
Equal length jobs Unit time jobs Offline Introduction

Open problems in throughput scheduling

Jǐŕı Sgall

Computer Science Inst. of the Charles Univ. Prague

ESA, Sept 2012

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

A puzzle

Move boxes within their ranges.

Align them so that they do not overlap vertically.

Is this easy (in P) or difficult (NP-hard)?

What if there are only two (or 1000) diferent sizes of boxes?

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

A puzzle

Move boxes within their ranges.

Align them so that they do not overlap vertically.

Is this easy (in P) or difficult (NP-hard)?

What if there are only two (or 1000) diferent sizes of boxes?

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

A puzzle

Move boxes within their ranges.

Align them so that they do not overlap vertically.

Is this easy (in P) or difficult (NP-hard)?

What if there are only two (or 1000) diferent sizes of boxes?

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

A puzzle

Move boxes within their ranges.

Align them so that they do not overlap vertically.

Is this easy (in P) or difficult (NP-hard)?

What if there are only two (or 1000) diferent sizes of boxes?

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

A puzzle

Move boxes within their ranges.

Align them so that they do not overlap vertically.

Is this easy (in P) or difficult (NP-hard)?

What if there are only two (or 1000) diferent sizes of boxes?

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Throughput scheduling

Environment: One or more machines.

Input: Jobs with length pj , release time rj , deadline dj , and
weight wj . (Parameters are integers.)

Output: Each job is assigned to a machine for a subinterval of
[rj , dj) of length pj or rejected. No overlaps.

Objective: Maximize the number (weight) of the completed
jobs.

This talk

Online algorithms.

Usually a single machine.

Either jobs of equal length (pj = p) and no weights

or jobs of unit length (pj = 1) with weights.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Throughput scheduling

Environment: One or more machines.

Input: Jobs with length pj , release time rj , deadline dj , and
weight wj . (Parameters are integers.)

Output: Each job is assigned to a machine for a subinterval of
[rj , dj) of length pj or rejected. No overlaps.

Objective: Maximize the number (weight) of the completed
jobs.

This talk

Online algorithms.

Usually a single machine.

Either jobs of equal length (pj = p) and no weights

or jobs of unit length (pj = 1) with weights.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Throughput scheduling

Environment: One or more machines.

Input: Jobs with length pj , release time rj , deadline dj , and
weight wj . (Parameters are integers.)

Output: Each job is assigned to a machine for a subinterval of
[rj , dj) of length pj or rejected. No overlaps.

Objective: Maximize the number (weight) of the completed
jobs.

This talk

Online algorithms.

Usually a single machine.

Either jobs of equal length (pj = p) and no weights

or jobs of unit length (pj = 1) with weights.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Online scheduling

At time rj , the other parameters of the job become known.

At each time, if a machine is idle, the algorithm may decide to
start a job.

Competitive ratio

An algorithm A is R-competitive if for every instance I

OPT (I ) ≤ R · A(I ) for a deterministic algorithm, or

OPT (I ) ≤ R · E [A(I )] for a randomized algorithm.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Online scheduling

At time rj , the other parameters of the job become known.

At each time, if a machine is idle, the algorithm may decide to
start a job.

Competitive ratio

An algorithm A is R-competitive if for every instance I

OPT (I ) ≤ R · A(I ) for a deterministic algorithm

, or

OPT (I ) ≤ R · E [A(I )] for a randomized algorithm.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Online scheduling

At time rj , the other parameters of the job become known.

At each time, if a machine is idle, the algorithm may decide to
start a job.

Competitive ratio

An algorithm A is R-competitive if for every instance I

OPT (I ) ≤ R · A(I ) for a deterministic algorithm, or

OPT (I ) ≤ R · E [A(I )] for a randomized algorithm.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Other scheduling problems

Variants

Machine environments: speeds, shop scheduling (more
operations) etc.

Job parameters and restrictions: preemption, dependencies,
resources etc.

Typical objectives

MinMax: Minimize the length of schedule (or another global
measure of balance).

MinSum: Minimize the average completion time of a job (or
waiting time, flow time, stretch, possibly weighted).

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Introduction

Other scheduling problems

Variants

Machine environments: speeds, shop scheduling (more
operations) etc.

Job parameters and restrictions: preemption, dependencies,
resources etc.

Typical objectives

MinMax: Minimize the length of schedule (or another global
measure of balance).

MinSum: Minimize the average completion time of a job (or
waiting time, flow time, stretch, possibly weighted).

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Jobs of equal length

Setting

Equal lengths of jobs (pj = p).

No weights.

Single machine.

Outline

1 Offline problem is polynomial.

2 Greedy algorithms are 2-competitive.

3 Lower bounds.

4 A better randomized algorithm.

5 Generalizations, variants.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Jobs of equal length

Setting

Equal lengths of jobs (pj = p).

No weights.

Single machine.

Outline

1 Offline problem is polynomial.

2 Greedy algorithms are 2-competitive.

3 Lower bounds.

4 A better randomized algorithm.

5 Generalizations, variants.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Greedy algorithms

GREEDY: If idle, start an arbitrary job.

GREEDY

1

2

3

4 5

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Greedy algorithms

GREEDY: If idle, start an arbitrary job.

GREEDYGREEDY

OPT

1

1

1

2

2

3

3

3

4

4

5

5

5

Any such algorithm is 2-competitive.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Greedy algorithms

GREEDY: If idle, start an arbitrary job.

GREEDYGREEDY

OPT

1

1

1

2

2

3

3

3

4

4

5

5

5

Charging scheme – GREEDY is 2-competitive

Charge (map) a job in OPT to itself in GREEDY, if scheduled.

Otherwise charge a job that OPT starts at t to the job
GREEDY runs at t.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Greedy algorithms

GREEDY: If idle, start an arbitrary job.

GREEDYGREEDY

OPT

1

1

1

2

2

3

3

3

4

4

5

5

5

Charging scheme – GREEDY is 2-competitive

Charge (map) a job in OPT to itself in GREEDY, if scheduled.

Otherwise charge a job that OPT starts at t to the job
GREEDY runs at t.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Lower bounds

GREEDY

No deterministic algorithm is better than 2-competitive.

No randomized algorithm is better than 4/3-competitive. (For
one of the two instances, on average, runs at most 1.5 jobs
out of 2.)

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Lower bounds

GREEDYGREEDY

OPT

No deterministic algorithm is better than 2-competitive.

No randomized algorithm is better than 4/3-competitive. (For
one of the two instances, on average, runs at most 1.5 jobs
out of 2.)

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Lower bounds

GREEDYWAIT

OPT

No deterministic algorithm is better than 2-competitive.

No randomized algorithm is better than 4/3-competitive. (For
one of the two instances, on average, runs at most 1.5 jobs
out of 2.)

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Lower bounds

GREEDYWAIT

OPT

No deterministic algorithm is better than 2-competitive.

No randomized algorithm is better than 4/3-competitive. (For
one of the two instances, on average, runs at most 1.5 jobs
out of 2.)

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm I

Generate two schedules, A and B. Flip a coin to choose one of
them.

A and B are produced by two identical processes using a
common lock.

If the machine is idle (in A or B) and the set of pending jobs
is not flexible (idling for time p would lose some job), start
the most urgent job.

If the machine is idle (in A or B) and the set of pending jobs
is flexible (idling for time p does no harm):

If the lock is available, acquire it, start the most urgent job
and release the lock after the job is completed.
Otherwise stay idle.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm I

Generate two schedules, A and B. Flip a coin to choose one of
them.

A and B are produced by two identical processes using a
common lock.

If the machine is idle (in A or B) and the set of pending jobs
is not flexible (idling for time p would lose some job), start
the most urgent job.

If the machine is idle (in A or B) and the set of pending jobs
is flexible (idling for time p does no harm):

If the lock is available, acquire it, start the most urgent job
and release the lock after the job is completed.
Otherwise stay idle.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm I

Generate two schedules, A and B. Flip a coin to choose one of
them.

A and B are produced by two identical processes using a
common lock.

If the machine is idle (in A or B) and the set of pending jobs
is not flexible (idling for time p would lose some job), start
the most urgent job.

If the machine is idle (in A or B) and the set of pending jobs
is flexible (idling for time p does no harm):

If the lock is available, acquire it, start the most urgent job
and release the lock after the job is completed.
Otherwise stay idle.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BLOCK, A

B

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BLOCK, A

B

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BA

B

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BA

LOCK, B

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BA

LOCK, B

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BA

B

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BA

B

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm II

LOCK, BA

B

OPT

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm III

Analyzed by a more complex charging scheme.

Each job in OPT charges 1/2, 1/3, or 1/6 to itself or to the
job running at the same time in A and B.

Each job in A or B is charged at most 5/6.

Theorem

This algorithm is 5/3-competitive.

Open problem

Find a randomized algorithm with the optimal competitive ratio.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm III

Analyzed by a more complex charging scheme.

Each job in OPT charges 1/2, 1/3, or 1/6 to itself or to the
job running at the same time in A and B.

Each job in A or B is charged at most 5/6.

Theorem

This algorithm is 5/3-competitive.

Open problem

Find a randomized algorithm with the optimal competitive ratio.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

A barely random algorithm III

Analyzed by a more complex charging scheme.

Each job in OPT charges 1/2, 1/3, or 1/6 to itself or to the
job running at the same time in A and B.

Each job in A or B is charged at most 5/6.

Theorem

This algorithm is 5/3-competitive.

Open problem

Find a randomized algorithm with the optimal competitive ratio.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

More machines

Parallel machines make the problem easier!

Results

For 2 machines, there is a 3/2-competitive deterministic
algorithm and this is optimal.

For m machines, there is an R-competitive deterministic
algorithm with R → e/(e − 1) ≈ 1.58 for m→∞.

The lower bound approaches 6/5 for m→∞.

Open problem

Decrease the gap for m→∞.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

More machines

Parallel machines make the problem easier!

Results

For 2 machines, there is a 3/2-competitive deterministic
algorithm and this is optimal.

For m machines, there is an R-competitive deterministic
algorithm with R → e/(e − 1) ≈ 1.58 for m→∞.

The lower bound approaches 6/5 for m→∞.

Open problem

Decrease the gap for m→∞.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

More machines

Parallel machines make the problem easier!

Results

For 2 machines, there is a 3/2-competitive deterministic
algorithm and this is optimal.

For m machines, there is an R-competitive deterministic
algorithm with R → e/(e − 1) ≈ 1.58 for m→∞.

The lower bound approaches 6/5 for m→∞.

Open problem

Decrease the gap for m→∞.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Jobs with fixed start times

Each job has to be started at its release rj or rejected.

Jobs have a length pj and a weight wj .

Jobs can be stopped (preempted).

Results

There is a 4-competitive algorithm for various cases, including
equal times (pj = p), unit weights (wj = 1), and uniform
weights (wj = pj); it works for parallel machines.

There is a matching lower bound.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Jobs with fixed start times

Each job has to be started at its release rj or rejected.

Jobs have a length pj and a weight wj .

Jobs can be stopped (preempted).

Results

There is a 4-competitive algorithm for various cases, including
equal times (pj = p), unit weights (wj = 1), and uniform
weights (wj = pj); it works for parallel machines.

There is a matching lower bound.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Machines with speeds

Each job has to be started at its release rj or rejected.

A machine with speed si processes job j in time pj/si .

Jobs are identical (pj = 1 and wj = 1).

GREEDY: Start the released job on the fastest available machine.

Results for the greedy algorithm

For two machines, GREEDY is 4/3-competitive and this is
optimal.

For m→∞ the competitive ratio is between 1.56 and 2.

Open problem(s)

Analyze GREEDY, or find another algorithm with a competitive
ratio below 2.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Machines with speeds

Each job has to be started at its release rj or rejected.

A machine with speed si processes job j in time pj/si .

Jobs are identical (pj = 1 and wj = 1).

GREEDY: Start the released job on the fastest available machine.

Results for the greedy algorithm

For two machines, GREEDY is 4/3-competitive and this is
optimal.

For m→∞ the competitive ratio is between 1.56 and 2.

Open problem(s)

Analyze GREEDY, or find another algorithm with a competitive
ratio below 2.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Greedy Lower bounds Randomized Variants

Machines with speeds

Each job has to be started at its release rj or rejected.

A machine with speed si processes job j in time pj/si .

Jobs are identical (pj = 1 and wj = 1).

GREEDY: Start the released job on the fastest available machine.

Results for the greedy algorithm

For two machines, GREEDY is 4/3-competitive and this is
optimal.

For m→∞ the competitive ratio is between 1.56 and 2.

Open problem(s)

Analyze GREEDY, or find another algorithm with a competitive
ratio below 2.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Unit time jobs with weights

Setting

Unit length of jobs (pj = 1).

General weights.

Single machine.

Outline

1 Offline problem is easy (matching).

2 Greedy algorithm is 2-competitive.

3 A better randomized algorithm.

4 A better deterministic algorithm.

5 Generalizations, variants.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Unit time jobs with weights

Setting

Unit length of jobs (pj = 1).

General weights.

Single machine.

Outline

1 Offline problem is easy (matching).

2 Greedy algorithm is 2-competitive.

3 A better randomized algorithm.

4 A better deterministic algorithm.

5 Generalizations, variants.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Motivation and variants

Forwarding packets in network switches

Restricted scenarios

2-bounded: Some packets may wait a single step, some
packets not at all. (dj ≤ rj + 2)

Agreeable deadlines: rj < rk implies dj ≤ dk .

Weighted queues: The deadlines are not known, only their
order.

Limited number of weights.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Motivation and variants

Forwarding packets in network switches

Restricted scenarios

2-bounded: Some packets may wait a single step, some
packets not at all. (dj ≤ rj + 2)

Agreeable deadlines: rj < rk implies dj ≤ dk .

Weighted queues: The deadlines are not known, only their
order.

Limited number of weights.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Greedy algorithm

GREEDY: If idle, start a pending job with the maximal weight.

GREEDY

21

20

11

10 5

Charging scheme – GREEDY is 2-competitive

Charge (map) a job in OPT to itself in GREEDY, if scheduled.

Otherwise charge a job in OPT to the job GREEDY runs at
the same time.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Greedy algorithm

GREEDY: If idle, start a pending job with the maximal weight.

GREEDYGREEDY

OPT

21

21

21

20

20

11

11

11

10

10

5

5

5

Charging scheme – GREEDY is 2-competitive

Charge (map) a job in OPT to itself in GREEDY, if scheduled.

Otherwise charge a job in OPT to the job GREEDY runs at
the same time.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Greedy algorithm

GREEDY: If idle, start a pending job with the maximal weight.

GREEDYGREEDY

OPT

21

21

21

20

20

11

11

11

10

10

5

5

5

Charging scheme – GREEDY is 2-competitive

Charge (map) a job in OPT to itself in GREEDY, if scheduled.

Otherwise charge a job in OPT to the job GREEDY runs at
the same time.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

A randomized algorithm

At each time, pick uniformly random real x ∈ (−1, 0).

Let h be the largest weight of a pending job.

Among all the pending jobs with wj ≥ ex · h, schedule a job
with the earlieast deadline.

Theorem

This algorithm is e/(e − 1) ≈ 1.58-competitive.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

A potential function

GREEDYGREEDY

OPT

21

2120

11

1110

5

5

How much “money” we need at a given time and configuration?

We earn R · wj for running a job and pay wj if OPT runs a job.

Let Φ =
∑

j∈X wj , where X are the that the algorithm completed
but the adversary will schedule in the future.

To prove that ON is R-competitive, we show that in each step

Φold + R ·

E [

wON

]

− wOPT ≥

E [

Φnew

]

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

A potential function

GREEDYGREEDY

OPT

21

2120

11

1110

5

5

How much “money” we need at a given time and configuration?

We earn R · wj for running a job and pay wj if OPT runs a job.

Let Φ =
∑

j∈X wj , where X are the that the algorithm completed
but the adversary will schedule in the future.

To prove that ON is R-competitive, we show that in each step

Φold + R ·

E [

wON

]

− wOPT ≥

E [

Φnew

]

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

A potential function

GREEDYGREEDY

OPT

21

2120

11

1110

5

5

How much “money” we need at a given time and configuration?

We earn R · wj for running a job and pay wj if OPT runs a job.

Let Φ =
∑

j∈X wj , where X are the that the algorithm completed
but the adversary will schedule in the future.

To prove that ON is R-competitive, we show that in each step

Φold + R ·

E [

wON

]

− wOPT ≥

E [

Φnew

]

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

A potential function

GREEDYGREEDY

OPT

21

2120

11

1110

5

5

How much “money” we need at a given time and configuration?

We earn R · wj for running a job and pay wj if OPT runs a job.

Let Φ =
∑

j∈X wj , where X are the that the algorithm completed
but the adversary will schedule in the future.

To prove that ON is R-competitive, we show that in each step

Φold + R · E [wON ]− wOPT ≥ E [Φnew ]

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Analysis

At each time, pick uniformly random real x ∈ (−1, 0).

Let h be the largest weight of a pending job.

Among all the pending jobs with wj ≥ ex · h, schedule a job
with the earlieast deadline.

GREEDYGREEDY

OPT

21

2120

11

1110

5

5

Φold + R · E [wON ]− wOPT ≥ E [Φnew ]

Theorem

This algorithm is e/(e − 1) ≈ 1.58-competitive. This is optimal
against the adaptive online adversary. I.e., it is optimal among the
algorithms analyzed using a potential.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Deterministic algorithms I

Charging scheme

Alternating heavy and urgent packets eventually leads to
1.939-competitive algorithm.

Potential function

Can be used to give a 1.828-competitive algorithm.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Deterministic algorithms I

Charging scheme

Alternating heavy and urgent packets eventually leads to
1.939-competitive algorithm.

Potential function

Can be used to give a 1.828-competitive algorithm.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Deterministic algorithms II

Modifying the optimal schedule

At each step, the configuration of the optimal schedule is made
identical with that of the online algorithm, with some advantage to
the optimum:

Schedule a job and keep it pending,

Schedule two jobs,

Increase the weight or deadline of some pending job.

Can be used to give a φ ≈ 1.618-competitive algorithm for
instances with agreeable deadlines.

Weighted queues

There exists a 1.897-competitive algorithm.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Deterministic algorithms II

Modifying the optimal schedule

At each step, the configuration of the optimal schedule is made
identical with that of the online algorithm, with some advantage to
the optimum:

Schedule a job and keep it pending,

Schedule two jobs,

Increase the weight or deadline of some pending job.

Can be used to give a φ ≈ 1.618-competitive algorithm for
instances with agreeable deadlines.

Weighted queues

There exists a 1.897-competitive algorithm.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Lower bounds

2-bounded instances

The φ ≈ 1.618-competitive deterministic algorithm is optimal.

There exists a 1.25-competitive randomized algorithm and
this is optimal.

No other lower bounds for the general problem are known.

Open problem

Is the general problem harder than the 2-bounded case?

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline Motivation Greedy Randomized Deterministic Lower bounds

Lower bounds

2-bounded instances

The φ ≈ 1.618-competitive deterministic algorithm is optimal.

There exists a 1.25-competitive randomized algorithm and
this is optimal.

No other lower bounds for the general problem are known.

Open problem

Is the general problem harder than the 2-bounded case?

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

Offline scheduling

For unrestricted job lengths, the problem is strongly NP-hard

For unit jobs (pj = 1) and arbitrary weights we can maximize
the weight of scheduled jobs in polynomial time.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

Offline scheduling

Even maximizing the weight for equal-length jobs (pj = p) on
a single machine is in P.

For unit jobs and one more job length (pj = {1, p}), we can
test if all the jobs can be scheduled.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

A linear program

Variables: xt – the number of long jobs started before time t.
Constraints: For all times s, t:

xt − xt−1 ≥ 0

xt − xt−p ≤ 1

xt+1−p − xs ≥ bs,t

xt+1−p − xs ≤ b(t − s − as,t)/pc

where as,t and bs,t is the number of short and long jobs, resp.,
that have to start and complete in [s, t).

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

A linear program

Variables: xt – the number of long jobs started before time t.
Constraints: For all times s, t:

xt − xt−1 ≥ 0

xt − xt−p ≤ 1

xt+1−p − xs ≥ bs,t

xt+1−p − xs ≤ b(t − s − as,t)/pc

where as,t and bs,t is the number of short and long jobs, resp.,
that have to start and complete in [s, t).

Observation

The matrix of the LP is totally unimodular. Thus if the LP is
feasible, then there exists an integral solution.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

A linear program

Variables: xt – the number of long jobs started before time t.
Constraints: For all times s, t:

xt − xt−1 ≥ 0

xt − xt−p ≤ 1

xt+1−p − xs ≥ bs,t

xt+1−p − xs ≤ b(t − s − as,t)/pc

where as,t and bs,t is the number of short and long jobs, resp.,
that have to start and complete in [s, t).

A schedule implies a feasible (integral) solution: Easy.

A feasible integral solution implies a schedule:
Subtle, holds only for a single machine.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

A linear program

Variables: xt – the number of long jobs started before time t.
Constraints: For all times s, t:

xt − xt−1 ≥ 0

xt − xt−p ≤ 1

xt+1−p − xs ≥ bs,t

xt+1−p − xs ≤ b(t − s − as,t)/pc

where as,t and bs,t is the number of short and long jobs, resp.,
that have to start and complete in [s, t).

A schedule implies a feasible (integral) solution: Easy.

A feasible integral solution implies a schedule:
Subtle, holds only for a single machine.

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

A linear program

Variables: xt – the number of long jobs started before time t.
Constraints: For all times s, t:

xt − xt−1 ≥ 0

xt − xt−p ≤ 1

xt+1−p − xs ≥ bs,t

xt+1−p − xs ≤ b(t − s − as,t)/pc

where as,t and bs,t is the number of short and long jobs, resp.,
that have to start and complete in [s, t).

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

Offline scheduling – open problems

Open problems

If pj ∈ {2, 3}, is it polynomial to decide if all jobs can be
scheduled?

If pj ∈ {1, 2}, is it polynomial to maximize the number of
scheduled jobs?

For some constant C , is it NP-hard to maximize the weight of
the scheduled jobs on instances with pj ≤ C for all jobs?

THANK YOU!

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

Offline scheduling – open problems

Open problems

If pj ∈ {2, 3}, is it polynomial to decide if all jobs can be
scheduled?

If pj ∈ {1, 2}, is it polynomial to maximize the number of
scheduled jobs?

For some constant C , is it NP-hard to maximize the weight of
the scheduled jobs on instances with pj ≤ C for all jobs?

THANK YOU!

Jǐŕı Sgall Open problems in throughput scheduling



Equal length jobs Unit time jobs Offline

Offline scheduling – open problems

Open problems

If pj ∈ {2, 3}, is it polynomial to decide if all jobs can be
scheduled?

If pj ∈ {1, 2}, is it polynomial to maximize the number of
scheduled jobs?

For some constant C , is it NP-hard to maximize the weight of
the scheduled jobs on instances with pj ≤ C for all jobs?

THANK YOU!

Jǐŕı Sgall Open problems in throughput scheduling


	
	Introduction

	Equal length jobs
	Greedy
	Lower bounds
	Randomized
	Variants

	Unit time jobs
	Motivation
	Greedy
	Randomized
	Deterministic
	Lower bounds

	Offline

