Algorithms for Genome Rearrangement by Double Cut and Join

Jens Stoye

Bielefeld University, Germany

Outline

1. Genome evolution
2. Double Cut and Join (DCJ)
3. DCJ distance and sorting
4. Relation to other models
5. Insertions, deletions, substitutions
6. On the weight of indels
7. Summary and Conclusion

1. Genome evolution

Species change over time.

1. Genome evolution

At the molecular level:

Local vs. global modifications:

- point mutations (sequence analysis)
- large-scale operations (comparative genomics)

Organizational vs. content-modifying operations:

- rearrangement

- insertion, deletion, substitution, duplication

Motivation

Evolution at the whole genome level:

- Basic understanding of molecular processes at genomic scale
- Evolutionary distances, phylogenetic trees (phylogenomics)
- Ancestral genome reconstruction
- Insights into gene function
- Regulation of genes (e.g. operons in prokaryotic genomes)
- Comparative genome assembly and annotation
- Structural variations, cancer development
- Pathogen evolution, outbreak prediction, vaccination strategies

What hannans in detail？

[^0]The mouse genome：
1：$\circ-13614093-95-322537-3839-407624630-2933-814-1110-9 \circ$
2：$\circ-161162-159158-157156-15515434-3536-180179-178-213214-2428259-258260 \circ$
3：○ $141139-57565868-20155-70-7-66-5 \circ$
4：○ $137-142-138-971461531481454-3$ 2－1 ○
5：○ 116－115 $1201241862-63646-267195-196197-113-114-119105118200 \circ$
6：$\circ 11710612310965-67-2322-21-53425141-167-187264-188189 \circ \circ$
7：○ 257 － 255 254－256 $177-210212211-221220219-218-184176224174-175-183$ 。
8：$\circ 250205126-134133-132-127129-71130-253269-69-252225-22622712-165 \circ$
9：०－185 $251110-186216-215-9496-217-54-48-4647 \circ$
11． $0-268112-20-85-87-8084231-230229-228-232 \quad 233-234237-236235238$ 。
12：○－17 16－15－121－107－122 $207209-125-108 \circ$
13：○－160－13－111－89 $88-1511508681149152-72-74 \circ$
14：$\circ 50-45171-4943-168-172208206198-199203-128-131-202204 \circ$
15：○－73 143270190 。
16：○ $223-135-2655961-60-52261 \circ$
17：○－102－103 104－75－222 $91262-90-9244-2624977-24019239 \circ$
18：○ $164163-166243-31788279-83241245242-244-247 \circ$
19：。 $\circ 182-181-147144-169173$
X：○－274－275 $273281-272278-279280-276277-271 \circ$

The human genome：

1：$\circ 1234567891011121314 \circ$
2： 01516171819202122232425262728293031323334353637383940 。
3：○ $414243444546474849505152535455565758596061 \circ$
4． 062636465666768697071

6：$\circ 888990919293949596979899100101102103104 \circ$
7：$\circ 105106107108109110111112113114115116117118119120121122123124125 \circ$
8：○ $126127128129130131132133134135136137138139140141142143 \circ$
9：○ 144145146147148149150151152153154155156157158159
10：。 $0160161162163164165166167168169170171172173174 \circ$
11：○ 175176177178179180181182183184185186 o
13：○ 198199200201202203204205 o
14：○ 206207208209210
15： 0211212213214215216217218219220221 o
16：○ 222223224225226227 。
17：○ 228229230231232233234235236237238 。
18：○ 239240241242243244245246247 。
19：० 248249250251252253254255256257 。
20：○ 258259260
22：○ 264265266267268269270 。
X：○ 271272273274275276277278279280281 。

What happens in detail?

Basic rearrangement operations:

- inversion

- transposition

- translocation
- block interchange

- fusion/fission

Assumption:

The number of rearrangements needed to transform one genome into another is a measure for the evolutionary distance between two species.

Questions to be asked:

How many rearrangement operations are needed?

- distance $d(A, B) \rightarrow$ "distance problem"
- diameter problems
- distribution of distances
- halving distance

How much can we reconstruct of the past?

- Ancestral genome(s)
- rearrangement scenario(s) \rightarrow "sorting problem"
- complete phylogenies

Some history (2 genomes)

Inversions (reversals):
Watterson et al. 1982; Sankoff 1992; Bafna \& Pevzner 1993; Hannenhalli \& Pevzner 1995; Kaplan, Shamir \& Tarjan 1999; Bader, Moret \& Yan 2001; Bergeron 2001; Bergeron, Heber \& S 2002; Bergeron, Mixtacki \& S 2004

Translocations:

Hannenhalli 1996; Bergeron, Mixtacki \& S 2005
Multichromosomal linear ("general HP model"):
Hannenhalli \& Pevzner 1995; Tesler 2002; Ozery-Flato \& Shamir 2003; Jean \& Nikolski 2007; Bergeron, Mixtacki \& S 2008; Erdős, Sokoup \& S 2011

Double Cut and Join (DCJ):
Yancopoulos, Attie \& Friedberg 2005; Bergeron, Mixtacki \& S 2006; Kováč, Warren, Braga \& S 2011
Other models:
Unsigned inversions: Kececioglu \& Sankoff 1993; Christie 1998; Caprara 1999
Transpositions: Meidanis, Walter \& Dias, 1997; Elias \& Hartman 2006; Bulteau, Fertin, Rusu 2011
Inversions + Transpositions: Walter, Dias \& Meidanis 1998; Christie \& Irving 2001
Fusion/Fission + Transpositions: Meidanis \& Dias 2001
Block interchanges: Christie 1996
Block interchanges + inversions: Mira \& Meidanis 2007
Single Cut and Join: Bergeron, Medvedev \& S 2010
Single Cut or Join: Feijão \& Meidanis 2011

Some history (2 genomes)

All models so far: Strong assumption that all genomes contain exactly the same set of blocks

Inversions + Insertions and Deletions:
El-Mabrouk 2001; Marron, Swenson \& Moret 2004
Insertions + Duplications:
Marron, Swenson \& Moret 2004
DCJ + Insertions and Deletions:
Yancopoulos \& Friedberg 2009; Braga, Willing \& S 2010; Braga 2010; Braga, Machado, Ribeiro \& S 2011b;
Compeau 2012; da Silva, Braga, Machado \& Dantas 2012; da Silva, Machado, Dantas \& Braga 2012
DCJ + Insertions and Deletions + Duplications:
Yancopoulos \& Friedberg 2009
DCJ + Substitutions:
Braga, Machado, Ribeiro \& S 2011a

Towards formal modeling

Definitions:

Genome: set of chromosomes
Chromosome: sequence of oriented unique blocks (genes or other markers)

Independent dimensions:

- Chromosome shapes
$>$ linear-only, (circular-only), mixed
- Number of chromosomes
$>$ unichromosomal, multichromosomal
- Rearrangement operations
$>$ single-cut, double-cut, (multi-cut)

2. Double Cut and Join (DCJ)

(based on: Bergeron, Mixtacki \& S: Proc. of WABI 2006)

The model we will concentrate on:

- mixed linear and circular chromosomes
- multichromosomal genome
- 2-cut operations

Graphs with vertices of degree one or two

Definition:

The DCJ operation acts on two vertices u and v of a graph with vertices of degree one or two in one of the following ways:
(a) If both $u=\{p, q\}$ and $v=\{r, s\}$ are internal vertices, these are replaced by the two vertices $\{p, r\}$ and $\{s, q\}$ or by the two vertices $\{p, s\}$ and $\{q, r\}$.
(b) If $u=\{p, q\}$ is internal and $v=\{r\}$ is external, these are replaced by $\{p, r\}$ and $\{q\}$ or by $\{q, r\}$ and $\{p\}$.
(c) If both $u=\{q\}$ and $v=\{r\}$ are external, these are replaced by $\{q, r\}$.
(d) A single internal vertex $\{q, r\}$ can be replaced by two external vertices $\{q\}$ and $\{r\}$.
(b) and (d)

The formal problem

Definitions:

- A block (marker, gene) a is an oriented sequence of DNA that starts with a tail a^{t} and ends with a head a^{h}.
- Head and tail are called the extremities of a block.
- An adjacency of two consecutive blocks a and b, depending on their respective orientation, can be of four different types:

$$
\left\{a^{h}, b^{t}\right\},\left\{a^{h}, b^{h}\right\},\left\{a^{t}, b^{t}\right\},\left\{a^{t}, b^{h}\right\}
$$

- An extremity that is not adjacent to any other block is called a telomere, represented by a singleton set $\left\{a^{h}\right\}$ or $\left\{a^{t}\right\}$.

Genome: Set of adjacencies and telomeres such that the tail or head of a block appears in exactly one adjacency or telomere.

$$
A=\left\{\left\{1^{t}\right\},\left\{1^{h}, 3^{\dagger}\right\},\left\{3^{h}, 4^{h}\right\},\left\{4^{\dagger}\right\},\left\{2^{h}, 5^{\dagger}\right\},\left\{5^{h}, 2^{\dagger}\right\},\{6\},\left\{6^{h}, 7^{t}\right\},\left\{7^{h}\right\}\right\}
$$

The formal problem

Two genomes:

DCJ Sorting Problem:

Given two genomes A and B with the same set of blocks, find a shortest sequence of DCJ operations that transforms A into B. The length of such a sequence is called the DCJ distance between A and B, denoted by $d^{D C J}(A, B)$.

3. DCJ distance and sorting

(based on: Bergeron, Mixtacki \& S: Proc. of WABI 2006; Braga \& S: JCB 2010)

History of formal studies:
1992 - inversions (INV)
1995 - Hannenhalli-Pevzner (HP) model
1995 - translocations
2005 - DCJ
\rightarrow surprisingly simple (in particular compared to the earlier results)

Adjacency graph

Definition:

The adjacency graph $A G(A, B)$ is a graph whose set of vertices are the adjacencies and telomeres of A and B. For each $u \in A$ and $v \in B$ there are $|u \cap v|$ edges between u and v.

Related to breakpoint graph (Bafna \& Pevzner 1993)

Transforming A into B

Adjacency graph

B ゆ $\rightarrow x \rightarrow-1$

Algorithm

1: Let $A G(A, B)$ be the adjacency graph of genomes A and B
// Generate the adjacencies of B that are not yet present in A
2: for each adjacency $\{p, q\}$ in B do
3: \quad let u be the vertex of A that contains p
4: \quad let v be the vertex of A that contains q
5: if $u \neq v$ then
6: \quad replace vertices u and v in A by $\{p, q\}$ and $(u \backslash\{p\}) \cup(v \backslash\{q\})$
end if
8: end for
//Generate the telomeres of B that are not yet present in A
9: for each telomere $\{p\}$ in B do
10: let u be the vertex of A that contains p
11: if u is an adjacency then
12: \quad replace vertex u in A by $\{p\}$ and ($u \backslash\{p\}$)
13: end if

Analysis: $O(N)$ time where $N=$ \# of blocks

14: end for

The DCJ distance

Theorem:

Let A and B be two genomes defined on the same set of N blocks, then we have

$$
d^{D C J}(A, B)=N-(C+I / 2)
$$

where $C=\#$ of cycles and $I=\#$ of odd paths in $A G(A, B)$. A sorting sequence can be found in optimal $O(N)$ time.

Example (Human-Mouse):

$$
N=281, C=27, I=16 \rightarrow d^{D C J}(\text { Human }, \text { Mouse })=246
$$

Note 1: Same as HP distance (no circular chromosomes necessary)
Note 2: Sorting scenarios can be of different types (1-cut vs. 2-cut operations)
Note 3: This can lead to different breakpoint reuse rates $0.89 \leq r \leq 1.51$

The solution space of sorting by DCJ

There are really many rearrangement scenarios for a given pair of genomes:

Simplified case (k components with distances $\ell_{1}, \ldots, \ell_{k}$):

$$
S_{\text {sep }}=\frac{\left(\ell_{1}+\ell_{2}+\ldots+\ell_{k}\right)!}{\ell_{1}!\ell_{2}!\ldots \ell_{k}!} \times \prod_{i=1}^{k}\left(\ell_{i}+1\right)^{\ell_{i}-1}
$$

General case: more complicated due to recombinations

1 component (distance ℓ)	number of scenarios
1	1
2	3
3	16
4	125
5	1296
6	16807

4. Relation to other models

(based on: Bergeron, Medvedev \& S: JCB 2010; Bergeron, Mixtacki \& S: TCS 2009)

Hannenhalli-Pevzner (HP) model: 2-cut, linear-only, multichromosomal

Observation:
 For two linear genomes A and B, we have that
 $$
d^{D C J}(A, B) \leq d^{H P}(A, B)
$$

In fact, for $A=(1,3,2,4)$ and $B=(1,2,3,4)$ we have $d^{D C J}(A, B)=2<3=d^{H P}(A, B)$.

HP: $\longmapsto k \longrightarrow x \rightarrow 1 \Rightarrow H \leftarrow * \longleftrightarrow 1$

Relationship of distances

Unexpected asymmetry: IN V $\longrightarrow H^{P}$

General HP distance problem

Sometimes HP needs more steps than DCJ: hurdle, fortress, knot, semi-knot, realknot, semi-real-knot, weak-fortress-of-real-knots, etc.

Can we quantify this relative to DCJ?

$$
d^{H P}(A, B)=d^{D C J}(A, B)+t
$$

General HP distance problem

$$
\begin{aligned}
& A=0213540 \\
& B=0123450 \\
& B
\end{aligned}
$$

$$
0013 \sqrt{3} \sqrt{0} 667-(11-9-10
$$

Theorem:

If t is the cost of an optimal cover of T^{\prime}, then

$$
d^{H P}(A, B)=d^{D C J}(A, B)+t
$$

- Closed formula for t (Erdős, Soukup \& S: Appl. Math. Lett. 2011)
- Linear-time algorithm for distance computation (Bergeron, Mixtacki \& S: TCS 2009)
- Similar result for inversion distance (Bergeron, Mixtacki \& S: Proc. of CPM 2004)
- Similar result for translocation distance (Bergeron, Mixtacki \& S: JCB 2006)

Restricted DCJ

Original motivation for DCJ (Yancopoulos, Attie \& Friedberg 2005): block interchange in 2 steps (instead of 3 as in the INV model)

Observation:

We need never more than 1 circular chromosome at a time, $d^{r D C J}(A, B)=d^{D C J}(A, B)$.

Algorithmic results: Distance calculation in $O(N)$ time Sorting in $O(N \log N)$ time [lower bound?]

Software: UNIMoG

(Hilker et al.: Bioinformatics 2012; http://bibiserv.techfak.uni-bielefeld.de/dcj)

Further applications of the DCJ model

Estimating the true evolutionary distance:
Lin \& Moret 2008
Perfect rearrangement:
Bérard, Chateau, Chauve, Paul, Tannier 2008
Genome halving:
Warren \& Sankoff 2008; Mixtacki 2008; Thomas, Ouangraoua \& Varré 2012

DCJ Median:
Xu \& Sankoff 2008; Lenne et al. 2008; Zhang, Arndt \& Tang 2009; Xu 2009; Aganezov \& Alekseyev 2012

Multiple genome rearrangement:
Adam \& Sankoff 2008; Kováč, Brejová \& Vinař 2011

5. Insertions, deletions, substitutions

```
(based on: Braga, Willing \& S, JCB 2011)
```

So far: Only organizational operations
Now: Mixture of organizational and content-modifying operations

History:
Inversions + indels: El-Mabrouk 2001; Marron, Swenson \& Moret 2004

Here:

DCJ + indels: Yancopoulos \& Friedberg 2008; Braga, Willing \& S 2010; Braga 2010; Braga, Machado, Ribeiro \& S 2011b; Da Silva, Braga, Machado \& Dantas 2012

Again, the results in the DCJ model are much simpler than in INV or HP. But we also run into modeling questions, as we will see later.

Insertion/Deletion

Extended model: Genomes with possibly unequal gene content
Unique blocks: Blocks only occurring in one of the two genomes

DCJ-indel distance:
Given two genomes A and B, find the minimum number of steps (DCJ and indel operations) $d^{D C J-i d}(A, B)$ necessary to sort A into B.

We consider: cost for 1 insertion $=$ cost for 1 deletion $=$ cost for 1 DCJ

The DCJ-indel model

Saving indel operations:

$$
B: \longrightarrow-
$$

$$
3 \text { steps }
$$

Group unique blocks during sorting $\boldsymbol{\rightarrow}$ less indel operations

The DCJ-indel model

Result:

$$
d^{D C J-i d}(A, B)=d^{D C J}(A, B)+\sum_{C \in A G(A, B)} \lambda(C)-W
$$

Theorem:

Given two genomes A and $B, d^{D C-I d}(A, B)$ and a shortest sorting scenario can be computed in linear time $O(|A|+|B|)$.

In fact, indels can be traded for DCJ operations, for example:

Table 5. Comparing R. bellif (1.52 MbP) with Six Other Species of Rickettsia

Species	Mbp	$\|\mathcal{A}\|+\|\mathcal{B}\|$	$\Sigma \Lambda$	$\Sigma \lambda$	$d_{D C J}$	$d_{D C J}^{\text {id }}$	MIN DCJS $($ DCJs + indels $)$	MIN indels DCJs + indels $)$
R. felis	1.55	333	241	181	312	493	$312+181$	$406+87$
R. massiliae	1.36	302	218	172	276	448	$276+172$	$358+90$
R. africae	1.28	290	212	166	260	426	$260+166$	$338+88$
R. conorii	1.27	277	192	153	261	414	$261+153$	$326+88$
R. prowazekii	1.11	241	130	117	197	314	$197+117$	$222+92$
R. typhi	1.11	239	126	114	195	309	$195+114$	$217+92$

6. On the weight of indels

(based on: Braga, Machado, Ribeiro \& S: BMC Bioinformatics 2011b)

Observation (Yancopoulos \& Friedberg 2008):
When indel operations of multiple blocks are allowed, the triangle inequality may be disrupted.

Question: Is there a distance definition that does not disrupt the triangle inequality?

A posteriori correction

Lemma:

Applying an a posteriori correction, the triangle inequality holds for the function

$$
d_{1, k}^{D C J-i d}(A, B)=d^{D C J-i d}(A, B)+k \cdot u(A, B)
$$

and for any constant $k \geq 1$, where $u(A, B)=\#$ of unique markers in A and B.

Algorithm:

1. Compute $d^{D C J-i d}(A, B)$ by the standard algorithm
2. Add $k \cdot u(A, B)$ to obtain the corrected metric distance

Question: What is the best choice of k ?

More plausible distances?

uncorrected distances

"ghost-DCJ model" (YF 2010)

DCJ-indel model d ${ }_{1,1}^{\text {DOLI }}$

DCJ with substitutions

(based on: Braga, Machado, Ribeiro \& S: BMC Bioinformatics 2011a)

Consider the simultaneous substitution of $m \geq 0$ markers by $n \geq 0$ markers.

- subsumes the DCJ-indel model
- distances become slightly smaller

Lemma:

The corrected DCJ-substitution distance $d_{1, k}^{D C-s b}$ satisfies the triangular inequality if and only if $k \geq 3 / 4$.

7. Summary and Conclusion

- Genome evolution, rearrangement
- DCJ, distance and sorting, restricted DCJ
- Relation to HP, INV, translocation models
- DCJ + indels, DCJ + substitutions, indel/substitution weights
- Power of DCJ: simple + tractable, generalizable
- More advanced questions can be asked
- (not talked about median, but there is a lot)
- More formal/algorithmic than biological results \rightarrow typical for the field
- Analysis is still very manual, e.g. no software where I can upload a few genomes ...
- But the field is changing, more and more biological studies are upcoming

Acknowledgments

Marília D. V. Braga

Julia Mixtacki

Eyla Willing

Thank you!

References

AP 2007 - Alekseyev, Pevzner: Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 4 (1): 98-107, 2007. AS 2008 - Adam, Sankoff: The ABCs of MGR with DCJ. Evol. Bioinf. Online 4: 69-74, 2008.
BCCPT 2008 - Bérard, Chateau, Chauve, Paul, Tannier: Perfect DCJ rearrangement. Proc. of RECOMB-CG 2008, 158-169, 2008.
BFR 20xx - Bulteau, Fertin, Rusu: Sorting by transpositions is difficult. SIAM J. Discrete Math., to appear.
BHS 2002 - Bergeron, Heber, S: Common intervals and sorting by reversals: a marriage of necessity. Bioinformatics 18 (Suppl. 2): S54-S63, 2002.
BMRS 2011a - Braga, Machado, Ribeiro, S: Genomic distance under gene substitutions. BMC Bioinformatics 12 (Suppl. 9): S8, 2011.
BMRS 2011b - Braga, Machado, Ribeiro, S: On the weight of indels in genomic distances. BMC Bioinformatics 12 (Suppl. 9): S13, 2011.
BMS 2004 - Bergeron, Mixtacki, S: Reversal distance without hurdles and fortresses. Proc. of CPM 2004, 388-399, 2004.
BMS 2005 - Bergeron, Mixtacki, S: On sorting by translocations. Proc. of RECOMB 2005, 615-629, 2005.
BMS 2006 - Bergeron, Mixtacki, S: A unifying view of genome rearrangements. Proc. of WABI 2006, 163-173, 2006.
BMS 2008 - Bergeron, Mixtacki, S: HP distance via Double Cut and Join distance. Proc. of CPM 2008, 56-68, 2008.
BMS 2010 - Bergeron, Medvedev, S: Rearrangement models and single-cut operations. J. Comput. Biol. 17 (9): 1213-1225, 2010. (Extended version of MS 2009)
BMY 2001 - Bader, Moret. Yan: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comput. Biol. 8 (5): 483-491, 2001.
BP 1993 - Bafna, Pevzner: Genome Rearrangements and Sorting by Reversals. Proc of FOCS 1993, 148-157, 1993. (Preliminary version of BP1996)
BP 1996 - Bafna, Pevzner: Genome Rearrangements and Sorting by Reversals. SIAM J. Computing 25 (1), 272-289, 1996. (Extended version of BP 1993)
BP 1998 - Bafna, Pevzner: Sorting by transpositions. SIAM J. Discrete Math. 11 (2): 224-240, 1998.
BS 2009 - Braga, S: Counting All DCJ Sorting Scenarios. Proc. of RECOMB-CG 2009, 36-47, 2009. (Preliminary version of BS 2010)
BS 2010 - Braga, S: The Solution Space of Sorting by DCJ. J. Comp. Biol. 17 (9): 1145-1165, 2010. (Extended version of BS 2009)
BWS 2010 - Braga, Wiling, s: Genomic distance with DCJ and indels. Proc. of WABI 2010, 90-101, 2010.
1908 C
1 1001
segments. J Discrete Alg. 1, 105-122, 2001
and reversals. J. Comput. Syst. Sci. 65 (3): 442-464, 2002
MS Mabrouk, Nadeau, Sankoff: Genome H
, 2003 ,
2011 Erdo,
Appl. Math. Lett. 24 (1): 82-86, 2011
P1095 -
HP 1995 - Hannenhali, Pevzner: Transforming 1
(104 (1): 14-20, 2007.
KST 1999 - Kaplan, Shamir, Tarjan: A faster and simpler algorithm for sorting signed permutations by reversals, SIAM J Comput 29 (3): 880-892, 1999. KM 2008 - Lin, Moret: Estimating true evolutionary distances under the DCJ model. Bioinformatics 24 (13): i114-i122, 2008.
M 2008 - Mixtacki: Genome Halving under DCJ revisited. Proc. of COCOON 2008, 276-286, 2008.
MD 2002 - Meidanis, Dias. Genome rearrangements distance by fusion, fission, and transposition is easy. Proc. of SPIRE'2001, 2001.
MS 2009 - Medvedev, S: Rearrangement models and single-cut operations. Proc. of RECOMB-CG 2009, 84-97, 2009. (Preliminary version of BMS 2010) MSM 2004 - Marron, Swenson, Moret: Genomic distances under deletions and insertions. Theor. Comput. Sci. 325, 347-360, 2004.
MWD 1997 - Meidanis, Walter, Dias: Transposition distance between a permutation and its reverse. Proc. of WSP 1997, 70-79, 1997
MWD 2002 - Walter, Dias, Meidanis: A lower bound on the reversal and transposition diameter. J. Comp. Biol. 9 (5) 743-745, 2002. (Extended version of WDM 1998) O-FS 2003 - Two notes on genome rearrangement. J. Bioinf. Comput. Biol. 1 (1): 71-94, 2003.
PH 1988 - Palmer, Herbon: Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J. Mol. Evol. 28 (1-2): 87-97, 1988.
PT 2003 - Pevzner, Tesler: Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 13: 37-45, 2003.
S 1992 - Sankoff: Edit distance for genome comparison based on non-local operations. Proc. of CPM 1992, 121-135, 1992.
T 2002 - Tesler: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65 (3): 587-609, 2002.
WDM 1998 - Walter, Dias, Meidanis: Reversal and transposition distance of linear chromosomes. Proc. of SPIRE 1998, 96-102, 1998. (Preliminary version of WDM 2002) WEHM 1982 - Watterson, Ewens, Hall, Morgan: The chromosome inversion problem. J. Theor. Biol. 99 (1): 1-7, 1982.
WS 2009 - Waren, Sankoff: Genome aliquoting with double cut and join. BMC Bioinformatics 10 (Suppl. 1): S2, 2009.
YAF 2005 - Yancopoulos, Attie, Friedberg: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21 (16): 3340-3346, 2005.
YF 2008 - Yancopoulos, Friedberg: Sorting genomes with insertions, deletions and duplications by DCJ. Proc. of RECOMB-CG 2008, 170-183, 2008. (Preliminary version of YF 2010)
YF 2009 - Yancopoulos, Friedberg: DCJ path formulation for genome transformations which include insertions, deletions, and duplications. J. Comput. Biol. 16 (10): 1311-1338, 2009. (Extended version of YF 2008) ZAT 2009 - Zhang, Arndt, Tang: An exact solver for the DCJ median problem. Proc. of PSB 2009, 138-149, 2009.

[^0]:

