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Online Algorithms 

Input revealed in parts.  

Algorithm has no knowledge of future. 

 

Scheduling, Load Balancing, Routing, Caching, 

Finance, Machine Learning … 

 

Competitive ratio = 

 

Alternate view:  

Game between algorithm and adversary 
 



Randomized Algorithms 



Some classic problems 



The Ski Rental Problem 

• Buying costs $B. 

• Renting costs $1 per day. 

 

Problem: 

• Number of ski days is not known in advance. 

 

Goal: Minimize the total cost. 

 

Deterministic:  2 

Randomized: e/(e-1) ¼ 1.58 



Online Virtual Circuit Routing 

Network graph G=(V, E) 

capacity function u: E Z+ 

 

Requests: ri = (si, ti) 
 

• Problem: Connect si to ti by a path, or reject the 
request.  

• Reserve one unit of bandwidth along the path. 

• No re-routing is allowed. 
 

• Load: ratio between reserved edge bandwidth and 
edge capacity. 

• Goal: Maximize the total throughput. 



Virtual Circuit Routing - Example 

t1 

s1 

t2 

s2 

s3 

t3 

Maximum Load:  0 1/5 2/5 3/5 

Edge capacities: 5  



Virtual Circuit Routing 

Key decision: 

1) Whether to choose request or not? 

2) How to route request? 

 

O(log n)-congestion, O(1)-throughput  [Awerbuch Azar Plotkin 90’s] 

Various other versions and tradeoffs. 

 

Main idea: Exponential penalty approach   

                 length (edge) =  exp (congestion) 

Decisions based on length of shortest (si,ti) path 

 

Clever potential function analysis 



The Paging/Caching Problem 

Pages: 1,2,…,n,   cache of size k<n. 

Page requests: 1,6,4,1,4,7,6,1,3,… 

 

a) If requested page already in cache, no penalty. 

b) Else, cache miss. Need to fetch page in cache 

   (possibly) evicting some other page.  

 

Goal:  Minimize the number of cache misses. 

 

Key Decision: Upon a request, which page to evacuate? 

Cache 

Hard disk 

(pages 

1,…n) 



Previous Results: Paging 

Paging (Deterministic) [Sleator Tarjan 85]: 

• Any det. algorithm ¸ k-competitive. 

• LRU is k-competitive (also other algorithms) 

 

Paging (Randomized): 

• Rand. Marking O(log k)   [Fiat, Karp, Luby, McGeoch, Sleator, 

Young 91].  

• Lower bound Hk  [Fiat et al. 91],  tight results known. 



Do these problems have  

anything in common? 



An Abstract Online Problem 

min   3 x1 + 5 x2 + x3 + 4 x4 + … 

 

2 x1 + x3 + x6 + …  ¸ 3 

x3 +  x14 + x19 + … ¸ 8 

x2 + 7 x4 + x12 + … ¸ 2 

 

 

Goal: Find feasible solution x* with min cost. 

 

Requirements:  

1) Upon arrival constraint must be satisfied 

2) Cannot decrease a variable.  

Covering LP  

(non-negative  

entries) 



Example 

 min  x1 + x2 + … + xn 

 

x1 + x2 + x3 + … + xn   ¸ 1 

       x2 + x3 + … + xn   ¸ 1 

              x3 + … + xn   ¸ 1 

                     … 

                             xn   ¸ 1 

 

Online  ¸  ln n      (1+1/2+ 1/3+ … + 1/n) 

Opt = 1  ( xn=1 suffices)                      

 

Set all xi to 1/n 

Increase  x2 ,x3,…,xn to 1/n-1 

… 

Increase  xn to 1 



The Dual Problem 

max   3 y1 + 5 y2 + y3 + 4 y4 + … 

 

2 y1+ y2   + y3     + …  · 3 

y1   +  y2  + 2 y3 + …  · 8 

y1   +7 y2 + y3    + …   · 2 

 

 

Goal: Find y* with max cost. 

 

Requirements:  

1) Variables arrive sequentially    

2) At step t,  can only modify y(t)  

Packing LP  

(non-negative  

entries) 

All previous problems  

can be expressed as  

Covering/Packing LP 



Ski Rental – Integer Program 

Subject to: 
 

For each day i:  

1 - Rent on day i          

0 - Don't rent on day i 
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Routing – Linear Program 

s.t: 
 

For each ri: 

 

For each edge e:  
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Paging – Linear Program 

Time line 

 Pg i Pg i Pg i 

At any time t, can have at most k such intervals. 

x(i,j):  How much interval (i,j)  

evacuated thus far 

 

If interval not present, then cache miss. 

i.e., at least n-k intervals must be absent 

Cost =i j  x(i,j)  

n: number of distinct pages 

t Pg i’ Pg i’ Pg i’ 

0 · x(i,j) ·  1  
i: i  pt

 x(i,r(i,t)) ¸  n-k   8 t 
 

(i,1) 
(i,2) 



What can we say about the 

 abstract problem ? 



General Covering/Packing Results 

For a {0,1} covering/packing matrix:           [Buchbinder Naor 05] 

– Competitive ratio O(log D)  

– Can get e/(e-1) for ski rental and other problems. 

 (D – max number of non-zero entries in a constraint).     

 

 
Remarks: 
• Fractional solutions 

• Number of constraints/variables can be exponential. 

• There can be a tradeoff between the competitive ratio and the factor by 
which constraints are violated. 

 

   Fractional solution !  randomized algorithm  (online rounding) 



General Covering/Packing Results 

 

For a general covering/packing matrix [BN05] : 
 

Covering:  
– Competitive ratio O(log n)      (n – number of variables). 

 

Packing:  
– Competitive ratio O(log n + log [a(max)/a(min)]) 

  a(max), a(min) – max/min non-zero entry  

 

Remarks: 

• Results are tight. 

• Can add “box” constraints to covering LP (e.g.  x · 1) 



Consequences 

Very powerful framework. 

Unified and improved several previous results. 

Weighted Paging: O(log k)  guarantee  [B., Buchbinder, Naor 07]       
Each page i has a different fetching cost w(i). 

Previously, o(k) known only for the case of  2 weights [Irani 02] 

 

O(log2 k)  for Generalized Paging (arbitrary weights and sizes)  
[B., Buchbinder, Naor 08] 

Improved to O(log k) by  [Adamaszek, Czumaj, Englert, Raecke 12] 

 

A poly-logarithmic guarantee for the k-server problem 
[B., Buchbinder, Madry, Naor 11] 



Rest of the Talk 

1) Overview of LP Duality, offline P-D technique 

2) Derive Online Primal Dual  (very natural)  

3) Case Studies 

4) Further Extensions  

 



Duality 

   Min  3 x1 + 4 x2  

 

 

    x1 + x2 >= 3 

    x1 + 2 x2 >= 5 

 

Want to convince someone that 

there exists a solution of value <=12. 

Easy, just demonstrate a solution, 

 x2 = 3 



Duality 

   Min  3 x1 + 4 x2  

 

    x1 + x2 >= 3 

    x1 + 2 x2 >= 5 

 
 

 

Want to convince someone that 

there is no solution of value 10. 

How? 

                               2 * first eqn +  second eqn   

                               3 x1 + 4 x2  >= 11 
 

LP Duality Theorem: This seemingly ad hoc trick always works! 



LP Duality 

Min cj xj 

j aij xj ¸ bi                               satisfying  i aij yi · cj   for all i 

 
j xj cj  ¸ i yi bi 

 

 

 
At equality: Complementary Slackness 

i.e.  yi  > 0   (then i-th primal constraint is tight) 

       xi  > 0   (then i-th dual constraint is tight) 

Dual constraints 

Dual cost 

Linear combination 

(y ¸ 0) 

c 



Offline Primal-Dual Approach 

min cx                                              max b y 

Ax ¸ b                                            At y · c    

x ¸ 0                                               y ¸ 0 

 

 

Generic Primal Dual Algorithm: 

0) Start with x=0, y=0    (primal infeasible, dual feasible) 

1) Increase dual and primal together, 

    s.t. if dual cost increases by 1,  primal increases by · c 

2) If both dual and primal feasible ) c approximate solution 



Key Idea for Online Primal Dual 

Primal: Min i  ci xi                       Dual 

 

Step t, new constraint:                 New variable yt 

a1x1 + a2x2 + … + ajxj ¸ bt            + bt yt    in dual objective 

 

How much:  xi  ?                         yt ! yt + 1   (additive update) 

 

 primal cost =  

 dx/dy  proportional to  x        so, x  varies as  exp(y)                               

=   Dual Cost 



How to initialize 

A problem: dx/dy  is proportional to x, but x=0 initially.  

 

So, x will  remain equal to 0  ? 

 

Answer: Initialize to 1/n. 

When: By complementary slackness, x > 0 only if dual 

constraint corresponding to x is tight. 

  

Set x=1/n when its dual constraint becomes tight.  

 

(Other ways to initialize also) 



The Algorithm 

Min j cj xj                                                                      

j  aij xj  ¸ bi 

 

On arrival of i-th constraint, Initialize yi=0   (dual var. for constraint) 

 

If current constraint unsatisfied, gradually increase yi 

Set  xj = 1/n     when i aij yi = cj  

then update  xj   multiplicatively  

1)  Primal  Cost  · Dual Cost 

2)  Dual solution violated by at most O(log n) factor.  

Max i bi yi 
i  aij yi · cj   



Example: Weighted Caching 



Generalized Caching 



Part 2: Rounding 

Primal dual technique gives fractional solution. 

 

Problem specific rounding/interpretation: 

 

Ski rental   (easy)   

x = prob. that skis already bought   (initially 0, increases with time) 

 

Algorithm: Buy at time t with probability  x(t) – x(t-1).  

 

Exact map from LP solution   ->  Randomized algorithm. 



Part 2: Rounding 



Beyond Packing/Covering LPs 



Extended Framework 

Limitations of current framework 

1. Only covering or packing LP 

2. Variables can only increase. 

 

Cannot impose:   a ¸ b  or    a ¸ b1 – b2 

 

Problem with monotonicity: 

 

Predicting with Experts: Do as well as best expert in hindsight 

n experts: Each day, predict rain or shine.   

 

Online ·  Best expert (1+ ) + O(log n)/                (low regret) 

In any LP,   xi,t =  Prob. of expert i at time t. 



New LP for weighted paging 



K-Server Problem 



The k-server Problem 

• k servers lie in an n-point metric space. 

• Requests arrive at metric points. 

• To serve request: Need to move some server there. 

 

Goal: Minimize total distance traveled. 

 

Objective: Competitive ratio. 



The Paging/Caching Problem 

 

K-server on the uniform metric. 

Server on location p =  page p in cache 

1 n .  .  .   



K-server conjecture 

[Manasse-McGeoch-Sleator ’88]: 

There exists k competitive algorithm on any metric space. 

 

Initially no f(k) guarantee. 

Fiat-Rababi-Ravid’90:  exp(k log k) 

   … 

Koutsoupias-Papadimitriou’95:   2k-1 

Chrobak-Larmore’91: k for trees. 



Randomized k-server Conjecture 

There is an O(log k) competitive algorithm for any metric. 

 

Uniform Metric:  log k 

Polylog for very special cases (uniform-like) 

 

Line:  n2/3                                 [Csaba-Lodha’06]   

          exp(O(log n)1/2)             [Bansal-Buchbinder-Naor’10] 

 

Depth 2-tree: No o(k) guarantee 



Result 

Thm [B.,Buchbinder,Madry,Naor 11]: An O(log2 k log3 n)  

competitive* algorithm for k-server on any metric 

with n points. 

* Hiding some log log n terms 



Our Approach 

Hierarchically Separated Trees (HSTs) [Bartal 96]. 

 

Any Metric   

 

 

 

Allocation Problem (uniform metrics): [Cote-Meyerson-Poplawski’08] 

(decides how to distribute servers among children) 

O(log n) 

Allocation  

instances 

K-server on HST 



Analysis 

An extension of generalized paging works. 

 

Use potential function based analysis of caching 

(inspired by primal dual algorithm). 



Further Extensions 

1. We only increase dual variables (often quite restrictive) 

 

Thm [Gupta,Nagarajan’12]: For sparse covering online programs   

O(log k log l)      k = row sparsity,  l = column sparsity.  

Duals also decrease  (previous framework too weak) 

 

2. Non-Linear Problems  [Gupta, Krishnaswamy, Pruhs’12]  

(convex programming duality, more subtle and involved) 

 

3. Dual Fitting  [Anand, Garg, Kumar’12] 

(explaining a potential function proof via LPs) 

 



Concluding Remarks 

 

Primal Dual and Multiplicative Updates. 

  Unifying idea in many online algorithms. 

 

Current understanding still seems rather limited. 

   Mostly naïve rules for primal and dual updates. 

 



Thank you 


