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Outline

1 Linear Algebra
Vector spaces
Orthogonality, dot product, norm
Matrices
Determinant
Matrix decompositions (SVD, Choleski, LU, QR)

2 Probabilities
Vocabulary, usual laws (discrete, continuous)
Conditional probabilities
Bayes rule, maximum likelihood, maximum a posteriori
Entropy, Kullback-Leibler divergence, perpexity
Bounds

3 Optimization
Minimima, maxima, saddle points
Convex fonctions
Primal and dual problems, Lagrange multipliers
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Vector spaces

Example (Rn)

Rn = {x = (x1, · · · , xn)T : xi ∈ R ∀i}
I x , y ∈ Rn ⇒ x + y = (x1 + y1, · · · , xn + yn)T ∈ Rn

I x ∈ Rn, λ ∈ R⇒ λx = (λx1, · · · , λxn)T ∈ Rn

I Rn = {x : ∃(λ1, · · · , λn) ∈ Rn s.t . x = λ1e1 + · · ·+ λnen}
where ei = (0, · · · , 0, 1

↓
i

, 0, · · · , 0).

Example (Solutions of homogeneous differential equations)

S = {f : R→ R : ∀ t , f ′′(t) + f (t) = 0}
I f ∈ S ⇒ −f ∈ S
I f ,g ∈ S ⇒ f + g ∈ S
I f ∈ S, λ ∈ R⇒ λf ∈ S
I S = {f : R→ R : ∃(λ1, λ2) ∈ R2s.t . f = λ1 cos +λ2 sin}
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Vector spaces

Example (L2(R))

L2(R) =

{
f : R→ R :

∫
R
|f (x)|2dx <∞

}
I f ∈ L2(R)⇒ −f ∈ L2(R)

I f ,g ∈ L2(R)⇒ f + g ∈ L2(R)

I f ∈ L2(R), λ ∈ R⇒ λf ∈ L2(R)

I L2(R) is not the span of any finite number of its elements.

I Dot product : f ,g ∈ L2(R), 〈f ,g〉 =
∫

R f (x)g(x)dx

I Norm : ‖f‖L2(R) =
(∫

R |f (x)|2dx
) 1

2

I Closeness :
∀n, fn ∈ L2(R) and ‖fn − f‖L2(R) →n→∞

0 implies f ∈ L2(R).
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Vector spaces

Definition (Vector space)
A set S is called a real vector space if it is endowed with

I an “addition” which is :
I stable : x , y ∈ S ⇒ x + y ∈ S,
I commutative and associative,
I with an nul element 0 ∈ S s.t. ∀x ∈ S, 0 + x = x ,
I for which all elements are invertible x ∈ S ⇒ −x ∈ S.

I the multiplication by a scalar in R which is :
I stable : x ∈ S, λ ∈ R⇒ λx ∈ S.
I associative and distributive over ’+’.

Vector spaces may be decomposed into subspaces :

Definition (Subspace)
A subset F of a vector space S is a called a subspace of S if
the previous properties are preserved in F .
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Vector subspaces, family of vectors, dimension

I Supplementary subspaces :
I F ,G subspaces, F ∩G = {0}, S = F + G.
I Any x ∈ S has a unique decomposition x = xF + xG.

I Subspaces may be generated from a family of vectors :
I y ∈ Span{x1, · · · , xn} iff ∃λ1 · · ·λn ∈ R s.t. y =

∑n
i=1 λixi .

I The family {xi}i=1..n is linearly independent iff the
decomposition y =

∑n
i=1 λixi is unique.

I Conversely if F = Span{{xi}i=1..n} then the family {xi}i=1..n
is said to generate F .

I The dimension of a (sub)space F is the cardinal of its
largest linearly independent family.

I Ex : dim(Rd ) = d, dim(Sdiff. eq.) = 2, dim(L2(R)) = +∞.
I A hyperplane is a subspace of which the supplementaries

have dimension 1.
I If dim(S)=n, an hyperplane is any subspace of dimension

n−1. Ex : lines in R2, planes in R3.
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Bases

I The family {xi}i=1..n is a basis of S iff it is generative and
linearly independent. Here n may be∞ !

I The cardinal of any basis is exactly the dimension of S
(finite or not).

I For y ∈ S there is a unique decomposition y =
∑

i=1..n λixi .

Example

I In Rd :

I {ei}i=1..d , where ei = (0, · · · ,0,
i
�
1,0, · · · ,0) is a basis.

I y = (y1, · · · , yd )T =
∑

i=1..d yiei .

I In L2([0,2π]) :
I {cos(mt), sin(mt)}m∈N is a basis.
I f ∈ L2([0,2π]), f (t) =

∑
m∈N (am cos(mt) + bm cos(mt)).
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Orthogonality, dot product, norm

In Rd :
I The dot product is defined as :

〈x , y〉Rd =
d∑

i=1

xiyi

I It is linked to the Euclidian norm :

‖x‖ =
√
〈x , x〉Rd =

√√√√ d∑
i=1

|xi |2

〈x , y〉Rd = ‖x‖‖y‖ cos(θ)

I Any subspace has a unique orthogonal supplementary
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Orthogonality, dot product, norm

Definition (norm, dot product, Hilbert space)
S a vector space.

I ‖.‖ : S → R+ is a norm iff
1. ‖x‖ = 0⇔ x = 0
2. λ ∈ R, x ∈ S, ‖λx‖ = |λ|‖x‖
3. x , y ∈ S, ‖x + y‖ ≤ ‖x‖+ ‖y‖

I a dot product is a bilinear symmetric application of S2 to R.
I then x →

√
〈x , x〉 is a norm.

I x and y are orthogonal when 〈x , y〉 = 0.
I F has a unique orthogonal supplementary F⊥.
I For any x , the unique decomposition x = xF + xF⊥ also

verifies : ‖x‖2 = ‖xF‖2 + ‖xF⊥‖2.

I a Hilbert space H is a vector space endowed with a dot
product 〈., .〉H, that is closed for the induced norm.

9/45



Orthonormal bases

I A basis {ei}i=1..n is orthonormal of H iff
〈
ei ,ej

〉
H = δ{i=j}.

I y ∈ H, the unique decomposition y =
∑

i=1..n λixi verifies :
1. λi = 〈y , ei〉H
2. ‖y‖2

H =
P

i |λi |2

Example

I In Rd :

I {ei = (0, · · · ,0,
i
�
1,0, · · · ,0)}i=1..d is a an orthonormal basis.

I y = (y1, · · · , yd )T =
∑

i=1..d yiei and ‖y‖ =
√∑

i=1..d y2
i .

I In L2([0,2π]) :
I {cos(mt), sin(mt)}m∈N is an orthonormal basis.
I f ∈ L2([0,2π]), f (t) =

∑
m∈N (am cos(mt) + bm cos(mt))

where am =
R 2π

0 f (t) cos(mt)dt , bm =
R 2π

0 f (t) sin(mt)dt .

I ‖f‖2
L2 =

∫ 2π
0 |f (t)|2dt =

∑
m∈N

(
|am|2 + |bm|2

)
.
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Hyperplanes

H a hyperplane then dim F⊥ = 1 hence there is a vector u ∈ H
such that :

F⊥ = Span {u} = Ru and ‖u‖H = 1.

I Equation of H : H = {x ∈ H : 〈x ,u〉H = 0}.
H = {x = (x1, x2)T : x1u1 + x2u2 = 0}

I The distance from x to H is : d(x ,H) = | 〈x ,u〉H |.
d(x ,H) = |x1u1 + x2u2|

I The projection of x on H is : PH(x) = x − 〈x ,u〉H u.
PH(x) = x − (x1u1 + x2u2)u
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Matrices

I Let H1 = Ru1
⊥, H2 = Ru2

⊥, · · · ,Hm = Rum
⊥ be m

hyperplanes of Rd and F =
⋂m

i=1 Hi .
I The equation of F is a system of m linear equations with d

unknowns :
u1

1x1 + u2
1x2+ · · · ud

1 xd = 0
u1

2x1 + u2
2x2+ · · · ud

2 xd = 0
...

. . .
...

...
u1

mx1 + u2
mx2+ · · · ud

mxd = 0

which is equivalent to the matrix-vector equation :

Ux = 0⇔


u1

1 u2
1 · · · ud

1
u1

2 u2
2 · · · ud

2
...

...
. . .

...
u1

m u2
m · · · ud

m




x1
x2
...

xd

 =


0
0
...
0
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Matrices

I A matrix in Rm×d is a an array made of m row-vectors of
Rd or equiv. d column vectors of Rm (e.g. U).

I The matrix-vector product Ux may be seen as :
1. Using column vectors U j = (uj

1,u
j
2, · · · ,u

j
m)T :

Ux =
d∑

j=1

xjU j , whereU j ∈ Rm.

2. Using row vectors Ui = (u1
i ,u

2
i , · · · ,ud

i ) :

Ux =


〈
UT

1 , x
〉

Rd〈
UT

2 , x
〉

Rd

...〈
UT

m, x
〉

Rd

 ∈ Rm

Note : U is a representation of a linear operator : x ∈ Rd → Ux ∈ Rm.
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Matrices

I Notation :

A =∈ Rm×d =


a1,1 a1,2 · · · a1,d
a2,1 a2,2 · · · a2,d

...
...

. . .
...

am,1 am,2 · · · am,d

 = (ai,j)i=1···m
j=1···d

I Operations on matrices :
I Rm×d is a real vector space with A + B = (ai,j + bi,j )i=1···m

j=1···d
I Matrix product : A ∈ Rm×p, B ∈ Rp×d , then :

AB ∈ Rm×d s.t. (AB)i,j =

p∑
k=1

ai,k bk,j

Note : AB 6= BA !
I Matrix transposition : A ∈ Rm×d , then :

AT ∈ Rd×m = (aj,i ) j=1···d
i=1···m
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Square matrices (m=d)

I Matrix product is stable in Rd×d , so some are invertible !
I Remarquable matrices

I Diagonal matrices.

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λd


I Upper and Lower triangular matrices :

U =


u1,1 u1,2 · · · u1,d
0 u2,2 · · · u2,d
...

...
. . .

...
0 0 · · · ud,d

 L =


l1,1 0 · · · 0
l2,1 l2,2 · · · 0
...

...
. . .

...
ld,1 ld,2 · · · ld,d


I Symmetric matrices : A = AT .
I Unitary matrices : AAT = AT A = I (matrix of an

orthonormal basis).
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Inverting a matrix

I A is diagonal, lower or upper triangular then :
A invertible⇔

∏d
i=1 ai,i 6= 0

I Lower triangular systems

Ax = b ⇔

0BBB@
a1,1 0 · · · 0
a2,1 a2,2 · · · 0

...
...

. . .
...

ad,1 ad,2 · · · ad,d

1CCCA
0BBB@

x1

x2
...

xd

1CCCA =

0BBB@
b1

b2
...

bd

1CCCA wh.
dY

i=1

ai,i 6= 0

are solved recursively from the first to the last equation :8>>>>><>>>>>:

a1,1x1 = b1

a2,2x2 + a2,1x1 = b1

a3,3x3 + a3,2x2 + a3,1xd = b2
...

...
a1,1x1 + a1,2x2 + · · · · · · · · ·+ a1,d xd = bd
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Matrix determinant

I A=

(
a b
c d

)
is invertible iff ad−bc 6=0 and A−1 = 1

ad−bc

(
d −b
−c a

)
I For lower/upper triangular and diagonal matrices :

A is invertible iff
∏d

i=1 ai,i 6= 0.

I In general, A ∈ Rd×d is invertible

⇔ its d row (resp. column) vectors are linearly independent.

⇔ its determinant det(A) =

∣∣∣∣∣∣∣∣∣
a1,1 a1,2 · · · a1,d
a2,1 a2,2 · · · a2,d

...
...

. . .
...

ad,1 ad,2 · · · ad,d

∣∣∣∣∣∣∣∣∣ 6= 0.

I The determinant is found recursively, developping on any
row or column : det(A) =

∑d
i=1 ai,jCof (A)i,j .

I Cof (A)i,j = det((ak,l )k∈{1···d}\{i},l∈{1···d}\{j})
I if det(A) 6= 0 then A−1 = 1

det(A) Cof (A)T .
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Eigenvalues, eigenvectors

A a square matrix.

Definition (Eigenvalues and eigenvectors)
I λ is an eigenvalue of A if there exists a vector

v ∈ Rd , v 6= 0 s.t. Av = λv .
I Equivalently : λ is an eigenvalue of A if det(A− λI) = 0.
I Any v verifying Av = λv is an eigenvector associated to

the eigenvalue λ.

I Properties :
I For diagonal matrices, the eigenvalues are the diagonal

elements (not for triangular matrices !).
I 0 is an eigenvalue iff A is not invertible.

I A is diagonalizable if there exists a basis of eigenvectors :

A = PDP−1 with D diagonal.
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Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors :
I A symmetric matrix is diagonalizable on an orthonormal

basis :
A = PDPT with D diagonal, PPT = I.

I A symmetric matrix is said
I semi-definite positive if 〈x ,Ax〉 ≥ 0, ∀x .

Its eigenvalues are ≥ 0.
Any diagonal matrix,

A = BT B for any B ∈ Rm,d .

I definite positive if 〈x ,Ax〉 ≥ 0, ∀x and 〈x ,Ax〉 = 0,⇒ x = 0.
Its eigenvalues are > 0.

Any diagonal matrix without zeros,
A = BT B for any B ∈ Rm,d when A is invertible.

Note : a definite positive matrix defines a new norm on Rd via the scalar
product 〈x , x〉A = 〈x ,Ax〉
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Singular value decomposition

Fix B ∈ Rm×d , note that :
I BT B ∈Rd×d and BBT ∈Rm×m are symmetric semi-definite

positive :
I BT B = V ∆1V T with ∆1 diagonal, VV T = I in Rd×d .
I BBT = U∆2UT with ∆2 diagonal, UUT = I in Rm×m.

I One can show :
I ∆1 and ∆2 have the same non-zero values λ2

1, · · · , λ2
k .

I B = UDV T with

D = diag(λ1, · · · , λk ) =


λ1 0 · · · 0 0 · · · · · · 0
0 λ2 · · · 0 0 · · · · · · 0
...

...
. . .

... 0 · · · · · · 0
0 0 · · · λk 0 · · · · · · 0
0 0 · · · 0 0 · · · · · · 0

 ∈ Rm,d .

I BT = VDUT with D = diag(l1, · · · , λk ) =∈ Rd,m.

I B = UDV T is its singular value decomposition and
λ1, · · · , λk its singular values.
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Other decompositions

I LU factorization

I for a diagonally dominant matrix A (|ai,i | ≥
∑

j 6= i |ai,j |)
I A = LU, L is lower triangular, U is upper triangular with 1 on

the diagonal.
I Ax = B solved in two steps : Lz = b and Ux = z !

I Choleski decomposition

I for symmetric semi-definite positive matrices
I A = UT U with U upper triangular
I again easy to solve Ax = b in two steps.

I QR decomposition

I for any matrix A ∈ Rm×d

I A = QR with Q unitary in Rm×m and R upper triangular.
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Framework

I Random Space
I Ω is the set of random events.

Ω = {heads,tails}
I A is the set of “measurable” collections of events.

A = {∅, {heads}, {tails}, {heads, tails}}
I P : A → [0,1] is the probability.

P(∅) = 0, P({heads}) = p,
P({tails}) = 1− p, P({heads, tails}) = 1

I Properties of P
I 0 ≤ P ≤ 1,
I P(∅) = 0, P(Ω) = 1,
I A,B ∈ A, A ∪ B = ∅ ⇒ P(A ∪ B) = P(A) + P(B) (chain rule).
I Equivalently : A,B ∈ A, P(A∪B) + P(A∩B) = P(A) + P(B).

I Random events are observed only through measurable
quantities called Random variables.
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Random variables

I A Random variable is a measurable function
X : (Ω,A)→ (F ,B(F))

↪→ the measurability means F ⊂ F ⇒ X−1(F ) ⊂ A.

I X (Ω) ⊂ F may be
I finite ({0,1}) or infinite (R), discrete (N) or continuous(R)

discrete/continuous random variables
I have one or several variables (Rd )

random variables/ random vectors.

I The measurability of X implies that P may be transported
to F through X :

P({ω/X (ω) ∈ F}) = P(X ∈ F )
def
= PX (F )

P is a probability on (Ω,A)
PX is a probability on (F ,B(F)).
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Discrete random variables
Examples

I A single coin toss is a Bernoulli variable with parameter p
I X : (Ω,A)→ ({0,1},2{0,1}),
I P(X = 1) = p, (hence P(X = 0) = p).
I Notation : X ∼ B(p).

I The sum of n independent coin tosses is a multinomial with
parameter n,p

I Y : (Ω,A)→ ({0,1, · · · ,n},2{0,1,··· ,n}),
I Y = X1 + X2 + · · ·+ Xn where the Xi are independent

copies ≡ B(p).
I P(Y = k) = (n

k )pk (1− p)n−k for k = 0 · · · n.
I Notation : Y ∼ Bin(n,p).
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Discrete random variables

I F is discrete F = {x1, x2, · · · , xN}, N finite or not.
I X : (Ω,A)→ (F ,2F ),

I Notation : P(X = xi ) = pi . Note that pi ≥ 0 and
PN

i=1 pi = 1.

I The mean value or expectation of X is :

E[X ] =
∑

ω∈Ω X (ω)P(ω)

E[X ] =
∑N

i=1 xiPX (xi)

Here, E[X ] =
∑N

i=1 xipi

I The variance of X is its deviation from its mean :

Var [X ] = E[(X − E [X ])2]
Var [X ] = E[X 2]− E [X ]2

Here, Var [X ] =
∑N

i=1 x2
i pi − (

∑N
i=1 xipi)

2.
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Discrete random variables

I More generally for any measurable function f : F → Rd ,
the expectation of f (X ) is :

E[f (X )] =
∑

ω∈Ω f (x)P(X (ω) = x)

E[f (X )] =
∑N

i=1 f (xi)PX (xi)

Here, E[f (X )] =
∑N

i=1 f (xi)pi
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Bernoulli variables

I X ∼ B(p), hence
F = {0,1}, p1 = p, p0 = 1− p.

I The expectation of X is :

E[X ] =
∑N

i=1 xipi
E[X ] = 0 ∗ (1− p) + 1 ∗ p
E[X ] = p

I The variance of X is :

Var [X ] =
∑N

i=1 x2
i pi − (

∑N
i=1 xipi)

2

Var [X ] = 02(1− p) + 12 ∗ p − p2

Var [X ] = p(1− p).

I The expectation of f (X ) is :

E[f (X )] =
∑N

i=1 f (xi)pi
E[f (X )] = f (0) ∗ (1− p) + f (1) ∗ p.

27/45



Discrete random vectors

I X has d coordinates, each of which is a discrete variable.
X = (X1, · · · ,Xd )T : (Ω,A)→ (F = F1 × · · · × Fd ,2F ),

I P(X = xi) = pi ] P(X = (x1, · · · , xd )), where x i ∈ Fi .

I The expectation of X is the vector of the expectation of
each coordinate :

E[X ] = (E[X1], · · · ,E[Xi ]
�

row i

, · · ·E[Xd ])T

I The variance is replaced by the covariance matrix :
I Cov(X ) is a d × d-matrix.
I Cov(X )i,i = Var(Xi ).
I If i 6= j , Cov(X )i,j = Cov(Xi ,Xj ) = E[XiXj ]− E[Xi ]E[Xj ].
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Discrete random vectors
Example

I X = (X1,X2) with
I X1 ∼ B(p1),
I X1 ∼ B(p2),
I X1 and X2 are decorrelated i.e. Cov(X1,X2) = 0.

I The expectation of X is :

E[X ] =

(
E[X1]
E[X2]

)
=

(
p1
p2

)
I The covariance matrix of X is :

Cov[X ] =

„
Var[X1] Cov[X1,X2]

Cov[X2,X1] Var[X2]

«
=

„
p1(1− p1) 0

0 p2(1− p2)

«

Note : independence⇒ decorrelation but the inverse is false !
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Continuous random variables
Real random variables

I X : (Ω,A)→ (R,B(R)).

I P(X = xi) = pi ] P(X ∈ [a,b]) = PX ([a,b]).
Note : PX ≥ 0 and

R
R dPX (x) = 1 .

I The expectations and variances are defined as previsouly :

E[X ] =
∫

Ω X (ω)dP(ω)
E[X ] =

∫
R xdPX (x)

E[f (X )] =
∫

Ω f (X (ω))dP(ω)
E[f (X )] =

∫
R f (x)dPX (x)

E[Var(X )] = E[X 2]− E [X ]2

I If dPX (x) = fX (x)dx then fX is the probability density
function of X (pdf).
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Continuous random variables

Uniform distribution on [a,b]

I X ∼ U[a,b]

I E[f (X )] =
∫

R f (x)dPX (x) = 1
b−a

∫
[a,b] f (x)dx

I pdf : fX (x) = 1
b−aδ[a,b](x)

Gaussian distribution

of mean m and variance σ2 :
I X ∼ Nm,σ2

I E[f (X )] =
∫

R f (x)dPX (x) =
∫

R f (x) ∗ 1√
2πσ2 exp− (x−m)2

2σ2(x)
dx

I pdf : fX (x) = 1√
2πσ2 exp− (x−m)2

2σ2(x)
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Continuous random variables

All we have seen previously extends to continuous random
vectors such as :

Gaussian vector of mean m and covariance matrix Σ2 :
I X = (X1, · · · ,Xd ) ∼ Nm,Σ2

I pdf : fX (x) = 1
(2π det(Σ))d/2 exp

{
− (x−m)T Σ−1(x−m)

2

}
E[f (X )] =

∫
Rd f (x1, · · · , xd )dPX (x1, · · · , xd )

=
∫

Rd f (x) ∗ 1
(2π det(Σ))d/2 exp

{
− (x−m)T Σ−1(x−m)

2

}
dx
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Joint probabilities

Two simultaneaous coin tosses :
I Each coin is fair P(heads) = 1

2

I All the possible outcomes of both draws
({heads,heads},{heads, tails},{tails,heads},{tails, tails} )
are equiprobable with P({heads,heads}) = 1

4 .
I Consider Z = (X1,X2), Xi the random variable for tossing

coin i . This means that :

P(Z ∈ A× B) = P(X1 ∈ A)P(X2 ∈ B)

or in other words :

P(X1,X2) = PX1PX2

X1 and X2 are independent.
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Joint probabilities

But this is not always the case :

Example

X/Y Sick (S) Sane (A) Total
Positive test (P) 90 100 190

Negative test (N) 10 900 910
Total 100 1000 1100

I P(X = positive) = 190/1100
I P(Y = sick) = 100/1100
I Clearly :

P((X ,Y ) = (positive, sick)) = 90/1100

6=

P(X = positive)P(Y = sick) = 100 ∗ 190/11002
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Independence

Definition (Independence)
X and Y are independent random variables ( X ⊥⊥ Y ) if and
only if their joint probability PX ,Y is the product of their marginal
probabilities : PX ,Y = PX PY .
Also, X1,..Xn are independent iff PX1,··· ,Xn =

∏n
i=1 PXi .

I Equivalently :
I ∀A,B P((X ,Y ) ∈ A× B) = P(X ∈ A)P(Y ∈ B)
I ∀f ,g E[f (X )g(Y )] = E[f (X )]E[g(Y )]

I If X and Y are independent then Cov(X ,Y ) = 0.

I For Gaussian variables only : Cov(X ,Y ) = 0⇔ X ⊥⊥ Y .

If X and Y are indepedent, knowing X does not give any
information on Y , what if they are not independent ?
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Conditional probabilities

Example

X/Y Sick (S) Fit (F) Total
Positive test (P) 90 100 190

Negative test (N) 10 900 910
Total 100 1000 1100

I Amongst all people :
P(Y = sick) = 100/1100,
P(Y = fit) = 1000/1100

I Amongst people with a positive test :
P(Y = sick |X = positive) = 90/190,
P(Y = fit |X = positive) = 100/190,

I Amongst people with a negative test :
P(Y = sick |X = negative) = 10/910,
P(Y = fit |X = negative) = 900/910,
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Conditional probabilities

Example

X/Y Sick (S) Fit (F) Total
Positive test (P) 90 100 190

Negative test (N) 10 900 910
Total 100 1000 1100

I Amongst people with a positive test :
P(Y = sick |X = positive) = 90/190,
P(Y = fit |X = positive) = 100/190,

I Note :
P(Y = sick |X = negative)P(X = negative) = P((Y ,X ) =
(sick , negative)),

Definition (Conditional probabilities)

P(A and B) = P(A|B)P(B) = P(B|A)P(A)

36/45



Conditional probabilities

More generally :

Definition
The conditional probability PX |Y is the probability s.t. :

∀ f ,E[f (X ,Y )] =

∫
f (X ,Y )dPX ,Y =

∫
dPY

∫
f (X ,Y )dPX |Y

I For discrete random variables :
P((X ,Y ) = (x , y)) = P(Y = y |X = x)P(X = x)

I If (X ,Y ) and Y have pdf p(X ,Y ) and pY , then PX |Y is a the
correspoding pdf : pX |Y =

p(X ,Y )

pY

I E[X |Y ] is the conditional esperance of X given Y is a
random variable. It is the projection of X on the set of
rndom variables of the form g(Y ).

37/45



Bayes rule, maximum likelihood, maximum a posteriori

Framework :
I Y is a random variable, Y is observed
I Θ is a random variable, Θ is the parameter.
I Goal : given observed data Y , find the best guess for Θ.

Probabilities
I The conditional probability of the observations : PY |Θ.
I The prior : PΘ.
I The posterior : PΘ|Y .

Bayes rule
PΘ|Y (Θ, y) =

PY |Θ(y ,θ)PΘ(θ)R
PY |Θ(θ′,y)PΘ(θ′)dθ

Estimator
I Maximum likelihood : θML = argmaxθ PY |Θ(y , θ).
I Maximum a posteriori : θMAP = argmaxθ PΘ|Y (θ, y).
I Bayes mean square estimator : θM = E[Θ|Y ].
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Information theory

I Entropy measures the amount of disorder of X :
I H(X ) = −

∫
PX (x) log(PX (x))dx . Note : H(X ) ≥ 0.

I For discrete random variables :
I X ∼ U maximizes the entropy H = log(N).
I X ∼ δxi minimizes the entropy H = 1

N log(N).

I The Kullback-Leibler divergence compares the laws of X
and Y :

I D(X ||Y ) =
∫

PX (x) log
(

PX (x)
PY (x)

)
dx . Note : D(X ||Y ) 6= D(Y ||X).

I D(X ||Y ) ≥ 0 and [D(X ||Y ) = 0⇔ PX = PY ].

I The mutual information measures the amount of shared
information between X and Y :

I I(X ,Y ) = D(P(X ,Y )||PX PY ). Note : I(X ,Y ) = I(Y ,X).
I I(X ,Y ) ≥ 0 and [I(X ,Y ) = 0⇔ X ⊥⊥ Y ].

I The perplexity is a measure of complexity of a distribution :
I P(X ) = 2H(X).
I this is a common way of evaluating language models.
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Approximations and confidence intervals

I Statistical learning (classification) :
I Goal : from i.i.d1 samples (xi , yi )i=1···n, find a hypothesis f

that minimizes the risk : E[loss(f (X ),Y )]
I E[loss(f (x),Y )] is not known, only its empirical version is

accessible : 1
n

∑
loss(f (xi ), yi )

↪→ need to control how far is the empirical loss to the true one.

I Some tools to do so are :
I Markov inequality : P(X > ε) ≤ E[X ]

ε

I Chebicheff inequality : P(|X − E[X ]| ≥ ε) ≤ Var[X ]
ε2

Apply this to Sn = 1
n

∑n
i=1 Xi , with Xi i.i.d X , one gets :

P(|Sn − E[X ]| ≥ ε) ≤ Var[X ]
nε2

(Sn is the empirical risk, E[X ] the true one.)
I Chernoff-Hoeffding bound : P(|Sn − E[X ]| ≥ ε) ≤ e−2nε2

1independent identically distributed
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Approximations and confidence intervals

I Proof of Markov inequality

E[X ] =

Z
xdPX (x) =

Z
x≥ε

xdPX (x) +

Z
x<ε

xdPX (x)

E[X ] ≤
Z

x≥ε
xdPX (x) ≤ ε

Z
x≥ε

dPX (x)

E[X ] ≤ εP(X ≥ ε)

I From bounds to confidence intervals
Chebicheff inequality : P(|Sn − E[X ]| ≥ ε) ≤ Var[X ]

nε2

I
Var[X ]

nε2 ≤ δ implies : P(|Sn − E[X ]| ≥ ε) ≤ δ or

If n ≥ Var[X ]

δε2 then with probability at least 1−δ, |Sn−E[X ]|≤ε.

I Then if n = Var[X ]
δε2 , we obtain :

For all n, with probability at least 1− δ, |Sn − E[X ]| ≤
q

Var[X ]
nδ .

E[loss(f (X ),Y )] ∈ Eemp[loss(f (X ),Y )] +

»
−
q

Var[X ]
nδ ,

q
Var[X ]

nδ

–
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»
−
q

Var[X ]
nδ ,

q
Var[X ]

nδ

–
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Minimizing a function

Goal : find the global minimimum/minimizer of f : Rd → R.

Potentials problems / partial solutions :
I Existence of a global minimum ?

↪→ f is continuous and coercive (f (x)→∞ when ‖x‖ → ∞).

I Characterization of the minimizers ?
↪→ f is C1. If x∗ is a local minimizer then its gradient
∇f (x) = 0Rd .

↪→ f is C2. x∗ is a local minimizer iff its gradient ∇f (x) = 0Rd

and its hessian ∇2f (x) is a non-negative matrix.

I Characterization of the global minimizers ?
Zeroing the gradient is not sufficient (maxima, saddle points,...) !

42/45



Minimizing a function

Goal : find the global minimimum/minimizer of f : Rd → R for
x ∈ Q.

I Constrained minimization (Q 6= Rd ) : characterization of
the minimizers ?
↪→ minimizers may be on the border of Q : ∇f (x∗) 6= 0 !

I Gradient descents :
I Algorithms of the form : x t+1 = x t − γt∇f (x t )
I Ex : Gauss-Newton, conjuguate gradient descent,...
I Convergence ?

I What if f is not differentiable ?
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Convex fonctions

Definition (convex functions)

f : Rd → R is convex iff ∀λ ∈ [0,1], ∀x , y ∈ Rd ,
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

f : Rd → R is stricly convex iff ∀λ ∈ [0,1], ∀x , y ∈ Rd , s.t x 6= y
(resp. f (λx + (1− λ)y) < λf (x) + (1− λ)f (y))

I Other characterizations
I If f ∈ C2, f convex iff its ∇2f is non-negative.
I f : Rd → R, fconvex iff f ′ is non-decreasing iff f ′′ ≥ 0
I f lies over all its tangents.

I Ex. : affine fonctions, square loss, exp,...
I Properties

I no maxima, no saddle points and non local minima !
I ∇f (x) = 0⇒ x is a global minimizer.

Convex functions are easier to minimize !
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A convex and constrained problem in classification

Problem
I Inputs : {xi , yi}i=1..n, xi ∈ Rd , yi ∈ {0,1}.
I Goal : (P) Min J(w ,b) = 1

2‖w‖
2 +

∑n
1 max(0,1− yi (wxi + b))

Resolution :
I Rewrite (P) as :

Min J(w ,b, ξ) = 1
2 w2 +

∑n
1 ξi s.t. yi (wxi + b) ≥ 1− ξi and ξi ≥ 0

I Introduce a Lagrange multiplier for each constraint :
L(w , b, ξ, α, η) = 1

2‖w‖
2 +

Pn
1 ξi +

P
i αi(1− ξi − yi(wxi + b)) +

P
i ηiξi ,

αi ≥ 0, ηi > 0.

I The first order conditions ∂wJ = 0, ∂ξJ = 0, ∂bf = 0 yield :
w =

∑
i αiyixi

∑
i αiyi = 0 ∀i ,1 = αi + ηi

I Which substituted in (P) gives the dual problem :
Maximize J(α) = 1

2‖
∑

i αiyixi‖2 − αT 1 s.t. 0 ≤ α ≤ 1
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