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1. Genome evolution 

Species change over time. 



1. Genome evolution 

Local vs. global modifications: 

 

• point mutations (sequence analysis) 

 

• large-scale operations (comparative genomics) 

Organizational vs. content-modifying operations: 

 

• rearrangement 

 

• insertion, deletion, substitution, duplication 

At the molecular level: 

Local vs. global modifications: 

 

• point mutations (sequence analysis) 

 

• large-scale operations (comparative genomics) 



Motivation 

Evolution at the whole genome level: 

 

• Basic understanding of molecular processes at genomic scale 

• Evolutionary distances, phylogenetic trees (phylogenomics) 

• Ancestral genome reconstruction 

 

• Insights into gene function 

• Regulation of genes (e.g. operons in prokaryotic genomes) 

 

• Comparative genome assembly and annotation 

 

• Structural variations, cancer development 

• Pathogen evolution, outbreak prediction, vaccination strategies 



What happens in detail? 

Figure: Palmer & Herbon 1988 Figure: Eichler & Sankoff 2003 Data from: Pevzner & Tesler 2003 



What happens in detail? 

Basic rearrangement operations: 

Assumption: 

The number of rearrangements needed to transform one genome into another is a 

measure for the evolutionary distance between two species. 

• inversion 

• transposition 

• translocation 

• block interchange 

Note: 2-cut 

(double-cut) 

• fusion/fission 



Questions to be asked: 

How many rearrangement operations are needed? 

 

• distance d(A,B) ➔ “distance problem” 

• diameter problems 

• distribution of distances 

• halving distance 

How much can we reconstruct of the past? 

 

• Ancestral genome(s) 

• rearrangement scenario(s) ➔ “sorting problem” 

• complete phylogenies 

A 

B 



Some history (2 genomes) 

Inversions (reversals): 

Watterson et al. 1982; Sankoff 1992; Bafna & Pevzner 1993; Hannenhalli & Pevzner 1995; Kaplan, 

Shamir & Tarjan 1999; Bader, Moret & Yan 2001; Bergeron 2001; Bergeron, Heber & S 2002; Bergeron, 

Mixtacki & S 2004 

 

Translocations: 

Hannenhalli 1996; Bergeron, Mixtacki & S 2005 

 

Multichromosomal linear (“general HP model”): 

Hannenhalli & Pevzner 1995; Tesler 2002; Ozery-Flato & Shamir 2003; Jean & Nikolski 2007; Bergeron, 

Mixtacki & S 2008; Erdo ̋s, Sokoup & S 2011 

 

Double Cut and Join (DCJ): 

Yancopoulos, Attie & Friedberg 2005; Bergeron, Mixtacki & S 2006; Kováč, Warren, Braga & S 2011 

 

Other models: 

Unsigned inversions: Kececioglu & Sankoff 1993; Christie 1998; Caprara 1999 

Transpositions: Meidanis, Walter & Dias, 1997;  Elias & Hartman 2006; Bulteau, Fertin, Rusu 2011 

Inversions + Transpositions: Walter, Dias & Meidanis 1998; Christie & Irving 2001 

Fusion/Fission + Transpositions: Meidanis & Dias 2001 

Block interchanges: Christie 1996 

Block interchanges + inversions: Mira & Meidanis 2007 

Single Cut and Join: Bergeron, Medvedev & S 2010 

Single Cut or Join: Feijão & Meidanis 2011 



Some history (2 genomes) 

All models so far: Strong assumption that all genomes contain exactly the same set of blocks 
 

 

Inversions + Insertions and Deletions: 

El-Mabrouk 2001; Marron, Swenson & Moret 2004 

 

Insertions + Duplications: 

Marron, Swenson & Moret 2004 

 

DCJ + Insertions and Deletions: 

Yancopoulos & Friedberg 2009; Braga, Willing & S 2010; Braga 2010; Braga, Machado, Ribeiro & S 2011b; 

Compeau 2012; da Silva, Braga, Machado & Dantas 2012; da Silva, Machado, Dantas & Braga 2012 

 

DCJ + Insertions and Deletions + Duplications: 

Yancopoulos & Friedberg 2009 

 

DCJ + Substitutions: 

Braga, Machado, Ribeiro & S 2011a 



Towards formal modeling 

Definitions: 

Genome: set of chromosomes 

Chromosome: sequence of oriented unique blocks (genes or other markers) 

 

 

Independent dimensions: 

 

• Chromosome shapes 

 linear-only, (circular-only), mixed 

 

• Number of chromosomes 

 unichromosomal, multichromosomal 

 

• Rearrangement operations 

 single-cut, double-cut, (multi-cut) 



2. Double Cut and Join (DCJ) 

The model we will concentrate on: 

 

• mixed linear and circular chromosomes 

 

• multichromosomal genome 

 

• 2-cut operations 

 

 

(based on: Bergeron, Mixtacki & S: Proc. of WABI 2006) 



Graphs with vertices of degree one or two 

Definition: 

The DCJ operation acts on two vertices u and v of a graph with vertices of degree 

one or two in one of the following ways: 
 

(a) If both u = {p,q} and v = {r,s} are internal vertices, these are replaced by the two 

vertices {p,r} and {s,q} or by the two vertices {p,s} and {q,r}. 

(b) If u = {p,q} is internal and v = {r} is external, these are replaced by {p,r} and {q} 

or by {q,r} and {p}. 

(c) If both u = {q} and v = {r} are external, these are replaced by {q,r}. 

(d) A single internal vertex {q,r} can be replaced by two external vertices {q} and {r}. 
 



The formal problem 
Definitions: 

• A block (marker, gene) a is an oriented sequence of DNA that starts with a tail at 

and ends with a head ah. 

• Head and tail are called the extremities of a block. 

• An adjacency of two consecutive blocks a and b, depending on their respective 

orientation, can be of four different types: 

 

      {ah,bt}, {ah,bh}, {at,bt}, {at,bh} 

 

• An extremity that is not adjacent to any other block is called a telomere, 

represented by a singleton set {ah} or {at}. 

Genome: Set of adjacencies and telomeres such that the tail or head of a block 

appears in exactly one adjacency or telomere. 
 

  A = { {1t}, {1h,3t}, {3h,4h}, {4t}, {2h,5t}, {5h,2t}, {6t}, {6h,7t}, {7h} } 
 



The formal problem 

DCJ Sorting Problem: 

Given two genomes A and B with the same set of blocks, find a shortest sequence 

of DCJ operations that transforms A into B. The length of such a sequence is called 

the DCJ distance between A and B, denoted by dDCJ(A,B). 

A 

B 

Two genomes: 



3. DCJ distance and sorting 

History of formal studies: 

 

1992 – inversions (INV) 

1995 – Hannenhalli-Pevzner (HP) model 

1995 – translocations 

 

2005 – DCJ 

 

 surprisingly simple (in particular compared to the earlier results) 

(based on: Bergeron, Mixtacki & S: Proc. of WABI 2006; Braga & S: JCB 2010) 



Adjacency graph 

Definition: 

The adjacency graph AG(A,B) is a graph whose set of vertices are the 

adjacencies and telomeres of A and B. For each u  A and v  B there 

are |u  v| edges between u and v. 

Related to breakpoint graph (Bafna & Pevzner 1993) 



Transforming A into B 

Adjacency graph 



Algorithm 

1: Let AG(A,B) be the adjacency graph of genomes A and B 

 

// Generate the adjacencies of B that are not yet present in A 

2: for each adjacency {p,q} in B do 

3:      let u be the vertex of A that contains p 

4:      let v be the vertex of A that contains q 

5:      if u ≠ v then 

6:           replace vertices u and v in A by {p,q} and (u \ {p}) ∪ (v \ {q}) 

7:      end if 

8: end for 

 

//Generate the telomeres of B that are not yet present in A 

9: for each telomere {p} in B do 

10:      let u be the vertex of A that contains p 

11:      if u is an adjacency then 

12:           replace vertex u in A by {p} and (u \ {p}) 

13:      end if 

14: end for 

Analysis: O(N) time 

where N = # of blocks 



The DCJ distance 

Theorem: 
 

Let A and B be two genomes defined on the same set of N blocks, then we have 
 

      dDCJ(A,B)  =  N – (C + I/2) 
 

where C = # of cycles and I = # of odd paths in AG(A,B). A sorting sequence can be 

found in optimal O(N) time. 

Example (Human-Mouse): 

 

   N = 281, C = 27, I = 16  ➔  dDCJ(Human,Mouse) = 246  

 

Note 1: Same as HP distance (no circular chromosomes necessary) 

Note 2: Sorting scenarios can be of different types (1-cut vs. 2-cut operations) 

Note 3: This can lead to different breakpoint reuse rates 0.89 ≤ r ≤ 1.51 



The solution space of sorting by DCJ 

There are really many rearrangement scenarios for a given pair of genomes: 

Simplified case (k components with distances ℓ1,…,ℓk): 

 

 

 

 

General case: more complicated due to recombinations 

1 

component 

(distance ℓ) 

number of 

scenarios 

1 

2 

3 

4 

5 

6 

1 

3 

16 

125 

1296 

16807 



Hannenhalli-Pevzner (HP) model: 2-cut, linear-only, multichromosomal 

In fact, for A = (1,3,2,4) and B = (1,2,3,4) we have dDCJ(A,B) = 2 < 3 = dHP(A,B). 

Observation: 

For two linear genomes A and B, 

we have that 
 

     dDCJ(A,B)  ≤  dHP(A,B) 
 

4. Relation to other models 
(based on: Bergeron, Medvedev & S: JCB 2010; Bergeron, Mixtacki & S: TCS 2009) 



Relationship of distances 

Unexpected asymmetry: 



Sometimes HP needs more steps than DCJ: hurdle, fortress, knot, semi-knot, real-

knot, semi-real-knot, weak-fortress-of-real-knots, etc. 

Can we quantify this relative to DCJ? 
 

      dHP(A,B)  =  dDCJ(A,B) + t 
 

General HP distance problem 



General HP distance problem 

Theorem: 

If t is the cost of an optimal cover of T’, then 
 

       dHP(A,B)  =  dDCJ(A,B) + t 
 

• Closed formula for t (Erdo ̋s, Soukup & S: Appl. Math. Lett. 2011) 

• Linear-time algorithm for distance computation (Bergeron, Mixtacki & S: TCS 2009) 

• Similar result for inversion distance (Bergeron, Mixtacki & S: Proc. of CPM 2004) 

• Similar result for translocation distance (Bergeron, Mixtacki & S: JCB 2006) 

T’ 



Restricted DCJ 

Original motivation for DCJ (Yancopoulos, Attie & Friedberg 2005): 

block interchange in 2 steps (instead of 3 as in the INV model) 

Observation: 

We need never more than 1 circular chromosome at a time, drDCJ(A,B) = dDCJ(A,B). 

Algorithmic results: Distance calculation in O(N) time 

     Sorting in O(N log N) time [lower bound?] 

(based on: Kováč, Warren, Braga & S: JCB 2011) 



Software: UNIMoG 

Screenshot: unimog 

(Hilker et al.: Bioinformatics 2012; http://bibiserv.techfak.uni-bielefeld.de/dcj) 



Further applications of the DCJ model 

Estimating the true evolutionary distance: 

Lin & Moret 2008 

 

Perfect rearrangement: 

Bérard, Chateau, Chauve, Paul, Tannier 2008 

 

Genome halving: 

Warren & Sankoff 2008; Mixtacki 2008; Thomas, Ouangraoua & Varré 2012 

 

 

DCJ Median: 

Xu & Sankoff 2008; Lenne et al. 2008; Zhang, Arndt & Tang 2009; Xu 2009; Aganezov 

& Alekseyev 2012 

 

Multiple genome rearrangement: 

Adam & Sankoff 2008; Kováč, Brejová & Vinař 2011  



5. Insertions, deletions, substitutions 

So far: Only organizational operations 

 

Now: Mixture of organizational and content-modifying operations 

 

 

History: 

Inversions + indels: El-Mabrouk 2001; Marron, Swenson & Moret 2004 

 

Here: 

DCJ + indels: Yancopoulos & Friedberg 2008; Braga, Willing & S 2010; Braga 2010; 

Braga, Machado, Ribeiro & S 2011b; Da Silva, Braga, Machado & Dantas 2012 

 

 

Again, the results in the DCJ model are much simpler than in INV or HP. 

But we also run into modeling questions, as we will see later. 

(based on: Braga, Willing & S, JCB 2011) 



Insertion/Deletion 

Extended model: Genomes with possibly unequal gene content 

 

Unique blocks: Blocks only occurring in one of the two genomes 

DCJ-indel distance: 

Given two genomes A and B, find the minimum number of steps 

(DCJ and indel operations) dDCJ-id (A,B) necessary to sort A into B. 

We consider: cost for 1 insertion = cost for 1 deletion = cost for 1 DCJ 



The DCJ-indel model 

Saving indel operations: 

Group unique blocks during sorting    less indel operations 



The DCJ-indel model 

Result: 

 

 

 

Theorem: 

Given two genomes A and B, dDCJ-id(A,B) and a shortest sorting scenario can be 

computed in linear time O(|A|+|B|). 

In fact, indels can be traded for DCJ operations, for example: 



6. On the weight of indels 

Observation (Yancopoulos & Friedberg 2008): 

When indel operations of multiple blocks are allowed, the triangle inequality may be 

disrupted. 

Question: Is there a distance definition that does not disrupt the triangle inequality? 

(based on: Braga, Machado, Ribeiro & S: BMC Bioinformatics 2011b) 



A posteriori correction 

Lemma: 

Applying an a posteriori correction, the triangle inequality holds for the function 
 

    dDCJ-id(A,B)  =  dDCJ-id(A,B)  +  k ・ u(A,B) 
 

and for any constant k ≥ 1, where u(A,B) = # of unique markers in A and B. 

d1,k 

Algorithm: 

1. Compute dDCJ-id(A,B) by the standard algorithm 

2. Add k ・ u(A,B) to obtain the corrected metric distance 

Question: What is the best choice of k ? 



More plausible distances? 

DCJ-indel model dDCJ-id d1,1 “ghost-DCJ model” (YF 2010) 

uncorrected distances 



DCJ with substitutions 

Consider the simultaneous substitution of m ≥ 0 markers by n ≥ 0 markers. 

• subsumes the DCJ-indel model 

• distances become slightly smaller 

Lemma: 

The corrected DCJ-substitution distance dDCJ-sb satisfies the triangular inequality if 

and only if k ≥ 3/4. 

d1,k 

(based on: Braga, Machado, Ribeiro & S: BMC Bioinformatics 2011a) 



7. Summary and Conclusion 

• Genome evolution, rearrangement 

• DCJ, distance and sorting, restricted DCJ 

• Relation to HP, INV, translocation models 

• DCJ + indels, DCJ + substitutions, indel/substitution weights 

 

• Power of DCJ: simple + tractable, generalizable 

• More advanced questions can be asked 

• (not talked about median, but there is a lot) 

 

• More formal/algorithmic than biological results  typical for the field 

• Analysis is still very manual, e.g. no software where I can upload a few genomes ... 

• But the field is changing, more and more biological studies are upcoming 
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