Probabilities and mathematical needs

S. Anthoine

Laboratoire d'Analyse, Topologie et Probabilités (LATP) CNRS - Université Aix-Marseille 1 anthoine@cmi.univ-mrs.fr

Pascal Bootcamp 2010, 07/06/10

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Outline

[Linear Algebra](#page-2-0)

- [Vector spaces](#page-2-0)
- [Orthogonality, dot product, norm](#page-8-0)
- **•** [Matrices](#page-13-0)
- **•** [Determinant](#page-22-0)
- [Matrix decompositions \(SVD, Choleski, LU, QR\)](#page-23-0)
- **[Probabilities](#page-31-0)**
	- [Vocabulary, usual laws \(discrete, continuous\)](#page-31-0)
	- [Conditional probabilities](#page-46-0)
	- [Bayes rule, maximum likelihood, maximum a posteriori](#page-55-0)

KORK ERKER ADAM ADA

- [Entropy, Kullback-Leibler divergence, perpexity](#page-56-0)
- **•** [Bounds](#page-57-0)

[Optimization](#page-65-0)

- [Minimima, maxima, saddle points](#page-65-0)
- [Convex fonctions](#page-67-0)
- [Primal and dual problems, Lagrange multipliers](#page-69-0)

Example (R *n*)

$$
\mathbb{R}^n = \{x = (x_1, \dots, x_n)^T : x_i \in \mathbb{R} \,\forall i\}
$$
\n
$$
\triangleright x, y \in \mathbb{R}^n \Rightarrow x + y = (x_1 + y_1, \dots, x_n + y_n)^T \in \mathbb{R}^n
$$
\n
$$
\triangleright x \in \mathbb{R}^n, \lambda \in \mathbb{R} \Rightarrow \lambda x = (\lambda x_1, \dots, \lambda x_n)^T \in \mathbb{R}^n
$$

$$
\blacktriangleright \mathbb{R}^n = \{x : \exists (\lambda_1, \cdots, \lambda_n) \in \mathbb{R}^n \text{ s.t. } x = \lambda_1 e_1 + \cdots + \lambda_n e_n\}
$$

where $e_i = (0, \cdots, 0, 1, 0, \cdots, 0).$

Example (Solutions of homogeneous differential equations)

$$
\mathcal{S} = \{f: \mathbb{R} \to \mathbb{R}: \forall t, f''(t) + f(t) = 0\}
$$

$$
\blacktriangleright \ f \in \mathcal{S} \Rightarrow -f \in \mathcal{S}
$$

$$
\blacktriangleright f, g \in \mathcal{S} \Rightarrow f + g \in \mathcal{S}
$$

- \blacktriangleright $f \in \mathcal{S}, \lambda \in \mathbb{R} \Rightarrow \lambda f \in \mathcal{S}$
- $S = \{f : \mathbb{R} \to \mathbb{R} : \exists (\lambda_1, \lambda_2) \in \mathbb{R}^2$ $S = \{f : \mathbb{R} \to \mathbb{R} : \exists (\lambda_1, \lambda_2) \in \mathbb{R}^2$ $S = \{f : \mathbb{R} \to \mathbb{R} : \exists (\lambda_1, \lambda_2) \in \mathbb{R}^2$ $S = \{f : \mathbb{R} \to \mathbb{R} : \exists (\lambda_1, \lambda_2) \in \mathbb{R}^2$ $S = \{f : \mathbb{R} \to \mathbb{R} : \exists (\lambda_1, \lambda_2) \in \mathbb{R}^2$ *s.t.* $f = \lambda_1 \cos + \lambda_2 \sin\}$

Example $(L^2(\mathbb{R}))$

$$
L^2(\mathbb{R}) = \left\{ f : \mathbb{R} \to \mathbb{R} : \int_{\mathbb{R}} |f(x)|^2 dx < \infty \right\}
$$

- \blacktriangleright $f \in L^2(\mathbb{R}) \Rightarrow -f \in L^2(\mathbb{R})$
- \blacktriangleright $f,g\in L^2(\mathbb{R})\Rightarrow f+g\in L^2(\mathbb{R})$
- \blacktriangleright $f \in L^2(\mathbb{R}), \lambda \in \mathbb{R} \Rightarrow \lambda f \in L^2(\mathbb{R})$
- \blacktriangleright *L*²(\mathbb{R}) *is not the span of any finite number of its elements.*
- ▶ Dot product : $f, g \in L^2(\mathbb{R}), \ \langle f, g \rangle = \int_{\mathbb{R}} f(x) g(x) dx$
- \blacktriangleright Norm : $\|f\|_{L^2(\mathbb{R})}=(\int_{\mathbb{R}}|f(x)|^2dx)^{\frac{1}{2}}$
- **Closeness** :

∀*n*, $f_n \in L^2(\mathbb{R})$ and $||f_n - f||_{L^2(\mathbb{R})} \xrightarrow[n \to \infty]{} 0$ implies $f \in L^2(\mathbb{R})$.

Example $(L^2(\mathbb{R}))$

$$
L^2(\mathbb{R}) = \left\{ f : \mathbb{R} \to \mathbb{R} : \int_{\mathbb{R}} |f(x)|^2 dx < \infty \right\}
$$

- \blacktriangleright $f \in L^2(\mathbb{R}) \Rightarrow -f \in L^2(\mathbb{R})$
- \blacktriangleright $f,g\in L^2(\mathbb{R})\Rightarrow f+g\in L^2(\mathbb{R})$
- \blacktriangleright $f \in L^2(\mathbb{R}), \lambda \in \mathbb{R} \Rightarrow \lambda f \in L^2(\mathbb{R})$
- \blacktriangleright *L*²(\mathbb{R}) *is not the span of any finite number of its elements.*
- ▶ Dot product : $f, g \in L^2(\mathbb{R}), \langle f, g \rangle = \int_{\mathbb{R}} f(x) g(x) dx$
- \blacktriangleright Norm : $\|f\|_{L^2(\mathbb{R})}=(\int_{\mathbb{R}}|f(x)|^2dx)^{\frac{1}{2}}$
- \blacktriangleright Closeness : ∀ $n, f_n \in L^2(\mathbb{R})$ and $||f_n - f||_{L^2(\mathbb{R})} \xrightarrow[n \to \infty]{} 0$ implies $f \in L^2(\mathbb{R})$.

Definition (Vector space)

A set S is called a real vector space if it is endowed with

- \blacktriangleright an "addition" which is :
	- **►** stable : $x, y \in S$ \Rightarrow $x + y \in S$,
	- \triangleright commutative and associative.
	- \triangleright with an nul element 0 ∈ S s.t. $\forall x \in S$, 0 + $x = x$,
	- **►** for which all elements are invertible $x \in S \Rightarrow -x \in S$.
- \blacktriangleright the multiplication by a scalar in $\mathbb R$ which is :
	- **►** stable : $x \in \mathcal{S}$, $\lambda \in \mathbb{R}$ $\Rightarrow \lambda x \in \mathcal{S}$.
	- **associative and distributive over** $'$ **+'.**

Vector spaces may be decomposed into subspaces :

Definition (Subspace)

A subset F of a vector space S is a called a subspace of S if the previous properties are preserved in *F*.

 Ω

Vector subspaces, family of vectors, dimension

- \blacktriangleright Supplementary subspaces :
	- \blacktriangleright *F*, *G* subspaces, $F \cap G = \{0\}$, $S = F + G$.
	- ► Any $x \in S$ has a unique decomposition $x = x_F + x_G$.
- \triangleright Subspaces may be generated from a family of vectors :
	- \blacktriangleright *y* ∈ Span{*x*₁, · · · , *x_n*} iff $\exists \lambda_1 \cdots \lambda_n \in \mathbb{R}$ s.t. *y* = $\sum_{i=1}^n \lambda_i x_i$.
	- \blacktriangleright The family $\{x_i\}_{i=1..n}$ is linearly independent iff the decomposition $y = \sum_{i=1}^{n} \lambda_i x_i$ is unique.
	- ▶ Conversely if $F = \text{Span}\{\{x_i\}_{i=1..n}\}\$ then the family $\{x_i\}_{i=1..n}$ is said to generate *F*.
- \triangleright The dimension of a (sub)space *F* is the cardinal of its largest linearly independent family.
	- ► $Ex:$ dim $(\mathbb{R}^d) = d$, dim $(\mathcal{S}_{\text{diff. eq.}}) = 2$, dim $(L^2(\mathbb{R})) = +\infty$.
	- \triangleright A hyperplane is a subspace of which the supplementaries have dimension 1.
		- If dim(S) = n, an hyperplane is any subspace of dimension $n-1$. *Ex : lines in* \mathbb{R}^2 , planes in \mathbb{R}^3 .

KORKAR KERKER E VOOR

Bases

- In The family $\{x_i\}_{i=1..n}$ is a basis of S iff it is generative and linearly independent. Here *n* may be ∞ !
	- \blacktriangleright The cardinal of any basis is exactly the dimension of S (finite or not).
	- ► For $y \in S$ there is a unique decomposition $y = \sum_{i=1..n} \lambda_i x_i$.

i

Example

 \blacktriangleright In \mathbb{R}^d :

 $\blacktriangleright \{e_i\}_{i=1..d}$, where $e_i = (0, \cdots, 0, 1, 0, \cdots, 0)$ is a basis. $\mathbf{y} = (y_1, \dots, y_d)^T = \sum_{i=1..d} y_i e_i.$

\blacktriangleright In $L^2([0, 2\pi])$: \blacktriangleright {*cos(mt), sin(mt)*}_{*m*∈N} is a basis. ► $f \in L^2([0, 2\pi])$, $f(t) = \sum_{m \in \mathbb{N}} (a_m \cos(mt) + b_m \cos(mt)).$

Orthogonality, dot product, norm

In \mathbb{R}^d :

 \blacktriangleright The dot product is defined as :

$$
\langle x,y\rangle_{\mathbb{R}^d}=\sum_{i=1}^d x_iy_i
$$

 \blacktriangleright It is linked to the Euclidian norm :

$$
||x|| = \sqrt{\langle x, x \rangle_{\mathbb{R}^d}} = \sqrt{\sum_{i=1}^d |x_i|^2}
$$

$$
\langle x, y \rangle_{\mathbb{R}^d} = ||x|| ||y|| \cos(\theta)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \triangleright Any subspace has a unique orthogonal supplementary

Orthogonality, dot product, norm

Definition (norm, dot product, Hilbert space)

S a vector space.

►
$$
||.|| : S \rightarrow \mathbb{R}^+
$$
 is a norm iff
\n1. $||x|| = 0 \Leftrightarrow x = 0$
\n2. $\lambda \in \mathbb{R}, x \in S, ||\lambda x|| = |\lambda|||x||$
\n3. $x, y \in S, ||x + y|| \le ||x|| + ||y||$

A a dot product is a bilinear symmetric application of S^2 to \mathbb{R} .

- **I** then $x \to \sqrt{\langle x, x \rangle}$ is a norm.
- \triangleright *x* and *y* are orthogonal when $\langle x, y \rangle = 0$.
- ► *F* has a unique orthogonal supplementary F^{\perp} .
- **►** For any *x*, the unique decomposition $x = x_F + x_{F\perp}$ also verifies : $||x||^2 = ||x_F||^2 + ||x_{F^{\perp}}||^2$.
- \triangleright a Hilbert space H is a vector space endowed with a dot product $\langle ., . \rangle_{\mathcal{H}}$, that is closed for the induced norm.

Orthonormal bases

► A basis $\{e_i\}_{i=1..n}$ is orthonormal of H iff $\langle e_i, e_j \rangle$ $\mathcal{H} = \delta_{\{i=j\}}$. ► *y* ∈ H , the unique decomposition *y* = $\sum_{i=1..n} \lambda_i x_i$ verifies : 1. $\lambda_i = \langle y, e_i \rangle_{\mathcal{H}}$ 2. $||y||^2_{\mathcal{H}} = \sum_i |\lambda_i|^2$

Example

\n- In
$$
\mathbb{R}^d
$$
 :
\n- $\{e_i = (0, \dots, 0, \dot{1}, 0, \dots, 0)\}_{i=1..d}$ is a an orthonormal basis.
\n- $y = (y_1, \dots, y_d)^T = \sum_{i=1..d} y_i e_i$ and $||y|| = \sqrt{\sum_{i=1..d} y_i^2}$.
\n- In $L^2([0, 2\pi])$:
\n- $\{cos(mt), sin(mt)\}_{m \in \mathbb{N}}$ is an orthonormal basis.
\n- $f \in L^2([0, 2\pi]), f(t) = \sum_{m \in \mathbb{N}} (a_m \cos(mt) + b_m \cos(mt))$ where $a_m = \int_0^{2\pi} f(t) \cos(mt) dt$, $b_m = \int_0^{2\pi} f(t) \sin(mt) dt$.
\n- $||f||_{L^2}^2 = \int_0^{2\pi} |f(t)|^2 dt = \sum_{m \in \mathbb{N}} (|a_m|^2 + |b_m|^2)$.
\n

 2990

Hyperplanes

H a hyperplane then dim $\mathcal{F}^\perp = 1$ hence there is a vector $\pmb{\nu} \in \mathcal{H}$ such that :

 $F^{\perp} =$ Span $\{u\} = \mathbb{R}u$ and $\|u\|_{\mathcal{H}} = 1$.

- ► Equation of *H* : *H* = { $x \in \mathcal{H}$: $\langle x, u \rangle_{\mathcal{H}} = 0$ }. *H* = { $x = (x_1, x_2)^T : x_1u_1 + x_2u_2 = 0$ }
- If The distance from *x* to *H* is : $d(x, H) = |\langle x, u \rangle_{\mathcal{H}}|$.

 $d(x, H) = |x_1u_1 + x_2u_2|$

KORKAR KERKER E VOOR

► The projection of *x* on *H* is : $P_H(x) = x - \langle x, u \rangle$ *u*.

 $P_H(x) = x - (x_1u_1 + x_2u_2)u$

Hyperplanes

H a hyperplane then dim $\mathcal{F}^\perp = 1$ hence there is a vector $\pmb{\nu} \in \mathcal{H}$ such that :

 $F^{\perp} =$ Span $\{u\} = \mathbb{R}u$ and $\|u\|_{\mathcal{H}} = 1$.

► Equation of *H* : *H* = { $x \in \mathcal{H}$: $\langle x, u \rangle_{\mathcal{H}} = 0$ }. $H = \{x = (x_1, x_2)^T : x_1u_1 + x_2u_2 = 0\}$

If The distance from *x* to *H* is : $d(x, H) = |\langle x, u \rangle_{\mathcal{H}}|$.

 $d(x, H) = |x_1u_1 + x_2u_2|$

► The projection of *x* on *H* is : $P_H(x) = x - \langle x, u \rangle$ *u*. $P_H(x) = x - (x_1u_1 + x_2u_2)u$

- ► Let $H_1 = \mathbb{R}u_1^{\perp}$, $H_2 = \mathbb{R}u_2^{\perp}$, \dots , $H_m = \mathbb{R}u_m^{\perp}$ be m hyperplanes of \mathbb{R}^d and $F = \bigcap_{i=1}^m H_i$.
- \triangleright The equation of F is a system of m linear equations with d unknowns :

$$
\begin{cases}\n u_1^1 x_1 + u_1^2 x_2 + \cdots + u_1^d x_d = 0 \\
u_2^1 x_1 + u_2^2 x_2 + \cdots + u_2^d x_d = 0 \\
\vdots \\
u_m^1 x_1 + u_m^2 x_2 + \cdots + u_m^d x_d = 0\n\end{cases}
$$

which is equivalent to the matrix-vector equation :

$$
Ux = 0 \Leftrightarrow \begin{pmatrix} u_1^1 & u_1^2 & \cdots & u_1^d \\ u_2^1 & u_2^2 & \cdots & u_2^d \\ \vdots & \vdots & \ddots & \vdots \\ u_m^1 & u_m^2 & \cdots & u_m^d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

- ► Let $H_1 = \mathbb{R} u_1^{\perp}$, $H_2 = \mathbb{R} u_2^{\perp}$, \dots , $H_m = \mathbb{R} u_m^{\perp}$ be m hyperplanes of \mathbb{R}^d and $F = \bigcap_{i=1}^m H_i$.
- \triangleright The equation of F is a system of m linear equations with d unknowns :

$$
\begin{cases}\n u_1^1 x_1 + u_1^2 x_2 + \cdots & u_1^d x_d = b_1 \\
u_2^1 x_1 + u_2^2 x_2 + \cdots & u_2^d x_d = b_1 \\
\vdots & \vdots \\
u_m^1 x_1 + u_m^2 x_2 + \cdots & u_m^d x_d = b_m\n\end{cases}
$$

which is equivalent to the matrix-vector equation :

$$
Ux = b \Leftrightarrow \begin{pmatrix} u_1^1 & u_1^2 & \cdots & u_1^d \\ u_2^1 & u_2^2 & \cdots & u_2^d \\ \vdots & \vdots & \ddots & \vdots \\ u_m^1 & u_m^2 & \cdots & u_m^d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

- A matrix in $\mathbb{R}^{m \times d}$ is a an array made of m row-vectors of \mathbb{R}^d or equiv. d column vectors of \mathbb{R}^m (e.g. U).
- \triangleright The matrix-vector product Ux may be seen as :
	- 1. Using column vectors $U^j = (u^j)$ $\frac{j}{1}$, u'_{2} $\mu_2^j, \cdots, \mu_m^j)^T$:

$$
Ux=\sum_{j=1}^d x_jU^j, \quad \text{where } U^j\in\mathbb{R}^m.
$$

2. Using row vectors $U_i = (u_i^1, u_i^2, \cdots, u_i^d)$:

$$
Ux = \begin{pmatrix} \langle U_1^T, x \rangle_{\mathbb{R}^d} \\ \langle U_2^T, x \rangle_{\mathbb{R}^d} \\ \vdots \\ \langle U_m^T, x \rangle_{\mathbb{R}^d} \end{pmatrix} \in \mathbb{R}^m
$$

Note : *U* is a representation of a linear operator : $x \in \mathbb{R}^d \to Ux \in \mathbb{R}^m$. **KORK ERKEY EL POLO**

 \triangleright Notation :

$$
A = \in \mathbb{R}^{m \times d} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,d} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,d} \end{pmatrix} = (a_{i,j})_{\substack{i=1 \cdots m \\ j=1 \cdots d}}
$$

 \triangleright Operations on matrices :

 \blacktriangleright $\mathbb{R}^{m \times d}$ is a real vector space with $A + B = (a_{i,j} + b_{i,j})_{\substack{j = 1 \cdots m\ j = 1 \cdots d}}$

I Matrix product : $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times d}$, then :

$$
AB \in \mathbb{R}^{m \times d} \quad \text{s.t.} \quad (AB)_{i,j} = \sum_{k=1}^p a_{i,k} b_{k,j}
$$

Note : $AB \neq BA$!

Matrix transposition : $A \in \mathbb{R}^{m \times d}$, then :

$$
A^{\mathcal{T}} \in \mathbb{R}^{d \times m} = (a_{j,i})_{\substack{j=1 \cdots d \\ i=1 \cdots m}} \quad \ \ \, \text{and} \quad \ \ \, \sum_{j=1 \cdots d} a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{j,i} \quad \ \ \, \text{and} \quad \ \, \sum_{j=1}^d a_{j,i} = a_{
$$

Square matrices (m=d)

- \blacktriangleright Matrix product is stable in $\mathbb{R}^{d \times d}$, so some are invertible !
- \blacktriangleright Remarquable matrices
	- \triangleright Diagonal matrices.

$$
D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{pmatrix}
$$

 \blacktriangleright Upper and Lower triangular matrices :

$$
U = \begin{pmatrix} u_{1,1} & u_{1,2} & \cdots & u_{1,d} \\ 0 & u_{2,2} & \cdots & u_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{d,d} \end{pmatrix} \qquad L = \begin{pmatrix} l_{1,1} & 0 & \cdots & 0 \\ l_{2,1} & l_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{d,1} & l_{d,2} & \cdots & l_{d,d} \end{pmatrix}
$$

- Symmetric matrices : $A = A^T$.
- \blacktriangleright Unitary matrices : $A A^{T} = A^{T} A = I$ (matrix of an orthonormal basis). KID KA LIKI KENYE DI DAG

- A is diagonal, lower or upper triangular then: A invertible $\Leftrightarrow \prod_{i=1}^d a_{i,i}\neq 0$
- \blacktriangleright Lower triangular systems

$$
Ax = b \Leftrightarrow \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ a_{2,1} & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d,1} & a_{d,2} & \cdots & a_{d,d} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_d \end{pmatrix} \text{ wh. } \prod_{i=1}^d a_{i,i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\begin{cases}\n a_{1,1}x_1 = b_1 \\
a_{2,2}x_2 + a_{2,1}x_1 = b_1 \\
a_{3,3}x_3 + a_{3,2}x_2 + a_{3,1}x_1 = b_2 \\
\vdots \\
a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,d}x_d = b_d\n\end{cases}
$$

- A is diagonal, lower or upper triangular then: A invertible $\Leftrightarrow \prod_{i=1}^d a_{i,i}\neq 0$
- \blacktriangleright Lower triangular systems

$$
Ax = b \Leftrightarrow \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ a_{2,1} & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d,1} & a_{d,2} & \cdots & a_{d,d} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_d \end{pmatrix} \text{ wh. } \prod_{i=1}^d a_{i,i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\begin{cases}\n x_1 &= b_1/a_{1,1} \\
a_{2,1}x_1 + a_{2,2}x_2 &= b_2 \\
a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 &= b_3 \\
\vdots & \vdots \\
a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,d}x_d &= b_d\n\end{cases}
$$

KO KKØ KKE KKE KVE BI KORO

- A is diagonal, lower or upper triangular then: A invertible $\Leftrightarrow \prod_{i=1}^d a_{i,i}\neq 0$
- \blacktriangleright Lower triangular systems

$$
Ax = b \Leftrightarrow \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ a_{2,1} & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d,1} & a_{d,2} & \cdots & a_{d,d} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_d \end{pmatrix} \text{ wh. } \prod_{i=1}^d a_{i,i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\begin{cases}\n x_1 &= b_1/a_{1,1} \\
a_{2,1}x_1 + a_{2,2}x_2 &= b_2 \\
a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 &= b_3 \\
\vdots & \vdots \\
a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,d}x_d &= b_d\n\end{cases}
$$

- \blacktriangleright *A* is diagonal, lower or upper triangular then : A invertible $\Leftrightarrow \prod_{i=1}^d a_{i,i}\neq 0$
- \blacktriangleright Lower triangular systems

$$
Ax = b \Leftrightarrow \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ a_{2,1} & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d,1} & a_{d,2} & \cdots & a_{d,d} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_d \end{pmatrix} \text{ wh. } \prod_{i=1}^d a_{i,i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\begin{cases}\n x_1 &= b_1/a_{1,1} \\
x_2 &= (b_2 - a_{2,1}b_1/a_{1,1})/a_{2,2} \\
a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 &= b_3 \\
\vdots & \vdots \\
a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,d}x_d &= b_d\n\end{cases}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Matrix determinant

$$
\blacktriangleright A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
 is invertible iff $ad - bc \neq 0$ and $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

 \blacktriangleright For lower/upper triangular and diagonal matrices : *A* is invertible iff $\prod_{i=1}^{d} a_{i,i} \neq 0$.

In general, $A \in \mathbb{R}^{d \times d}$ **is invertible**

⇔ its *d* row (resp. column) vectors are linearly independent.

$$
\Leftrightarrow \text{ its determinant } det(A) = \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,d} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{d,1} & a_{d,2} & \cdots & a_{d,d} \end{vmatrix} \neq 0.
$$

 \blacktriangleright The determinant is found recursively, developping on any row or column : $\textit{det}(\pmb{A}) = \sum_{i=1}^d a_{i,j} \textit{Cof}(\pmb{A})_{i,j}.$

- \triangleright *Cof*(*A*)_{*i*,*j*} = *det*((*a*_{*k*},*l*)_{*k*∈{1···*d*}\{*i*},*l*∈{1···*d*}\{*i*})}
- ► if $det(A) \neq 0$ then $A^{-1} = \frac{1}{det(A)} Cof(A)^{T}$.

Eigenvalues, eigenvectors

A a square matrix.

Definition (Eigenvalues and eigenvectors)

- \triangleright λ is an eigenvalue of A if there exists a vector $v \in \mathbb{R}^d$, $v \neq 0$ s.t. $Av = \lambda v$.
- **►** Equivalently : λ is an eigenvalue of *A* if $det(A \lambda I) = 0$.
- Any *v* verifying $Av = \lambda v$ is an eigenvector associated to the eigenvalue λ .
- \blacktriangleright Properties :
	- \triangleright For diagonal matrices, the eigenvalues are the diagonal elements (not for triangular matrices !).
	- \triangleright 0 is an eigenvalue iff *A* is not invertible.
- A is diagonalizable if there exists a basis of eigenvectors :

$$
A = PDP^{-1}
$$
 with *D* diagonal.

KORK ERKER ADAM ADA

Symmetric matrices and eigenvalues/eigenvectors :

 \triangleright A symmetric matrix is diagonalizable on an orthonormal basis :

 $A = PDP^T$ with *D* diagonal, $PP^T = I$.

- \triangleright A symmetric matrix is said
	- **►** semi-definite positive if $\langle x, Ax \rangle > 0$, $\forall x$. Its eigenvalues are > 0 .

 $A = B^T B$ for any $B \in \mathbb{R}^{m,d}$.

KORK ERKEY EL POLO

 \triangleright definite positive if $\langle x, Ax \rangle \geq 0$, $\forall x$ and $\langle x, Ax \rangle = 0$, ⇒ $x = 0$. Its eigenvalues are > 0 .

 $\bm A = \bm B^T \bm B$ for any $\bm B \in \mathbb{R}^{m,d}$ when $\bm A$ is invertible.

Symmetric matrices and eigenvalues/eigenvectors :

 \triangleright A symmetric matrix is diagonalizable on an orthonormal basis :

 $A = PDP^T$ with *D* diagonal, $PP^T = I$.

- \triangleright A symmetric matrix is said
	- **►** semi-definite positive if $\langle x, Ax \rangle > 0$, $\forall x$. Its eigenvalues are > 0 .

Any diagonal matrix, $A = B^T B$ for any $B \in \mathbb{R}^{m,d}$.

KORK ERKEY EL POLO

 \triangleright definite positive if $\langle x, Ax \rangle \geq 0$, $\forall x$ and $\langle x, Ax \rangle = 0$, ⇒ $x = 0$. Its eigenvalues are > 0 .

 $\bm A = \bm B^T \bm B$ for any $\bm B \in \mathbb{R}^{m,d}$ when $\bm A$ is invertible.

Symmetric matrices and eigenvalues/eigenvectors :

 \triangleright A symmetric matrix is diagonalizable on an orthonormal basis :

 $A = PDP^T$ with *D* diagonal, $PP^T = I$.

- \triangleright A symmetric matrix is said
	- **►** semi-definite positive if $\langle x, Ax \rangle > 0$, $\forall x$. Its eigenvalues are > 0 .

Any diagonal matrix, $A = B^T B$ for any $B \in \mathbb{R}^{m,d}$.

KORK ERKEY EL POLO

 \triangleright definite positive if $\langle x, Ax \rangle \geq 0$, ∀*x* and $\langle x, Ax \rangle = 0$, \Rightarrow *x* = 0. Its eigenvalues are > 0 .

 $\bm A = \bm B^T \bm B$ for any $\bm B \in \mathbb{R}^{m,d}$ when $\bm A$ is invertible.

Symmetric matrices and eigenvalues/eigenvectors :

 \triangleright A symmetric matrix is diagonalizable on an orthonormal basis :

 $A = PDP^T$ with *D* diagonal, $PP^T = I$.

- \triangleright A symmetric matrix is said
	- **►** semi-definite positive if $\langle x, Ax \rangle > 0$, $\forall x$. Its eigenvalues are > 0 .

Any diagonal matrix, $A = B^T B$ for any $B \in \mathbb{R}^{m,d}$.

 \triangleright definite positive if $\langle x, Ax \rangle \geq 0$, ∀*x* and $\langle x, Ax \rangle = 0$, \Rightarrow *x* = 0. Its eigenvalues are > 0 .

> *Any diagonal matrix without zeros,* $\mathsf{A} = \mathsf{B}^{\mathsf{T}}\mathsf{B}$ for any $\mathsf{B} \in \mathbb{R}^{m,d}$ when A is invertible.

Fix $B \in \mathbb{R}^{m \times d}$, note that :

- ► $B^T B \in \mathbb{R}^{d \times d}$ and $BB^T \in \mathbb{R}^{m \times m}$ are symmetric semi-definite positive :
	- ► $B^T B = V \Delta_1 V^T$ with Δ_1 diagonal, $VV^T = I$ in $\mathbb{R}^{d \times d}$.
	- ► $BB^T = U\Delta_2 U^T$ with Δ_2 diagonal, $UU^T = I$ in $\mathbb{R}^{m \times m}$.

\triangleright One can show :

► Δ_1 and Δ_2 have the same non-zero values $\lambda_1^2, \cdots, \lambda_k^2$. \bullet *B* = $IIDV^T$ with

$$
D = \text{diag}(\lambda_1, \cdots, \lambda_k) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_k & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \end{pmatrix} \in \mathbb{R}^{m,d}.
$$
\n
$$
\star \quad B^T = VDU^T \text{ with } D = \text{diag}(h_1, \cdots, \lambda_k) = \in \mathbb{R}^{d,m}.
$$

►
$$
B = UDV^T
$$
 is its singular value decomposition and
\n $\lambda_1, \dots, \lambda_k$ its singular values.

Fix $B \in \mathbb{R}^{m \times d}$, note that :

- ► $B^T B \in \mathbb{R}^{d \times d}$ and $BB^T \in \mathbb{R}^{m \times m}$ are symmetric semi-definite positive :
	- ► $B^T B = V \Delta_1 V^T$ with Δ_1 diagonal, $VV^T = I$ in $\mathbb{R}^{d \times d}$.
	- ► $BB^T = U\Delta_2 U^T$ with Δ_2 diagonal, $UU^T = I$ in $\mathbb{R}^{m \times m}$.
- \triangleright One can show :
	- ► Δ_1 and Δ_2 have the same non-zero values $\lambda_1^2, \cdots, \lambda_k^2$.

$$
\blacktriangleright \ B = UDV^T \text{ with}
$$

$$
D = diag(\lambda_1, \cdots, \lambda_k) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_k & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \end{pmatrix} \in \mathbb{R}^{m,d}.
$$

\n
$$
\triangleright B^T = VDU^T \text{ with } D = diag(I_1, \cdots, \lambda_k) = \in \mathbb{R}^{d,m}.
$$

 \blacktriangleright $B = UDV^T$ is its singular value decomposition and $\lambda_1, \cdots, \lambda_k$ its singular values. **YO A GERRITH A SHOP**

Other decompositions

\blacktriangleright III factorization

- \blacktriangleright for a diagonally dominant matrix A ($|a_{i,i}|\geq\sum j\neq i|a_{i,j}|$)
- \blacktriangleright $A = LU$, *L* is lower triangular, *U* is upper triangular with 1 on the diagonal.
- \blacktriangleright Ax = B solved in two steps : Lz = b and Ux = z!
- \triangleright Choleski decomposition
	- \triangleright for symmetric semi-definite positive matrices
	- \blacktriangleright $A = U^{\mathsf{T}} U$ with U upper triangular
	- \triangleright again easy to solve $Ax = b$ in two steps.

\triangleright QR decomposition

- **Figure 1** for any matrix $A \in \mathbb{R}^{m \times d}$
- \blacktriangleright $A = \overline{QR}$ with Q unitary in $\mathbb{R}^{m \times m}$ and R upper triangular.

KORK ERKEY EL POLO

Framework

\blacktriangleright Random Space

 \triangleright Q is the set of random events.

KORK ERKER ADAM ADA

 \blacktriangleright A is the set of "measurable" collections of events.

 \blacktriangleright $\mathbb{P}: A \rightarrow [0, 1]$ is the probability.

 $\mathbb{P}(\{\text{tails}\}) = 1 - p$, $\mathbb{P}(\{\text{heads}, \text{tails}\}) = 1$

\blacktriangleright Properties of $\mathbb P$

- \blacktriangleright 0 \lt P \lt 1.
- \blacktriangleright $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$,
- \blacktriangleright *A*, *B* ∈ *A*, *A* ∪ *B* = \emptyset \Rightarrow $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ (chain rule).
- \blacktriangleright Equivalently : *A*, *B* ∈ *A*, $\mathbb{P}(A \cup B) + \mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B)$.
- \triangleright Random events are observed only through measurable quantities called Random variables.

Framework

\blacktriangleright Random Space

 \triangleright Q is the set of random events.

 $\Omega = \{heads, tails\}$

 \blacktriangleright A is the set of "measurable" collections of events.

 $A = \{\emptyset, \{\text{heads}\}, \{\text{tails}\}, \{\text{heads}, \text{tails}\}\}\$

 \blacktriangleright $\mathbb{P}: \mathcal{A} \rightarrow [0, 1]$ is the probability.

$$
\mathbb{P}(\emptyset) = 0, \quad \mathbb{P}(\{heads\}) = p, \\ \mathbb{P}(\{tails\}) = 1 - p, \quad \mathbb{P}(\{heads, tails\}) = 1
$$

\blacktriangleright Properties of $\mathbb P$

$$
\textcolor{red}{\blacktriangleright} \ \ 0\leq \mathbb{P}\leq 1,
$$

$$
\text{~} \mathbb{P}(\emptyset)=0, \; \mathbb{P}(\Omega)=1,
$$

- \blacktriangleright *A*, *B* ∈ *A*, *A* ∪ *B* = \emptyset \Rightarrow $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ (chain rule).
- \blacktriangleright Equivalently : *A*, *B* ∈ *A*, $\mathbb{P}(A \cup B) + \mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B)$.
- \triangleright Random events are observed only through measurable quantities called Random variables.

Random variables

 \triangleright A Random variable is a measurable function $X : (\Omega, \mathcal{A}) \rightarrow (\mathcal{F}, \mathcal{B}(\mathcal{F}))$

 \hookrightarrow the measurability means $F\subset \mathcal{F} \Rightarrow X^{-1}(F)\subset \mathcal{A}.$

- \blacktriangleright *X*(Ω) \subset *F* may be
	- Inite $(\{0, 1\})$ or infinite (\mathbb{R}) , discrete (\mathbb{N}) or continuous (\mathbb{R})

• have one or several variables (\mathbb{R}^d)

 \blacktriangleright The measurability of X implies that $\mathbb P$ may be transported to $\mathcal F$ through X :

$$
\mathbb{P}(\{\omega/X(\omega)\in\mathcal{F}\})=\mathbb{P}(X\in\mathcal{F})\stackrel{\mathsf{def}}{=}\mathbb{P}_X(\mathcal{F})
$$

 $\mathbb P$ is a probability on (Ω, A) \mathbb{P}_X is a probability on $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$.

Random variables

 \triangleright A Random variable is a measurable function $X : (\Omega, \mathcal{A}) \rightarrow (\mathcal{F}, \mathcal{B}(\mathcal{F}))$

 \hookrightarrow the measurability means $F\subset \mathcal{F} \Rightarrow X^{-1}(F)\subset \mathcal{A}.$

- \blacktriangleright *X*(Ω) \subset *F* may be
	- Inite $(\{0, 1\})$ or infinite (\mathbb{R}) , discrete (\mathbb{N}) or continuous (\mathbb{R})

discrete/continuous random variables

• have one or several variables (\mathbb{R}^d)

random variables/ random vectors.

 \blacktriangleright The measurability of X implies that $\mathbb P$ may be transported to $\mathcal F$ through X :

$$
\mathbb{P}(\{\omega/X(\omega)\in\mathcal{F}\})=\mathbb{P}(X\in\mathcal{F})\stackrel{\mathsf{def}}{=}\mathbb{P}_X(\mathcal{F})
$$

 $\mathbb P$ is a probability on (Ω, A) \mathbb{P}_X is a probability on $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$.

Examples

► A single coin toss is a Bernoulli variable with parameter p

$$
\quad \blacktriangleright \; X: (\Omega, \mathcal{A}) \to (\{0,1\}, 2^{\{0,1\}}),
$$

$$
\blacktriangleright \mathbb{P}(X=1)=p, \text{ (hence } \mathbb{P}(X=0)=p).
$$

► Notation :
$$
X \sim B(p)
$$
.

Interpretical The sum of *n* independent coin tosses is a multinomial with parameter *n*, *p*

$$
\blacktriangleright Y: (\Omega, \mathcal{A}) \to (\{0, 1, \cdots, n\}, 2^{\{0, 1, \cdots, n\}}),
$$

 $Y = X_1 + X_2 + \cdots + X_n$ where the X_i are independent c opies \equiv *B*(*p*).

- **►** $\mathbb{P}(Y = k) = {n \choose k} p^k (1-p)^{n-k}$ for $k = 0 \cdots n$.
- ^I Notation : *Y* ∼ *Bin*(*n*, *p*).

 \triangleright *F* is discrete $\mathcal{F} = \{x_1, x_2, \cdots, x_N\}$, *N* finite or not.

$$
\triangleright X: (\Omega, \mathcal{A}) \to (\mathcal{F}, 2^{\mathcal{F}}),
$$

▶ Notation : $\mathbb{P}(X = x_i) = p_i$ *Note that* $p_i ≥ 0$ *and* $\sum_{i=1}^{N} p_i = 1$ *.*

 \blacktriangleright The mean value or expectation of X is :

$$
\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)
$$

$$
\mathbb{E}[X] = \sum_{i=1}^{N} x_i \mathbb{P}_X(x_i)
$$

Here,
$$
\mathbb{E}[X] = \sum_{i=1}^{N} x_i p_i
$$

 \triangleright The variance of X is its deviation from its mean :

$$
Var[X] = \mathbb{E}[(X - E[X])^{2}]
$$

$$
Var[X] = \mathbb{E}[X^{2}] - E[X]^{2}
$$

Here,
$$
Var[X] = \sum_{i=1}^{N} x_i^2 p_i - (\sum_{i=1}^{N} x_i p_i)^2
$$
.

 \blacktriangleright *F* is discrete $\mathcal{F} = \{x_1, x_2, \cdots, x_N\}$, *N* finite or not.

$$
\blacktriangleright X: (\Omega, \mathcal{A}) \to (\mathcal{F}, 2^{\mathcal{F}}),
$$

- ▶ Notation : $\mathbb{P}(X = x_i) = p_i$. *Note that* $p_i ≥ 0$ *and* $\sum_{i=1}^{N} p_i = 1$ *.*
- \blacktriangleright The mean value or expectation of X is :

$$
\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)
$$

$$
\mathbb{E}[X] = \sum_{i=1}^{N} x_i \mathbb{P}_X(x_i)
$$

Here,
$$
\mathbb{E}[X] = \sum_{i=1}^{N} x_i p_i
$$

 \triangleright The variance of X is its deviation from its mean :

$$
Var[X] = \mathbb{E}[(X - E[X])^{2}]
$$

$$
Var[X] = \mathbb{E}[X^{2}] - E[X]^{2}
$$

Here,
$$
Var[X] = \sum_{i=1}^{N} x_i^2 p_i - (\sum_{i=1}^{N} x_i p_i)^2
$$
.

 \triangleright *F* is discrete $\mathcal{F} = \{x_1, x_2, \cdots, x_N\}$, *N* finite or not.

$$
\blacktriangleright X: (\Omega, \mathcal{A}) \to (\mathcal{F}, 2^{\mathcal{F}}),
$$

- ▶ Notation : $\mathbb{P}(X = x_i) = p_i$. *Note that* $p_i ≥ 0$ *and* $\sum_{i=1}^{N} p_i = 1$ *.*
- \triangleright The mean value or expectation of X is :

$$
\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)
$$

$$
\mathbb{E}[X] = \sum_{i=1}^{N} x_i \mathbb{P}_X(x_i)
$$

Here,
$$
\mathbb{E}[X] = \sum_{i=1}^{N} x_i p_i
$$

 \triangleright The variance of X is its deviation from its mean :

$$
Var[X] = \mathbb{E}[(X - E[X])^{2}]
$$

$$
Var[X] = \mathbb{E}[X^{2}] - E[X]^{2}
$$

Here,
$$
Var[X] = \sum_{i=1}^{N} x_i^2 p_i - (\sum_{i=1}^{N} x_i p_i)^2
$$
.

 \blacktriangleright More generally for any measurable function $f: \mathcal{F} \to \mathbb{R}^d,$ the expectation of $f(X)$ is :

$$
\mathbb{E}[f(X)] = \sum_{\omega \in \Omega} f(x) \mathbb{P}(X(\omega) = x)
$$

$$
\mathbb{E}[f(X)] = \sum_{i=1}^{N} f(x_i) \mathbb{P}_X(x_i)
$$

Here,
$$
\mathbb{E}[f(X)] = \sum_{i=1}^{N} f(x_i) p_i
$$

KO K K O K X 3 K X 3 K X X X X X X X X 3 K

Bernoulli variables

$$
\begin{array}{l} \textbf{P} & X \sim B(p), \text{ hence} \\ \mathcal{F} = \{0, 1\}, \, p_1 = p, \, p_0 = 1 - p. \end{array}
$$

 \blacktriangleright The expectation of X is :

$$
\mathbb{E}[X] = \sum_{i=1}^{N} x_i p_i
$$

\n
$$
\mathbb{E}[X] = 0 * (1-p) + 1 * p
$$

\n
$$
\mathbb{E}[X] = p
$$

 \blacktriangleright The variance of X is :

$$
Var[X] = \sum_{i=1}^{N} x_i^2 p_i - (\sum_{i=1}^{N} x_i p_i)^2
$$

\n
$$
Var[X] = 0^2 (1-p) + 1^2 * p - p^2
$$

\n
$$
Var[X] = p(1-p).
$$

In The expectation of $f(X)$ is :

$$
\mathbb{E}[f(X)] = \sum_{i=1}^{N} f(x_i)p_i
$$

\n
$$
\mathbb{E}[f(X)] = f(0) * (1-p) + f(1) * p.
$$

Discrete random vectors

 \triangleright *X* has *d* coordinates, each of which is a discrete variable. $X = (X_1, \cdots, X_d)^T : (\Omega, \mathcal{A}) \rightarrow (\mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_d, 2^{\mathcal{F}}),$

$$
\blacktriangleright \mathbb{P}(X = x_i) = p_i \leftrightarrow \mathbb{P}(X = (x^1, \cdots, x^d)), \text{ where } x^i \in \mathcal{F}_i.
$$

 \triangleright The expectation of X is the vector of the expectation of each coordinate :

$$
\mathbb{E}[X] = (\mathbb{E}[X_1], \cdots, \mathbb{E}[X_i], \cdots \mathbb{E}[X_d])^T
$$

row i

- \triangleright The variance is replaced by the covariance matrix :
	- \triangleright Cov(*X*) is a $d \times d$ -matrix.

•
$$
Cov(X)_{i,i} = Var(X_i)
$$
.

► If $i \neq j$, Cov $(X)_{i,j}$ = Cov (X_i, X_j) = $\mathbb{E}[X_iX_j]$ – $\mathbb{E}[X_i]\mathbb{E}[X_j]$.

Discrete random vectors

Example

- \blacktriangleright $X = (X_1, X_2)$ with
	- \blacktriangleright *X*₁ ∼ *B*(p_1),
	- \blacktriangleright *X*₁ ∼ *B*(p_2),

 \blacktriangleright *X*₁ and *X*₂ are decorrelated i.e. Cov(*X*₁, *X*₂) = 0.

 \blacktriangleright The expectation of X is :

$$
\mathbb{E}[X] = \left(\begin{array}{c} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \end{array}\right) = \left(\begin{array}{c} \rho_1 \\ \rho_2 \end{array}\right)
$$

 \blacktriangleright The covariance matrix of X is :

$$
Cov[X] = \left(\begin{array}{cc} Var[X_1] & Cov[X_1, X_2] \\ Cov[X_2, X_1] & Var[X_2] \end{array}\right) = \left(\begin{array}{cc} p_1(1-p_1) & 0 \\ 0 & p_2(1-p_2) \end{array}\right)
$$

Note : independence ⇒ *decorrelation but the inverse is false !*

Continuous random variables

Real random variables

$$
\blacktriangleright X: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).
$$

$$
\blacktriangleright \mathbb{P}(X = x_i) = p_i \leftrightarrow \mathbb{P}(X \in [a, b]) = P_X([a, b]).
$$

Note: $P_X \ge 0$ and $\int_{\mathbb{R}} dP_X(x) = 1$.

 \triangleright The expectations and variances are defined as previsouly :

$$
\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega) \n\mathbb{E}[X] = \int_{\mathbb{R}} x d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[f(X)] = \int_{\Omega} f(X(\omega))d\mathbb{P}(\omega) \n\mathbb{E}[f(X)] = \int_{\mathbb{R}} f(x)d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[\text{Var}(X)] = \mathbb{E}[X^2] - E[X]^2
$$

If $dP_X(x) = f_X(x)dx$ then f_X is the probability density function of X (pdf).

Continuous random variables

Uniform distribution on [*a*, *b*]

- \blacktriangleright *X* ∼ $U_{[a,b]}$
- ► $\mathbb{E}[f(X)] = \int_{\mathbb{R}} f(x) dP_X(x) = \frac{1}{b-a} \int_{[a,b]} f(x) dx$
- ► pdf : $f_X(x) = \frac{1}{b-a} \delta_{[a,b]}(x)$

Gaussian distribution

of mean m and variance σ^2 :

$$
\blacktriangleright X \sim \mathcal{N}_{m,\sigma^2}
$$

$$
\blacktriangleright \mathbb{E}[f(X)] = \int_{\mathbb{R}} f(x) dP_X(x) = \int_{\mathbb{R}} f(x) * \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-m)^2}{2\sigma^2(x)}} dx
$$

$$
\blacktriangleright \text{pdf}: f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-m)^2}{2\sigma^2(x)}}
$$

All we have seen previously extends to continuous random vectors such as :

Gaussian vector of mean **m** and covariance matrix Σ 2 :

$$
X = (X_1, \dots, X_d) \sim \mathcal{N}_{m, \Sigma^2}
$$

\n
$$
\triangleright \text{pdf}: f_X(x) = \frac{1}{(2\pi \det(\Sigma))^{d/2}} \exp\left\{-\frac{(x-m)^T \Sigma^{-1} (x-m)}{2}\right\}
$$

\n
$$
\mathbb{E}[f(X)] = \int_{\mathbb{R}^d} f(x_1, \dots, x_d) dP_X(x_1, \dots, x_d)
$$

\n
$$
= \int_{\mathbb{R}^d} f(x) * \frac{1}{(2\pi \det(\Sigma))^{d/2}} \exp\left\{-\frac{(x-m)^T \Sigma^{-1} (x-m)}{2}\right\} dx
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Joint probabilities

Two simultaneaous coin tosses :

- Each coin is fair $\mathbb{P}(heads) = \frac{1}{2}$
- \triangleright All the possible outcomes of both draws ({*heads*, *heads*},{*heads*, *tails*},{*tails*, *heads*},{*tails*, *tails*}) are equiprobable with $\mathbb{P}(\{heads, heads\}) = \frac{1}{4}$.
- \blacktriangleright Consider $Z = (X_1, X_2)$, X_i the random variable for tossing coin *i*. This means that :

$$
\mathbb{P}(Z \in A \times B) = \mathbb{P}(X_1 \in A)\mathbb{P}(X_2 \in B)
$$

or in other words :

$$
P_{(X_1,X_2)} = P_{X_1} P_{X_2}
$$

KOD KOD KED KED E VOOR

 X_1 and X_2 are independent.

Joint probabilities

But this is not always the case :

$$
\blacktriangleright \mathbb{P}(X = positive) = 190/1100
$$

$$
\blacktriangleright \mathbb{P}(Y = \textit{sick}) = 100/1100
$$

 \triangleright Clearly :

 $P((X, Y) = (positive, sick)) = 90/1100$

 $P(X = positive)P(Y = sick) = 100 * 190/1100^2$

KORKARA KERKER DAGA

Joint probabilities

But this is not always the case :

$$
\blacktriangleright \mathbb{P}(X = positive) = 190/1100
$$

$$
\blacktriangleright \mathbb{P}(Y = \textit{sick}) = 100/1100
$$

 \blacktriangleright Clearly :

$$
\mathbb{P}((X, Y) = (positive, sick)) = 90/1100
$$

\neq

 $P(X = positive)P(Y = sick) = 100 * 190/1100^2$

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Independence

Definition (Independence)

X and *Y* are independent random variables (*X* ⊥⊥ *Y*) if and only if their joint probability $\mathbb{P}_{X,Y}$ is the product of their marginal probabilities : $\mathbb{P}_{X,Y} = \mathbb{P}_X \mathbb{P}_Y$.

Also, $X_1,..X_n$ are independent iff $\mathbb{P}_{X_1,\cdots,X_n} = \prod_{i=1}^n P_{X_i}.$

\blacktriangleright Equivalently :

$$
\blacktriangleright \forall A, B \ \mathbb{P}((X, Y) \in A \times B) = \mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

$$
\blacktriangleright \forall f, g \ \mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]
$$

- If *X* and *Y* are independent then $Cov(X, Y) = 0$.
- \blacktriangleright For Gaussian variables only : Cov(*X*, *Y*) = 0 \Leftrightarrow *X* \perp *Y*.

If X and Y are indepedent, knowing *X* does not give any information on *Y*, what if they are not inde[pe](#page-48-0)[nd](#page-50-0)[e](#page-48-0)[n](#page-49-0)[t](#page-50-0) [?](#page-51-0)

Independence

Definition (Independence)

X and *Y* are independent random variables (*X* ⊥⊥ *Y*) if and only if their joint probability $\mathbb{P}_{X,Y}$ is the product of their marginal probabilities : $\mathbb{P}_{X,Y} = \mathbb{P}_{X} \mathbb{P}_{Y}$.

Also, $X_1,..X_n$ are independent iff $\mathbb{P}_{X_1,\cdots,X_n} = \prod_{i=1}^n P_{X_i}.$

\blacktriangleright Equivalently :

$$
\blacktriangleright \forall A, B \ \mathbb{P}((X, Y) \in A \times B) = \mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

$$
\blacktriangleright \forall f, g \ \mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]
$$

- If *X* and *Y* are independent then $Cov(X, Y) = 0$.
- \blacktriangleright For Gaussian variables only : Cov(*X*, *Y*) = 0 \Leftrightarrow *X* \perp *Y*.

If X and Y are indepedent, knowing *X* does not give any **information on Y, what if they are not inde[pe](#page-49-0)[nd](#page-51-0)[e](#page-48-0)[n](#page-49-0)[t](#page-50-0)?**
All the series are series and the series and the series and the series and the series are series and the series of the series and the series and the series and the seri

KORK ERKER ADAM ADA

 \blacktriangleright Amongst all people : $P(Y = sick) = 100/1100$, $P(Y = fit) = 1000/1100$ \triangleright Amongst people with a positive test : $P(Y = sick|X = positive) = 90/190$, $P(Y = \text{fit}|X = \text{positive}) = 100/190$, \blacktriangleright Amongst people with a negative test : $P(Y = sick|X = negative) = 10/910$, $P(Y = \text{fit}|X = \text{negative}) = 900/910$,

 \blacktriangleright Amongst all people :

 $P(Y = sick) = 100/1100$, $P(Y = fit) = 1000/1100$

 \triangleright Amongst people with a positive test :

 $\mathbb{P}(Y = \text{sick}|X = \text{positive}) = 90/190$, $P(Y = \text{fit}|X = \text{positive}) = 100/190$,

Amongst people with a negative test :

 $P(Y = sick|X = negative) = 10/910$ $P(Y = \text{fit}|X = \text{negative}) = 900/910$,

KORK ERKER ADAM ADA

 \triangleright Amongst people with a positive test :

 $P(Y = sick|X = positive) = 90/190$, $P(Y = \text{fit}|X = \text{positive}) = 100/190$,

► Note :
\n
$$
\mathbb{P}(Y = sick|X = negative)\mathbb{P}(X = negative) = \mathbb{P}((Y, X) = (sick, negative)),
$$

Definition (Conditional probabilities)

 $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A)$

More generally :

Definition

The conditional probability $\mathbb{P}_{X|Y}$ is the probability s.t. :

$$
\forall f, \mathbb{E}[f(X, Y)] = \int f(X, Y) dP_{X,Y} = \int dP_Y \int f(X, Y) dP_{X|Y}
$$

- \blacktriangleright For discrete random variables : $\mathbb{P}((X, Y) = (x, y)) = \mathbb{P}(Y = y | X = x) \mathbb{P}(X = x)$
- If (X, Y) and *Y* have pdf $p_{(X, Y)}$ and p_Y , then $P_{X|Y}$ is a the correspoding pdf : $p_{X|Y} = \frac{p_{(X,Y)}}{p_Y}$ *pY*

 \blacktriangleright $\mathbb{E}[X|Y]$ is the conditional esperance of X given Y is a random variable. It is the projection of *X* on the set of rndom variables of the form *g*(*Y*).

Bayes rule, maximum likelihood, maximum a posteriori

Framework :

- ▶ *Y* is a random variable, *Y* is observed
- \triangleright \ominus is a random variable, \ominus is the parameter.
- **► Goal : given observed data** *Y***, find the best guess for Θ.**

Probabilities

- **Figure 1** The conditional probability of the observations : $\mathbb{P}_{Y|\Theta}$.
- \blacktriangleright The prior : \mathbb{P}_{Θ} .
- **I** The posterior : $\mathbb{P}_{\Theta|Y}$.

Bayes rule

$$
\mathbb{P}_{\Theta|Y}(\Theta,\boldsymbol{y})=\tfrac{\mathbb{P}_{Y|\Theta}(\boldsymbol{y},\theta)\mathbb{P}_{\Theta}(\theta)}{\int P_{Y|\Theta}(\theta',\boldsymbol{y})\mathbb{P}_{\Theta}(\theta')d\theta}
$$

 000

Estimator

- **•** Maximum likelihood : $\theta_{ML} = \argmax_{\theta} \mathbb{P}_{Y|\Theta}(y, \theta)$.
- **•** Maximum a posteriori : $\theta_{MAP} = \argmax_{\theta} \mathbb{P}_{\Theta|Y}(\theta, y)$.
- Bayes mean square estimator : $\theta_M = \mathbb{E}[\Theta|Y]$ $\theta_M = \mathbb{E}[\Theta|Y]$ $\theta_M = \mathbb{E}[\Theta|Y]$ [.](#page-55-0)

Information theory

- \triangleright Entropy measures the amount of disorder of X :
	- \blacktriangleright *H*(*X*) = − $\int P_X(x) \log(P_X(x)) dx$. Note : *H*(*X*) ≥ 0.
	- \blacktriangleright For discrete random variables :
		- \triangleright *X* ∼ U maximizes the entropy *H* = log(*N*).
		- ^I *X* ∼ δ*xⁱ* minimizes the entropy *H* = 1 *N* log(*N*).
- \blacktriangleright The Kullback-Leibler divergence compares the laws of X and *Y* :
	- $P(X||Y) = \int P_X(x) \log \left(\frac{P_X(x)}{P_Y(x)} \right)$ $\frac{P_X(x)}{P_Y(x)}$ *dx*. Note : *D*(*X*||*Y*) \neq *D*(*Y*||*X*).
	- \triangleright $D(X||Y) > 0$ and $[D(X||Y) = 0 \Leftrightarrow P_X = P_Y].$
- \triangleright The mutual information measures the amount of shared information between *X* and *Y* :
	- $I(X, Y) = D(P_{(X, Y)}||P_X P_Y).$ Note : $I(X, Y) = I(Y, X).$
	- \blacktriangleright *I*(*X*, *Y*) > 0 and $[I(X, Y) = 0 \Leftrightarrow X \perp Y].$
- \triangleright The perplexity is a measure of complexity of a distribution :
	- $P(X) = 2^{H(X)}$.
	- Ithis is a common way of evaluating l[ang](#page-55-0)[ua](#page-57-0)[g](#page-55-0)[e](#page-57-0) [m](#page-57-0)[od](#page-56-0)e[ls](#page-30-0)[.](#page-31-0)
All the series is a second series of the series is series and series in the series of the series of the series

- \triangleright Statistical learning (classification) :
	- \blacktriangleright Goal : from i.i.d¹ samples $(x_i, y_i)_{i=1 \cdots n}$, find a hypothesis *f* that minimizes the risk : E[*loss*(*f*(*X*), *Y*)]
	- \blacktriangleright $\mathbb{E}[loss(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum loss(f(x_i), y_i)$

 \triangleright Some tools to do so are :

- **I** Markov inequality : $\mathbb{P}(X > \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$
- **Exercise** Chebicheff inequality : $\mathbb{P}(|X-\mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{\epsilon^2}$ Apply this to $S_n = \frac{1}{n} \sum_{i=1}^n X_i$, with X_i i.i.d X , one gets :

$$
\mathbb{P}(|\mathcal{S}_n - \mathbb{E}[X]| \geq \epsilon) \leq \tfrac{\mathsf{Var}[X]}{n\epsilon^2}
$$

 $(S_n$ is the empirical risk, $\mathbb{E}[X]$ the true one.)

 \blacktriangleright Chernoff-Hoeffding bound : $\mathbb{P}(|S_n-\mathbb{E}[X]|\geq \epsilon)\leq e^{-2n\epsilon^2}$

¹ independent identically distributed

- \triangleright Statistical learning (classification) :
	- \blacktriangleright Goal : from i.i.d¹ samples $(x_i, y_i)_{i=1 \cdots n}$, find a hypothesis *f* that minimizes the risk : E[*loss*(*f*(*X*), *Y*)]
	- \blacktriangleright $\mathbb{E}[loss(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum loss(f(x_i), y_i)$

 \hookrightarrow need to control how far is the empirical loss to the true one.

- \triangleright Some tools to do so are :
	- **I** Markov inequality : $\mathbb{P}(X > \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$
	- **Exercise** Chebicheff inequality : $\mathbb{P}(|X-\mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{\epsilon^2}$ Apply this to $S_n = \frac{1}{n} \sum_{i=1}^n X_i$, with X_i i.i.d X , one gets :

$$
\mathbb{P}(|\mathcal{S}_n - \mathbb{E}[X]| \geq \epsilon) \leq \tfrac{\mathsf{Var}[X]}{n\epsilon^2}
$$

 $(S_n$ is the empirical risk, $\mathbb{E}[X]$ the true one.)

 \blacktriangleright Chernoff-Hoeffding bound : $\mathbb{P}(|S_n-\mathbb{E}[X]|\geq \epsilon)\leq e^{-2n\epsilon^2}$

¹ independent identically distributed

- \triangleright Statistical learning (classification) :
	- \blacktriangleright Goal : from i.i.d¹ samples $(x_i, y_i)_{i=1 \cdots n}$, find a hypothesis *f* that minimizes the risk : E[*loss*(*f*(*X*), *Y*)]
	- \blacktriangleright $\mathbb{E}[loss(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum loss(f(x_i), y_i)$

 \hookrightarrow need to control how far is the empirical loss to the true one.

- \triangleright Some tools to do so are :
	- **I** Markov inequality : $\mathbb{P}(X > \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$ ϵ
	- **Exercise** Chebicheff inequality : $\mathbb{P}(|X \mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{\epsilon^2}$ ϵ^2 Apply this to $S_n = \frac{1}{n} \sum_{i=1}^n X_i$, with X_i i.i.d X , one gets :

$$
\mathbb{P}(|S_n - \mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{n\epsilon^2}
$$

KID KA KERKER E VOOR

 $(S_n$ is the empirical risk, $\mathbb{E}[X]$ the true one.)

 \blacktriangleright Chernoff-Hoeffding bound : $\mathbb{P}(|S_n-\mathbb{E}[X]|\geq \epsilon)\leq e^{-2n\epsilon^2}$

¹ independent identically distributed

- \triangleright Statistical learning (classification) :
	- \blacktriangleright Goal : from i.i.d¹ samples $(x_i, y_i)_{i=1 \cdots n}$, find a hypothesis *f* that minimizes the risk : E[*loss*(*f*(*X*), *Y*)]
	- \blacktriangleright $\mathbb{E}[loss(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum loss(f(x_i), y_i)$

 \hookrightarrow need to control how far is the empirical loss to the true one.

- \triangleright Some tools to do so are :
	- **I** Markov inequality : $\mathbb{P}(X > \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$ ϵ
	- **Exercise** Chebicheff inequality : $\mathbb{P}(|X \mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{\epsilon^2}$ ϵ^2 Apply this to $S_n = \frac{1}{n} \sum_{i=1}^n X_i$, with X_i i.i.d X , one gets :

 $\mathbb{P}(|\mathcal{S}_n - \mathbb{E}[X]| \geq \epsilon) \leq \frac{\textsf{Var}[X]}{n\epsilon^2}$ *n* 2

KID KA KERKER E VOOR

 $(S_n$ is the empirical risk, $\mathbb{E}[X]$ the true one.)

 \blacktriangleright Chernoff-Hoeffding bound : $\mathbb{P}(|S_n-\mathbb{E}[X]|\geq \epsilon)\leq e^{-2n\epsilon^2}$

¹ independent identically distributed

 \triangleright Proof of Markov inequality

$$
\mathbb{E}[X] = \int x d\mathbb{P}_X(x) = \int_{x \ge \epsilon} x d\mathbb{P}_X(x) + \int_{x < \epsilon} x d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \int_{x \ge \epsilon} x d\mathbb{P}_X(x) \le \epsilon \int_{x \ge \epsilon} d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \epsilon \mathbb{P}(X \ge \epsilon)
$$

From bounds to confidence intervals Chebicheff inequality : $\mathbb{P}(|S_n - \mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{n\epsilon^2}$ *n* 2

$$
\triangleright \ \frac{\text{Var}[X]}{n\epsilon^2} \le \delta \ \text{implies} : \mathbb{P}(|S_n - \mathbb{E}[X]| \ge \epsilon) \le \delta \ \text{or}
$$

If $n \geq \frac{\text{Var}[X]}{\delta \epsilon^2}$ then with probability at least 1–δ, $|S_n - \mathbb{E}[X]| \leq \epsilon$.

▶ Then if
$$
n = \frac{\text{Var}[X]}{\delta \epsilon^2}
$$
, we obtain :

For all *n*, with probability at least 1 – $\delta,$ $|S_n - \mathbb{E}[X]| \leq \sqrt{\frac{\text{Var}[X]}{n\delta}}.$ $\mathbb{E}[\mathit{loss}(f(X),Y)]\in \mathbb{E}_{emp}[\mathit{loss}(f(X),Y)]+\biggl[-\sqrt{\frac{\text{Var}[X]}{n\delta}},\sqrt{\frac{\text{Var}[X]}{n\delta}}\biggr]$

 \triangleright Proof of Markov inequality

$$
\mathbb{E}[X] = \int x d\mathbb{P}_X(x) = \int_{x \ge \epsilon} x d\mathbb{P}_X(x) + \int_{x < \epsilon} x d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \int_{x \ge \epsilon} x d\mathbb{P}_X(x) \le \epsilon \int_{x \ge \epsilon} d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \epsilon \mathbb{P}(X \ge \epsilon)
$$

 \blacktriangleright From bounds to confidence intervals Chebicheff inequality : $\mathbb{P}(|S_n - \mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{n\epsilon^2}$ *n* 2

$$
\triangleright \ \frac{\text{Var}[X]}{n\epsilon^2} \le \delta \ \text{implies} : \mathbb{P}(|S_n - \mathbb{E}[X]| \ge \epsilon) \le \delta \ \text{or}
$$

If $n \geq \frac{\text{Var}[X]}{\delta \epsilon^2}$ then with probability at least 1–δ, $|S_n - \mathbb{E}[X]| \leq \epsilon$.

► Then if
$$
n = \frac{\text{Var}[X]}{\delta \epsilon^2}
$$
, we obtain :

For all *n*, with probability at least 1 – $\delta,$ $|S_n - \mathbb{E}[X]| \leq \sqrt{\frac{\text{Var}[X]}{n\delta}}.$ $\mathbb{E}[\mathit{loss}(f(X),Y)]\in \mathbb{E}_{emp}[\mathit{loss}(f(X),Y)]+\biggl[-\sqrt{\frac{\text{Var}[X]}{n\delta}},\sqrt{\frac{\text{Var}[X]}{n\delta}}\biggr]$

 \triangleright Proof of Markov inequality

$$
\mathbb{E}[X] = \int x d\mathbb{P}_X(x) = \int_{x \ge \epsilon} x d\mathbb{P}_X(x) + \int_{x < \epsilon} x d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \int_{x \ge \epsilon} x d\mathbb{P}_X(x) \le \epsilon \int_{x \ge \epsilon} d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \epsilon \mathbb{P}(X \ge \epsilon)
$$

 \blacktriangleright From bounds to confidence intervals Chebicheff inequality : $\mathbb{P}(|S_n - \mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{n\epsilon^2}$ *n* 2

$$
\triangleright \ \frac{\text{Var}[X]}{n\epsilon^2} \le \delta \ \text{implies} : \mathbb{P}(|S_n - \mathbb{E}[X]| \ge \epsilon) \le \delta \ \text{or}
$$

If $n \geq \frac{\text{Var}[X]}{\delta \epsilon^2}$ then with probability at least 1–δ, $|S_n - \mathbb{E}[X]| \leq \epsilon$.

► Then if
$$
n = \frac{\text{Var}[X]}{\delta \epsilon^2}
$$
, we obtain :

For all *n*, with probability at least 1 – δ , $|S_n - \mathbb{E}[X]| \leq \sqrt{\frac{\text{Var}[X]}{n\delta}}.$ $\mathbb{E}[\mathit{loss}(f(X),Y)]\in \mathbb{E}_{emp}[\mathit{loss}(f(X),Y)]+\biggl[-\sqrt{\frac{\text{Var}[X]}{n\delta}},\sqrt{\frac{\text{Var}[X]}{n\delta}}\biggr]$

 \triangleright Proof of Markov inequality

$$
\mathbb{E}[X] = \int x d\mathbb{P}_X(x) = \int_{x \ge \epsilon} x d\mathbb{P}_X(x) + \int_{x < \epsilon} x d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \int_{x \ge \epsilon} x d\mathbb{P}_X(x) \le \epsilon \int_{x \ge \epsilon} d\mathbb{P}_X(x)
$$

$$
\mathbb{E}[X] \le \epsilon \mathbb{P}(X \ge \epsilon)
$$

 \blacktriangleright From bounds to confidence intervals Chebicheff inequality : $\mathbb{P}(|S_n - \mathbb{E}[X]| \geq \epsilon) \leq \frac{\text{Var}[X]}{n\epsilon^2}$ *n* 2

$$
\triangleright \ \frac{\text{Var}[X]}{n\epsilon^2} \le \delta \ \text{implies} : \mathbb{P}(|S_n - \mathbb{E}[X]| \ge \epsilon) \le \delta \ \text{or}
$$

If $n \geq \frac{\text{Var}[X]}{\delta \epsilon^2}$ then with probability at least 1–δ, $|S_n - \mathbb{E}[X]| \leq \epsilon$.

► Then if
$$
n = \frac{\text{Var}[X]}{\delta \epsilon^2}
$$
, we obtain :

For all *n*, with probability at least 1 – δ , $|S_n - \mathbb{E}[X]| \leq \sqrt{\frac{\text{Var}[X]}{n\delta}}$. $\mathbb{E}[\mathit{loss}(f(X),Y)]\in \mathbb{E}_{emp}[\mathit{loss}(f(X),Y)]+\biggl[-\sqrt{\frac{\text{Var}[X]}{n\delta}},\sqrt{\frac{\text{Var}[X]}{n\delta}}\biggr]$ – K ロ ⊁ K 個 ≯ K 君 ≯ K 君 ≯ …

Minimizing a function

Goal : find the global minimimum/minimizer of $f:\mathbb{R}^d\to\mathbb{R}.$

Potentials problems / partial solutions :

Existence of a global minimum?

 \hookrightarrow *f* is continuous and coercive $(f(x) \rightarrow \infty$ when $||x|| \rightarrow \infty$).

- \triangleright Characterization of the minimizers ?
	- ,→ *f* is *C* 1 . If *x* ∗ is a local minimizer then its gradient $\nabla f(x) = \mathbf{0}_{\mathbb{R}^d}$.
	- \hookrightarrow *f* is *C*². *x*^{*} is a local minimizer iff its gradient $\nabla f(x) = 0$ _ℝ and its hessian $\nabla^2 f(x)$ is a non-negative matrix.
- \triangleright Characterization of the global minimizers ?

Zeroing the gradient is not sufficient (maxima, saddle points,...) !

Minimizing a function

Goal : find the global minimimum/minimizer of $f:\mathbb{R}^d\to\mathbb{R}$ for *x* ∈ *Q*.

- **Constrained minimization (** $Q \neq \mathbb{R}^d$ **) : characterization of** the minimizers ?
	- \rightarrow minimizers may be on the border of $Q: \nabla f(x^*) \neq 0$!
- \blacktriangleright Gradient descents :
	- ► Algorithms of the form : $x^{t+1} = x^t \gamma_t \nabla f(x^t)$
	- \blacktriangleright Ex : Gauss-Newton, conjuguate gradient descent,...

- ► Convergence?
- \blacktriangleright What if *f* is not differentiable ?

Convex fonctions

Definition (convex functions)

$$
f: \mathbb{R}^d \to \mathbb{R} \text{ is convex iff } \forall \lambda \in [0, 1], \ \forall x, y \in \mathbb{R}^d, \\ f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)
$$

 $f:\mathbb{R}^d\to\mathbb{R}$ is stricly convex iff $\forall\lambda\in[0,1],\ \forall x,y\in\mathbb{R}^d,$ s.t $x\neq y$ $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$

\triangleright Other characterizations

- If $f \in C^2$, *f* convex iff its $\nabla^2 f$ is non-negative.
- ► $f: \mathbb{R}^d \to \mathbb{R}$, fconvex iff f' is non-decreasing iff $f'' \geq 0$
- \blacktriangleright *f* lies over all its tangents.
- ^I *Ex. : affine fonctions, square loss,* exp*,...*
- \blacktriangleright Properties
	- \triangleright no maxima, no saddle points and non local minima !
	- $\triangleright \nabla f(x) = 0 \Rightarrow x$ is a global minimizer.

Convex functions are easier to minimi[ze](#page-66-0) !

Convex fonctions

Definition (convex functions)

$$
f: \mathbb{R}^d \to \mathbb{R} \text{ is convex iff } \forall \lambda \in [0, 1], \ \forall x, y \in \mathbb{R}^d, \\ f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)
$$

 $f:\mathbb{R}^d\to\mathbb{R}$ is stricly convex iff $\forall\lambda\in[0,1],\ \forall\mathsf{x},\mathsf{y}\in\mathbb{R}^d,$ s.t $\mathsf{x}\neq\mathsf{y}$ ${\rm (resp. } f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$

- \triangleright Other characterizations
	- If $f \in C^2$, *f* convex iff its $\nabla^2 f$ is non-negative.
	- ► $f: \mathbb{R}^d \to \mathbb{R}$, fconvex iff f' is non-decreasing iff $f'' \geq 0$
	- \blacktriangleright *f* lies over all its tangents.
- ► *Ex. : affine fonctions, square loss, exp....*
- \blacktriangleright Properties
	- \triangleright no maxima, no saddle points and non local minima !
	- $\triangleright \nabla f(x) = 0 \Rightarrow x$ is a global minimizer.

Convex functions are easier to minimi[ze](#page-67-0) !

A convex and constrained problem in classification

Problem

- ► Inputs : $\{x_i, y_i\}_{i=1..n}, x_i \in \mathbb{R}^d, y_i \in \{0, 1\}.$
- ► Goal : (P) Min $J(w, b) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} max(0, 1 y_i(wx_i + b))$

Resolution :

 \blacktriangleright Rewrite (P) as :

Min $J(w, b, \xi) = \frac{1}{2}w^2 + \sum_{i=1}^{n} \xi_i$ s.t. $y_i(wx_i + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$

- Introduce a Lagrange multiplier for each constraint : $L(w, b, \xi, \alpha, \eta) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \xi_i + \sum_{i} \alpha_i (1 - \xi_i - y_i(wx_i + b)) + \sum_{i} \eta_i \xi_i$ $\alpha_i \geq 0$, $\eta_i > 0$.
- **►** The first order conditions $\partial_w J = 0$, $\partial_{\xi} J = 0$, $\partial_{b} f = 0$ yield : $w = \sum_i \alpha_i y_i x_i$ $\sum_i \alpha_i y_i = 0$ $\forall i, 1 = \alpha_i + \eta_i$

KORKAR KERKER E VOOR

 \triangleright Which substituted in (P) gives the dual problem : Maximize $J(\alpha) = \frac{1}{2} \|\sum_i \alpha_i y_i x_i\|^2 - \alpha^T \mathbf{1} \text{ s.t. } 0 \le \alpha \le \mathbf{1}$