
A Primal-Dual Approach for

Online Problems

Nikhil Bansal

(TU Eindhoven)

Outline

• Online Algorithms

• Primal Dual Approach

– Duality and Basic Method

– Key Proof Idea

– Caching (case study)

– Idea for k-server

• Recent Extensions

Online Algorithms

Input revealed in parts.

Algorithm has no knowledge of future.

Scheduling, Load Balancing, Routing, Caching,

Finance, Machine Learning …

Competitive ratio =

Alternate view:

Game between algorithm and adversary

Randomized Algorithms

Some classic problems

The Ski Rental Problem

• Buying costs $B.

• Renting costs $1 per day.

Problem:

• Number of ski days is not known in advance.

Goal: Minimize the total cost.

Deterministic: 2

Randomized: e/(e-1) ¼ 1.58

Online Virtual Circuit Routing

Network graph G=(V, E)

capacity function u: E Z+

Requests: ri = (si, ti)

• Problem: Connect si to ti by a path, or reject the
request.

• Reserve one unit of bandwidth along the path.

• No re-routing is allowed.

• Load: ratio between reserved edge bandwidth and
edge capacity.

• Goal: Maximize the total throughput.

Virtual Circuit Routing - Example

t1

s1

t2

s2

s3

t3

Maximum Load: 0 1/5 2/5 3/5

Edge capacities: 5

Virtual Circuit Routing

Key decision:

1) Whether to choose request or not?

2) How to route request?

O(log n)-congestion, O(1)-throughput [Awerbuch Azar Plotkin 90’s]

Various other versions and tradeoffs.

Main idea: Exponential penalty approach

 length (edge) = exp (congestion)

Decisions based on length of shortest (si,ti) path

Clever potential function analysis

The Paging/Caching Problem

Pages: 1,2,…,n, cache of size k<n.

Page requests: 1,6,4,1,4,7,6,1,3,…

a) If requested page already in cache, no penalty.

b) Else, cache miss. Need to fetch page in cache

 (possibly) evicting some other page.

Goal: Minimize the number of cache misses.

Key Decision: Upon a request, which page to evacuate?

Cache

Hard disk

(pages

1,…n)

Previous Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:

• Any det. algorithm ¸ k-competitive.

• LRU is k-competitive (also other algorithms)

Paging (Randomized):

• Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator,

Young 91].

• Lower bound Hk [Fiat et al. 91], tight results known.

Do these problems have

anything in common?

An Abstract Online Problem

min 3 x1 + 5 x2 + x3 + 4 x4 + …

2 x1 + x3 + x6 + … ¸ 3

x3 + x14 + x19 + … ¸ 8

x2 + 7 x4 + x12 + … ¸ 2

Goal: Find feasible solution x* with min cost.

Requirements:

1) Upon arrival constraint must be satisfied

2) Cannot decrease a variable.

Covering LP

(non-negative

entries)

Example

 min x1 + x2 + … + xn

x1 + x2 + x3 + … + xn ¸ 1

 x2 + x3 + … + xn ¸ 1

 x3 + … + xn ¸ 1

 …

 xn ¸ 1

Online ¸ ln n (1+1/2+ 1/3+ … + 1/n)

Opt = 1 (xn=1 suffices)

Set all xi to 1/n

Increase x2 ,x3,…,xn to 1/n-1

…

Increase xn to 1

The Dual Problem

max 3 y1 + 5 y2 + y3 + 4 y4 + …

2 y1+ y2 + y3 + … · 3

y1 + y2 + 2 y3 + … · 8

y1 +7 y2 + y3 + … · 2

Goal: Find y* with max cost.

Requirements:

1) Variables arrive sequentially

2) At step t, can only modify y(t)

Packing LP

(non-negative

entries)

All previous problems

can be expressed as

Covering/Packing LP

Ski Rental – Integer Program

Subject to:

For each day i:

1 - Rent on day i

0 - Don't rent on day i
iz


 



1 - Buy

0 - Don't Buy
x


 



1

min
k

i

i

Bx z


 

1ix z 

, {0,1}ix z 

(either buy or rent)

Routing – Linear Program

s.t:

For each ri:

For each edge e:

(,)iy r p

()

max (,)
i i

i

r p P r

y r p


 

= Amount of bandwidth allocated for ri on path p

()iP r - Available paths to serve request ri

()

(,) 1
i

i

p P r

y r p




()

(,) ()
i i

i

r p P r e p

y r p u e
 

 

Paging – Linear Program

Time line

 Pg i Pg i Pg i

At any time t, can have at most k such intervals.

x(i,j): How much interval (i,j)

evacuated thus far

If interval not present, then cache miss.

i.e., at least n-k intervals must be absent

Cost =i j x(i,j)

n: number of distinct pages

t Pg i’ Pg i’ Pg i’

0 · x(i,j) · 1
i: i  pt

 x(i,r(i,t)) ¸ n-k 8 t

(i,1)
(i,2)

What can we say about the

 abstract problem ?

General Covering/Packing Results

For a {0,1} covering/packing matrix: [Buchbinder Naor 05]

– Competitive ratio O(log D)

– Can get e/(e-1) for ski rental and other problems.

 (D – max number of non-zero entries in a constraint).

Remarks:
• Fractional solutions

• Number of constraints/variables can be exponential.

• There can be a tradeoff between the competitive ratio and the factor by
which constraints are violated.

 Fractional solution ! randomized algorithm (online rounding)

General Covering/Packing Results

For a general covering/packing matrix [BN05] :

Covering:
– Competitive ratio O(log n) (n – number of variables).

Packing:
– Competitive ratio O(log n + log [a(max)/a(min)])

 a(max), a(min) – max/min non-zero entry

Remarks:

• Results are tight.

• Can add “box” constraints to covering LP (e.g. x · 1)

Consequences

Very powerful framework.

Unified and improved several previous results.

Weighted Paging: O(log k) guarantee [B., Buchbinder, Naor 07]
Each page i has a different fetching cost w(i).

Previously, o(k) known only for the case of 2 weights [Irani 02]

O(log2 k) for Generalized Paging (arbitrary weights and sizes)
[B., Buchbinder, Naor 08]

Improved to O(log k) by [Adamaszek, Czumaj, Englert, Raecke 12]

A poly-logarithmic guarantee for the k-server problem
[B., Buchbinder, Madry, Naor 11]

Rest of the Talk

1) Overview of LP Duality, offline P-D technique

2) Derive Online Primal Dual (very natural)

3) Case Studies

4) Further Extensions

Duality

 Min 3 x1 + 4 x2

 x1 + x2 >= 3

 x1 + 2 x2 >= 5

Want to convince someone that

there exists a solution of value <=12.

Easy, just demonstrate a solution,

 x2 = 3

Duality

 Min 3 x1 + 4 x2

 x1 + x2 >= 3

 x1 + 2 x2 >= 5

Want to convince someone that

there is no solution of value 10.

How?

 2 * first eqn + second eqn

 3 x1 + 4 x2 >= 11

LP Duality Theorem: This seemingly ad hoc trick always works!

LP Duality

Min cj xj

j aij xj ¸ bi satisfying i aij yi · cj for all i

j xj cj ¸ i yi bi

At equality: Complementary Slackness

i.e. yi > 0 (then i-th primal constraint is tight)

 xi > 0 (then i-th dual constraint is tight)

Dual constraints

Dual cost

Linear combination

(y ¸ 0)

c

Offline Primal-Dual Approach

min cx max b y

Ax ¸ b At y · c

x ¸ 0 y ¸ 0

Generic Primal Dual Algorithm:

0) Start with x=0, y=0 (primal infeasible, dual feasible)

1) Increase dual and primal together,

 s.t. if dual cost increases by 1, primal increases by · c

2) If both dual and primal feasible) c approximate solution

Key Idea for Online Primal Dual

Primal: Min i ci xi Dual

Step t, new constraint: New variable yt

a1x1 + a2x2 + … + ajxj ¸ bt + bt yt in dual objective

How much:  xi ? yt ! yt + 1 (additive update)

 primal cost =

 dx/dy proportional to x so, x varies as exp(y)

=  Dual Cost

How to initialize

A problem: dx/dy is proportional to x, but x=0 initially.

So, x will remain equal to 0 ?

Answer: Initialize to 1/n.

When: By complementary slackness, x > 0 only if dual

constraint corresponding to x is tight.

Set x=1/n when its dual constraint becomes tight.

(Other ways to initialize also)

The Algorithm

Min j cj xj

j aij xj ¸ bi

On arrival of i-th constraint, Initialize yi=0 (dual var. for constraint)

If current constraint unsatisfied, gradually increase yi

Set xj = 1/n when i aij yi = cj

then update xj multiplicatively

1) Primal Cost · Dual Cost

2) Dual solution violated by at most O(log n) factor.

Max i bi yi
i aij yi · cj

Example: Weighted Caching

Generalized Caching

Part 2: Rounding

Primal dual technique gives fractional solution.

Problem specific rounding/interpretation:

Ski rental (easy)

x = prob. that skis already bought (initially 0, increases with time)

Algorithm: Buy at time t with probability x(t) – x(t-1).

Exact map from LP solution -> Randomized algorithm.

Part 2: Rounding

Beyond Packing/Covering LPs

Extended Framework

Limitations of current framework

1. Only covering or packing LP

2. Variables can only increase.

Cannot impose: a ¸ b or a ¸ b1 – b2

Problem with monotonicity:

Predicting with Experts: Do as well as best expert in hindsight

n experts: Each day, predict rain or shine.

Online · Best expert (1+ ) + O(log n)/ (low regret)

In any LP, xi,t = Prob. of expert i at time t.

New LP for weighted paging

K-Server Problem

The k-server Problem

• k servers lie in an n-point metric space.

• Requests arrive at metric points.

• To serve request: Need to move some server there.

Goal: Minimize total distance traveled.

Objective: Competitive ratio.

The Paging/Caching Problem

K-server on the uniform metric.

Server on location p = page p in cache

1 n . . .

K-server conjecture

[Manasse-McGeoch-Sleator ’88]:

There exists k competitive algorithm on any metric space.

Initially no f(k) guarantee.

Fiat-Rababi-Ravid’90: exp(k log k)

 …

Koutsoupias-Papadimitriou’95: 2k-1

Chrobak-Larmore’91: k for trees.

Randomized k-server Conjecture

There is an O(log k) competitive algorithm for any metric.

Uniform Metric: log k

Polylog for very special cases (uniform-like)

Line: n2/3 [Csaba-Lodha’06]

 exp(O(log n)1/2) [Bansal-Buchbinder-Naor’10]

Depth 2-tree: No o(k) guarantee

Result

Thm [B.,Buchbinder,Madry,Naor 11]: An O(log2 k log3 n)

competitive* algorithm for k-server on any metric

with n points.

* Hiding some log log n terms

Our Approach

Hierarchically Separated Trees (HSTs) [Bartal 96].

Any Metric

Allocation Problem (uniform metrics): [Cote-Meyerson-Poplawski’08]

(decides how to distribute servers among children)

O(log n)

Allocation

instances

K-server on HST

Analysis

An extension of generalized paging works.

Use potential function based analysis of caching

(inspired by primal dual algorithm).

Further Extensions

1. We only increase dual variables (often quite restrictive)

Thm [Gupta,Nagarajan’12]: For sparse covering online programs

O(log k log l) k = row sparsity, l = column sparsity.

Duals also decrease (previous framework too weak)

2. Non-Linear Problems [Gupta, Krishnaswamy, Pruhs’12]

(convex programming duality, more subtle and involved)

3. Dual Fitting [Anand, Garg, Kumar’12]

(explaining a potential function proof via LPs)

Concluding Remarks

Primal Dual and Multiplicative Updates.

 Unifying idea in many online algorithms.

Current understanding still seems rather limited.

 Mostly naïve rules for primal and dual updates.

Thank you

