . . . , sn} of points in d dimensions.

Each si is active with an independent probability pi.

What is the expected MST length of M?
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Equivalently, the expected MST of a random sample of M?
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Uncertain Minimum Spanning Tree

Outcome A ⊆M occurs with prob. Pr[A] =
∏
si∈A

pi
∏
si 6∈A

(1 − pi)

The sample space has 2n outcomes (sets of active points).

Compute E[MST ] =
∑
S⊆M

p(S)MST(S).

Sum over exponentially many terms worrisome, but...
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Computational Geometry under Uncertainty

Geometric structure can help.

Consider the expected size (perimeter) of convex hull

A (directed) pair (a,b) forms an edge of CH iff
I both a and b active
I no point on the negative side of the line ab active

Weighted sum of ab lengths with their prob (linearity of expectation)

a
Pa

b
Pb

At worst, O(n3) time. Similarly, for the CH area.
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Expectation for Proximity Graphs

A triple (a,b, c) forms a Delaunay triangle iff
I a,b, c are all active
I no point inside circumcircle of 4abc is active

Weighted sum of triangles with their prob (linearity of expectation)

Subtract the (expected) perimeter

a

b

c
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Back to MST and Proximity Graphs

A master set M = {s1, s2, . . . , sn} of points in d dimensions.

Each si is active with an independent probability pi.

What is the expected MST length of M?

MST is part of a family: NN,RNG,GG,DT .

a

b

(a)

a b

(b)

a b

(c)

a b

(d)
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MST and Proximity Graphs

NN ⊆MST ⊆ RNG ⊆ GG ⊆ DT

Expected lengths of NN, GG, RNG, and DT in poly-time.

Unfortunately, none of them good approximations of MST.

In worst-case, DT is Ω(n)×MST , and NN arbitrarily smaller.
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Results on Stochastic MST

Complexity:
I E[MST ] is #P-Hard for dim d > 2.
I Trivial in one dimension.

Approximation of Expectation:
I A simple randomized FPTAS in all dimensions.
I A deterministic O(1) factor approximation for d = 2.
I A PTAS based on shifted quadtrees and dynamic programming.

Probability Distribution:
I Tail bounds inapproximable to any multiplicative factor.

Hardness and approximation for locational uncertainty model.
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Hardness: Reduction from Network Reliability

2-Terminal Network Reliability Problem (2NRP).
I G = (V,E), nodes s, t, and failure prob. pi for each ei ∈ E.
I Compute the probability that s and t are connected.

An (s, t)-planar graph is one that admits a planar embedding with s
and t on the boundary.

2NRP is #P-Hard for (s, t)-planar graphs of maximum degree 3
even if all edge failure probabilities are the same p [Provan 83].
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The Construction

Given an (s, t)-planar 2NRP, construct a stochastic set of points.

Compute an orthogonal grid drawing of G [Tamassia ’87].

s t

a

b

c

d

e

s t

a

b

c

d

e

Edges of G map to “paths” in the grid, using “auxiliary” grid points.
Call these paths virtual edges.

Each virtual edge has one special (representative) point, which is
active with prob. p; all others active with prob. 1.
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The Construction

ŝ t̂

s t
ŝ t̂

s t

Add a virtual edge (path) between s and t.

Add ŝ and t̂ in the middle with d(ŝ, t̂) = 1.1
(keeping unit distance to neighboring auxiliary points)

All interpoint distances 1 (short), 1.1 (medium), or >
√

2 (long).
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Network Reliability to MST

H: surviving subgraph for 2NRP (an outcome).

SH: corresponding point set (without pts. of failed edges).

s t

a

b

c

d

e
s t

a

c

b d

e

ŝ t̂

Lemma 1: Nodes s and t connected in H iff ŝt̂ /∈MST(S).
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Finishing the Proof

Lemma 2: The probability that ab ∈MST does not change if d(ŝ, t̂)
changes from 1.1 to 1.2, for any other edge ab.

I Compute E[MST ] twice, with d(ŝ, t̂) equal to 1.1 and 1.2.

I E[MST2] − E[MST1] = 0.1 ∗ p(ŝ, t̂)

I Probability that s, t connected in G equals 1 − p(ŝ, t̂).

Computing E[MST ] is #P-Hard for d > 2.
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Approximation: E[MST ] by Sampling

A sample Rj picks each point si with probability pi

Random variable Xj is length of Rj’s MST

Construct k samples and output the mean length
∑k

j=1 Xj/k.

How large should k be to get an (ε, δ) approximation?

Sample size depends on max |MST |
E[MST ] , the range for the random variable.

Problematic when point spread is large and probabilities small.

Ways to control this via conditioning.
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Approximating E[MST ] by Conditioning

Order the points as s1, s2, . . . , sn.

Li be expected MST length of {si, si+1, . . . , sn}.

L ′i be expected value of Li conditioned on si being active.

Li = piL
′
i + (1 − pi)Li+1

Need a recursive formula for L ′i.

s1

si

si+1
sn

Subhash Suri (UCSB) Computational Geometry over Uncertain Data Algo 2012 23 / 35



Approximating E[MST ] by Conditioning

Order the points as s1, s2, . . . , sn.

Li be expected MST length of {si, si+1, . . . , sn}.

L ′i be expected value of Li conditioned on si being active.

Li = piL
′
i + (1 − pi)Li+1

Need a recursive formula for L ′i.

s1

si

si+1
sn

Subhash Suri (UCSB) Computational Geometry over Uncertain Data Algo 2012 23 / 35



Approximating E[MST ] by Conditioning

Li = piL
′
i + (1 − pi)Li+1

Now reorder {si+1, . . . , sn} in increasing distance order from i.
Assume this order is {si,i+1, . . . , si,n}.

L ′ij expected MST length of {si, si,i+1, . . . , si,j} conditioned on si
being active.

L ′′ij expected value of L ′ij conditioned on both si and si,j being active.

Then, L ′i,j = pi,jL
′′
i,j + (1 − qi,j)L

′
i,j−1

Li,j

Bj
Si
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Approximating E[MST ] by Conditioning

L ′i,j = pi,jL
′′
i,j + (1 − qi,j)L

′
i,j−1

When i and its farthest neighbor are active, and have distance D,
then min |MST | is Ω(D) and max |MST | is O(nD).

O(n) samples suffice for estimating L ′′

Total running time O(poly(n/ε) log(1/δ)).

Randomized FPTAS for E[MST ] in any metric space.
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Distribution of MST Length

p` be Prob. that MST length is at most `.

c-approximation of p`:

1

c
p` 6 p ′ 6 cp`

Not possible assuming P 6= NP.

Reduction from Steiner tree problem.
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Tail Bound for Probabilistic MST

A set S of points, and a subset T ⊂ S called terminals.

NP-complete to decide if Steiner tree of T has length `.

Set prob. 1 for points of T , and prob. 1/2 for points of S \ T .

The Prob. that MST(S) length is less than ` is non-zero if and only if
Steiner tree of T has length less than `.

Thus, p` = 0 if Steiner tree answer is no, and positive otherwise.

Pi = 1

Pj = 1/2

T
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Deterministic Approximation of E[MST ] in 2D

Relative Neighborhood Graph length can be computed but a poor
approximation of E[MST ].

Apply a pruning rule to RNG that
I Must be close to MST weight, and
I Must admit a probabilistic estimation

Pruning Rule:
I Delete an edge uv ∈ RNG if there is a pair a,b ∈ S such that uv is

the longest edge of 4-cycle (u, v,a,b).

Complicated analysis but raises another fundamental problem.
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Stochastic Closest Pair

Stochastic point sets R and B.
What is the probability that closest R-B pair has distance > 1?

Points fail with ind. prob. but need to analyze “edges.”

A graph version of the problem:

I A bipartite graph G = (U,V,E), each node fails with prob. pi
I What is the probability that no edge survives?

Graph problem is NP-Hard: related to counting vertex covers.

R

B

r

b
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Complexity of Stochastic Closest Pair

Computing Prob[Closest Pair distance in S 6 `] is #P-Hard,
even in 2D, for either L2 or L∞ norm.

Bi-chromatic version (R,B) also hard.

R

B

r

b

Polynomial algorithm if R and B linearly-separable and L∞ norm.

Hard if linear separability removed.

Even linearly-separable and L∞ hard in 3D.
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Traveling Salesman Tour Through Uncertain Regions

Plan a shortest tour visiting geometric neighborhoods.

Neighborhood are uncertain.

Each region is a disk, with a known center, but random radius.

Motivation: sensor network data collection.

Subhash Suri (UCSB) Computational Geometry over Uncertain Data Algo 2012 31 / 35



Traveling Salesman Tour Through Uncertain Regions

Plan a shortest tour visiting geometric neighborhoods.

Neighborhood are uncertain.

Each region is a disk, with a known center, but random radius.

Motivation: sensor network data collection.

Subhash Suri (UCSB) Computational Geometry over Uncertain Data Algo 2012 31 / 35



Traveling Salesman Tour Through Uncertain Regions

Buoy-mounted sensors in Southern California Blight.

s0b

Data periodically collected by AUV robots.

Communication (acoustic) range a stochastic variable.

Shortest tour to visit all sensor “neighborhoods”.

Online: radii learned only when disk boundary reached.
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Stochastic TSP: formal model

Input: n (fixed) disk centers, i.i.d. random radii, from distribution φ,
with mean µ.

Each draw is a different instance of the TSPN problem.

Each instance I (random draw) has an optimal tour Opt(I).

E[L∗]: expected value of Opt(I) over all the instances.

E[L∗] =

∫∞
0
· · ·

∫∞
0
L∗(x1, . . . , xn) · Πn

i=1φ(xi) · dx1 . . .dxn,

Find a traversal strategy with a provable approximation of E[L∗].
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The Main Idea

M: mean instance where all the disks have radius µ.

Opt(M): optimal tour for M.

Theorem: Opt(M) 6 2E[L∗].

b b

Blindly following Opt(M) doesn’t work. Only a high level clue about
the visit order.

O(1) factor approximation if disks in M disjoint.

Otherwise, O(log logn) (offline) and O(logn) (online) approx.
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Conclusions and Future Directions

Effects of uncertainty on complexity of geometric problems

Even basic questions (closest pair, MST) become intractable
I Although many others (DT, RNG, GG, CH etc.) tractable.

More questions than answers
I Going beyond the measure, what about the structure?
I What to output as ‘expected’ MST, VoD, DT?
I Under what conditions, this makes sense?

Many other geometric questions (clustering, shortest paths).

Thank you!
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