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Outline

@ Linear Algebra

Vector spaces

@ Orthogonality, dot product, norm

@ Matrices

@ Determinant

Matrix decompositions (SVD, Choleski, LU, QR)

© Probabilities
@ Vocabulary, usual laws (discrete, continuous)
@ Conditional probabilities
@ Bayes rule, maximum likelihood, maximum a posteriori
@ Entropy, Kullback-Leibler divergence, perpexity
@ Bounds

Q Optimization
@ Minimima, maxima, saddle points
@ Convex fonctions
@ Primal and dual problems, Lagrange multipliers
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Vector spaces

Example (R")
R? = {x=(Xq,---,X%)" : x; € RVi}

» X,y ER"= X+y=X1+Y1, X+ yn) ER"
» XxERLAER = Ax = (Axg, -, \xp)T €R”

where g; = (0, - - - ,071,07... ,0).

I

A

Example (Solutions of homogeneous differential equations)
S={f:R—-R:VYt f(t)+ f(t) =0}
»feS=-fes
» f,geS=Ff+geS
>» feS,AeER=AfeS
> S={f:R—->R:3(\,N) € R2s.t. f = A1 COS +Apsin}
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Vector spaces

Example (L2(R))

LZ(R):{f:RHR:/R|f(X)|2dX<oo}

fel2(R) = —f c L3(R)

f,gc L’(R) = f+ g c L3(R)

feL2(R),\ € R = \f € L?(R)

L2(R) is not the span of any finite number of its elements.

vV v v .Yy

4/45



Vector spaces

Example (L2(R))

LZ(R):{f:RHR:/R|f(X)|2dX<oo}

fel2(R) = —f c L3(R)

f,gc L’(R) = f+ g c L3(R)

feL2(R),\ € R = \f € L?(R)

L2(R) is not the span of any finite number of its elements.

vV v v .Yy

v

Dot product : f,g € L3(R), (f,g) = [ f(X)g(x)dx
1

Norm : [|fll 2y = (fi If(x)1Pdx)?

Closeness :
vn, f, € (R) and [|fy — f|| 2(g _—_Oimplies f € L3(R).

v

v
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Vector spaces

5/A5

Definition (Vector space)

A set S is called a real vector space if it is endowed with
» an “addition” which is :
» stable: x,yeS=x+yeSs,
» commutative and associative,
» with an nul element0 € Ss.t. vx e S, 0+ x = X,
» for which all elements are invertible x € S = —x € S.

» the multiplication by a scalar in R which is :

» stable: xS, Ae R= M\xeS.
» associative and distributive over '+'.

Vector spaces may be decomposed into subspaces :

Definition (Subspace)

A subset F of a vector space S is a called a subspace of S if
the previous properties are preserved in F.




Vector subspaces, family of vectors, dimension

» Supplementary subspaces :
» F,Gsubspaces, FNG={0},S=F+G.
» Any x € S has a unique decomposition x = xr + xg.

» Subspaces may be generated from a family of vectors :
» yeSpan{xi, -, xp}iff I ApeRst.y =31, \ix..
» The family {x;}i—1.n is linearly independent iff the
decomposition y = "7 | \;x; is unique.
» Conversely if F = Span{{x;}i—1..n} then the family {x;}i—1.»
is said to generate F.

» The dimension of a (sub)space F is the cardinal of its
largest linearly independent family.
» Ex dlm(Rd) =d, dim(Sd,-ff, eq.) =2, dlm(LE(R)) = +o0.
» A hyperplane is a subspace of which the supplementaries
have dimension 1.

» If dim(S)=n, an hyperplane is any subspace of dimension
n—1. Ex : lines in R?, planes in R®.
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Bases

» The family {x;}i—1.n is a basis of S iff it is generative and
linearly independent. Here n may be oo !
» The cardinal of any basis is exactly the dimension of S
(finite or not).
» For y € S there is a unique decomposition y =3

i—1..p NiXi-

» InRY:
i
i
» {ei}i=1.4, Where ¢; = (0,---,0,1,0,---,0) is a basis.
>y =0, Ya) = >ie1.q Yi€i.

» In L2([0,27]) :
» {cos(mt), sin(mt)}men is a basis.
» fe L3([0,2n]), f(t) = > en (@mcOS(mt) + bm cos(mt)).

4
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Orthogonality, dot product, norm

InRY :
» The dot product is defined as :

(X, Y)ga = leyl

» |t is linked to the Euclidian norm :

X[l = /(X X)pa = Z\XIIZ

(X, ¥ e = lIX[llly[l cos(6)
» Any subspace has a unique orthogonal supplementary

/A8
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Orthogonality, dot product, norm

Definition (norm, dot product, Hilbert space)
S a vector space.

> |l.| : S — RT is a norm iff
1. Ix|=0<x=0
2. XeR, x eS8, [|Ax|| = |All|Ix]|
3. x,y €S, Ix+yll <lxl+ Iyl

» adot product is a bilinear symmetric application of S? to R.
» then x — /(x, x) is a norm.
» x and y are orthogonal when (x, y) = 0.
» F has a unique orthogonal supplementary F-.

» For any x, the unique decomposition x = xg + xF. also
verifies : || x||? = [|xe||? + ||xF |2

» a Hilbert space H is a vector space endowed with a dot
product ., .);,, that is closed for the induced norm.




Orthonormal bases

» Abasis {e;};=1., is orthonormal of  iff (e;, ej>H = O(i=j}-
» ye H the unique decomposition y =", ; , Aix; verifies :

1' = <yv el> 5
HyIIH =2 Al
» InRY ;
i
l
» {¢=(0,---,0,1,0,---,0)},—1.q is @ an orthonormal basis.

s Y= oY) = Sy gvierand yl = /Sy 487

» In L2([0,27]) :
» {cos(mt), sin(mt)} men is an orthonormal basis.
» fe L3([0,2q]), f(t) = 3 ey (@mcos(mt) + by cos(mt))

where Bl = 2” f(t) cos(mt)at, by = 02” f(t) sin(mt)at.
> |IFI2 = [T It )Izdf > men (1am|? + [bm[?).
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Hyperplanes

H a hyperplane then dim F- = 1 hence there is a vector u € H
such that :
Ft=S8Span{u} =Ru and |uy =1.

» Equationof H: H = {x € H : (x,u),, = 0}.
» The distance from x to His : d(x, H) = | (x, u) |-

» The projection of x on H is : Py(x) = x — (X, U)4, U.
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Hyperplanes

H a hyperplane then dim F- = 1 hence there is a vector u € H
such that :
F+=Span{u} =Ru and |ullyx =1.

» Equationof H: H = {x € H: (x,u),, = 0}.
H={x=(x1,%)" : xquy + xoup = 0}
» The distance from x to His : d(x, H) = | (x, u),|.
d(x, H) = |xqus + XoUo|
» The projection of x on His : Py(x) = x — (X, U),, U.
Pr(x) = x — (xqu1 + XaU2)U
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Matrices

» Let Hy = RU1L, H, = RUZL, N RumL be m
hyperplanes of R? and F = N H..

» The equation of F is a system of m linear equations with d

unknowns :
ulxi + BBxo+ -+ uxy =0
ubxi + Usxo+ -+ udxg =0
ulxy + 2 xe+ - uldxg =0

which is equivalent to the matrix-vector equation :

12 d
uy Uy Uy X1 0
ul ud o ud | | xe 0
Ux=0&| ° . . =
ub, u? o ud ) \xy 0
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Matrices

» The equation of F is a system of m linear equations with d

unknowns :
ulxi + Bxo+ - Uuixg = by
ulbxi + usxp+ - udxg = by
ulxy + Usxo+ - USXy = bm

which is equivalent to the matrix-vector equation :

1 2 d
u11 u12 e u1d X b4
u, us --- Xo bo
2 U 2
Ux=bs | . ) ; =
ul, uwz - ud) \xyg bm
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Matrices

» A matrix in R™*9 is a an array made of m row-vectors of
RY or equiv. d column vectors of R™ (e.g. U).

» The matrix-vector product Ux may be seen as :
1. Using column vectors U/ = (U}, t, -+, uf,) T

d
Ux =Y xU/, wherel/ € R
=1

2. Using row vectors U; = (u!, 12, ,uf) :
<U1;7 X)zd
Ux = (U2 ’,X>Rd eR"
(Uh X)se

Note : U is a representation of a linear operator : x € RY — Ux € R™.

12/48%



Matrices

» Notation :
ag a2 o A4
aq drp -+ g
d ) ) )
A=cR™d = | ~ . = (@ij)i=1--m
=1...d
am,1 am,2 te am,d

» Operations on matrices :
» R™*9 s a real vector space with A+ B = (a;; + bj)i=1...m

» Matrix product : A € R™P B c RP*9 then:

p
ABcR™Y st (AB);j = Z aj kb j
k=1
Note : AB # BA!
» Matrix transposition : A € R™<9 then :

AT e RIXM = (a,,) g
=1.--m

14/45%
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Square matrices (m=d)

» Matrix product is stable in R9*9  so some are invertible !
» Remarquable matrices
» Diagonal matrices.

AN O 0

0 X 0
D= .

0 0 - Mg

» Upper and Lower triangular matrices :

U1 U -+ Ug ki1 O -~ 0
0 wp -+ Uy b1 by -+ 0
u=1 . . ) L=
0 0 - Uyg lag lg2 - lag

» Symmetric matrices : A= A’.
» Unitary matrices : AAT = AT A = | (matrix of an
orthonormal basis).
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Inverting a matrix

» Ais diagonal, lower or upper triangular then :
Ainvertible < [T% , a;; # 0
» Lower triangular systems

ai 4 0 s 0 X1 b
a1 a2 - 0 X2 b, d
Ax=be | . o . =1 wh.Ha,-,,-;«éO
: : . . . . i=1
41 ad2 -+ d8dd) \Xa by

are solved recursively from the first to the last equation :

aiixi = b

QX+ @1X1 = b

a33X3 + azeXe + a1 Xa = be

ariXy + aipXe Fooceeee + @,9Xa = bag

1R/458



Inverting a matrix

» Ais diagonal, lower or upper triangular then :
Ainvertible < [T% , a;; # 0
» Lower triangular systems

ai 4 0 o 0 X1 b1
a1 @2 - 0 Xo by d
Ax=bs | . o ) =1 wh.Ha,-,,-;«éO
: : . . . . i=1
g1 ad2 - add/ \Xd by

are solved recursively from the first to the last equation :

Xy = bi/ais
1%t + apXe = b
a3,1X1 + @oXo + a33Xs = bg
ar1Xi + @ipXo e + aigXa = b
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Inverting a matrix

» Ais diagonal, lower or upper triangular then :
Ainvertible < [T% , a;; # 0
» Lower triangular systems
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a1 @2 - 0 Xo by d
Ax=bs | . o ) =1 wh.Ha,-,,-;«éO
: : . . . . i=1
g1 ad2 - add/ \Xd by
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Xy = bi/ais
A1X1 +apXe = b
a3,1X1 + @oXo + a33Xs = bg
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Inverting a matrix

» Ais diagonal, lower or upper triangular then :
Ainvertible < [T% , a;; # 0
» Lower triangular systems

ai 4 0 o 0 X1 b1
a1 @2 - 0 Xo by d
Ax=bs | . o ) =1 wh.Ha,-,,-;«éO
: : . . . . i=1
g1 ad2 - add/ \Xd by

are solved recursively from the first to the last equation :

X1 = bi/ais
Xo = (bo—asibi/ai) /a2
a31X1 + a3pXe +a33Xs = bs
ar1Xi + @ipXo e + agXa = b
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Matrix determinant

17/4%

> A= @ 2) is invertible iff ad—bc#0 and A~"= 1 (_dc ab>

» For lower/upper triangular and diagonal matrices :
Ais invertible iff [T, a;; # O.

» In general, A ¢ R9*? s invertible
< its d row (resp. column) vectors are linearly independent.

aiy a2 ai g
) . a1 a2 - ad

< its determinant det(A) = | . . . | #0.
dg1 @dd2 -+ ddd

» The determinant is found recursively, developping on any
row or column : det(A) = Y%, a; ;Cof(A); .
> Cof(A);; = det((@. ke r--op (i e d}\{/})

» if det(A) # 0then A~" = det Cof(A)



Eigenvalues, eigenvectors

A a square matrix.

Definition (Eigenvalues and eigenvectors)

» )\ is an eigenvalue of A if there exists a vector
veRY v#£0st Av = Av.

» Equivalently : \ is an eigenvalue of A if det(A — Al) = 0.

» Any v verifying Av = \v is an eigenvector associated to
the eigenvalue \.

» Properties :

» For diagonal matrices, the eigenvalues are the diagonal
elements (not for triangular matrices !).
» 0is an eigenvalue iff A is not invertible.

» Ais diagonalizable if there exists a basis of eigenvectors :

A = PDP~" with D diagonal.

1Q/48



Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors :
» A symmetric matrix is diagonalizable on an orthonormal

basis :
A = PDPT with D diagonal, PPT = |.

» A symmetric matrix is said
» semi-definite positive if (x, Ax) > 0, Vx.
Its eigenvalues are > 0.

Note : a definite positive matrix defines a new norm on R? via the scalar
product (x, x) , = (X, Ax)

19/48%



Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors :

» A symmetric matrix is diagonalizable on an orthonormal
basis :
A= PDPT with D diagonal, PP = I.

» A symmetric matrix is said
» semi-definite positive if (x, Ax) > 0, Vx.
Its eigenvalues are > 0.

Any diagonal matrix,
A= BB forany Bc R™9,

Note : a definite positive matrix defines a new norm on R? via the scalar
product (x, x) , = (X, AX)
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Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors :

» A symmetric matrix is diagonalizable on an orthonormal
basis :
A= PDPT with D diagonal, PP = I.

» A symmetric matrix is said
» semi-definite positive if (x, Ax) > 0, Vx.
Its eigenvalues are > 0.

Any diagonal matrix,
A= BB forany Bc R™9,

» definite positive if (x, Ax) > 0, Vx and (x,Ax) = 0,= x = 0.
Its eigenvalues are > 0.

Note : a definite positive matrix defines a new norm on R? via the scalar
product (x, x) , = (X, AX)
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Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors :

» A symmetric matrix is diagonalizable on an orthonormal
basis :
A= PDPT with D diagonal, PP = I.

» A symmetric matrix is said
» semi-definite positive if (x, Ax) > 0, Vx.
Its eigenvalues are > 0.
Any diagonal matrix,
A= BB forany Bc R™9,

» definite positive if (x, Ax) > 0, Vx and (x,Ax) = 0,= x = 0.
Its eigenvalues are > 0.

Any diagonal matrix without zeros,
A = BTB for any B € R™% when A is invertible.

Note : a definite positive matrix defines a new norm on R? via the scalar
product (x, x) , = (X, AX)

19/45



Singular value decomposition

Fix B € R™Y note that :
» BTB cR%? and BB™ ¢ R™™ are symmetric semi-definite
positive :
» B'B = VA{VT with A diagonal, VVT = /in R9*9,
» BBT = UA,UT with A, diagonal, UUT = [in R™*™,

» One can show :

» Ay and A have the same non-zero values 2, --- | )2,
» B = UDVT with

AM 0O - 0 0------ 0
0 X - 0 0-vv--- 0
D=diag(M.--- A= : = . i ... 0| e R™.
0 0 -+ X O0-vvvn- 0
o 0 --- 0 O0------ 0

» BT = VDUT with D = diag(h,--- , \) =€ RI™.
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Singular value decomposition

Fix B € R™9 note that :
» BTB cR%? and BB™ ¢ R™™ are symmetric semi-definite
positive :
» B'B = VA{VT with A diagonal, VVT = /in R9*9,
» BBT = UA,UT with A, diagonal, UUT = [in R™*™,

» One can show :

» Ay and A have the same non-zero values 2, --- | )2,
» B = UDVT with

AM 0O - 0 0------ 0
0 X - 0 0-vv--- 0

D=diag(M.--- A= : = . i ... 0| e R™.
0 0 -+ X O0-vvvn- 0
o 0 --- 0 O0------ 0
» BT = VDUT with D = diag(h, --- , \x) =€ R%™.

» B = UDV' is its singular value decomposition and
A1, -+, Ak its singular values.
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Other decompositions

» LU factorization

» for a diagonally dominant matrix A (|a;;| > > j # i|ai )

» A= LU, Lis lower triangular, U is upper triangular with 1 on
the diagonal.

» Ax = Bsolvedintwo steps: Lz=band Ux = z!

» Choleski decomposition

» for symmetric semi-definite positive matrices
» A= UTU with U upper triangular
» again easy to solve Ax = b in two steps.
» QR decomposition
» for any matrix A € R™*9
» A= QR with Q unitary in R™*™ and R upper triangular.
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Framework

» Random Space
» Q is the set of random events.

» A is the set of “measurable” collections of events.

» P: A — [0,1] is the probability.

» Properties of P
» 0<P <A,
P(@) =0, P(Q2) =1,
» ABe A, AUB=10=P(AUB) =P(A) + P(B) (chain rule).
Equivalently : A, B € A, P(AUB) + P(AN B) = P(A) + P(B).

v

v

» Random events are observed only through measurable
quantities called Random variables.
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Framework

» Random Space
» Qis the set of random events.
Q = {heads,tails}
» A is the set of “measurable” collections of events.
A = {0, {heads}, {tails}, { heads, tails}}
» P:.A— [0,1] is the probability.
P(@) =0, P({heads}) = p,
P({tails}) =1 —p, P({heads, tails}) =1

» Properties of P

0<P<1,

P(0) =0, P(Q) =1,

ABe A AUB=0=P(AUB) =P(A)+ P(B) (chain rule).
Equivalently : A, B € A, P(AU B) +P(An B) = P(A) + P(B).

v

v vy

» Random events are observed only through measurable
quantities called Random variables.
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Random variables

» A Random variable is a measurable function
X:(Q2,A) — (F,B(F))
— the measurability means F ¢ F = X~ '(F) C A.

> X(Q) C F may be
» finite ({0, 1}) or infinite (R), discrete (N) or continuous(R)

» have one or several variables (R9)

» The measurability of X implies that P may be transported
to F through X :

P({w/X(w) € F}) = P(X € F) & Py(F)

P is a probability on (£2,.A)
Px is a probability on (F, B(F)).
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Random variables

» A Random variable is a measurable function
X (Q,A) — (F,B(F))
< the measurability means F C F = X~ '(F) C A.

> X(Q) C F may be
» finite ({0, 1}) or infinite (R), discrete (N) or continuous(R)
discrete/continuous random variables
» have one or several variables (R?)
random variables/ random vectors.

» The measurability of X implies that P may be transported
to F through X :

P({w/X(w) € F}) = P(X € F) & Py(F)

P is a probability on (2, .A)
Px is a probability on (F, B(F)).
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Discrete random variables

Examples

» A single coin toss is a Bernoulli variable with parameter p
> X (Q,A) = ({01}, 2101,
» P(X=1)=p, (hence P(X =0) = p).
» Notation : X ~ B(p).

» The sum of nindependent coin tosses is a multinomial with

parameter n, p
» Y (QA) — ({0,1,---,n}, 20010k,
» Y =X+ Xo+ -+ X, where the X; are independent
copies = B(p).
» P(Y =k)=(P)pk(1 —p)"*fork=0---n.
» Notation : Y ~ Bin(n, p).
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Discrete random variables

» Fis discrete F = {x1, X2, -+, Xn}, N finite or not.
> X (Q,A) — (F,27),
» Notation : P(X = x;) = p; . Note that p; > 0 and >N, p; = 1.

» The mean value or expectation of X is :

EX] = >, caX(w)P(w)
EX] = N, xPx(x)
Here, E[X] = Zf\; XiPi
» The variance of X is its deviation from its mean :
Var[X] = E[(X - E[X])?}]
Var[X] = E[X? - E[X]?

Here, Var[X] = X;xp— (2L xipi)?
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Discrete random variables

» Fis discrete F = {x1, X2, -+, Xn}, N finite or not.
> X (Q,A) — (F,27),
» Notation : P(X = x;) = p; . Note that p; > 0 and >N, p; = 1.

» The mean value or expectation of X is :

EX] = > cqX(w)P(w)
EX] = 2L xPx(x)
Here, E[X] = Zf; XiPi
» The variance of X is its deviation from its mean :
Var[X] = E[(X - E[X])?]
Var[X] = E[X?] - E[X]?

Here, Var[X] = X;xp— (2L xipi)?

2°K/A8



Discrete random variables

» Fis discrete F = {x1, X2, -+, Xn}, N finite or not.
> X (Q,A) — (F,27),
» Notation : P(X = x;) = p; . Note that p; > 0 and >N, p; = 1.

» The mean value or expectation of X is :

EX] = YicoX(w)P(w)
EX] = i xPx(x)
Here, E[X] = Zf; XiPi
» The variance of X is its deviation from its mean :
Var[X] = E[(X - E[X])?]
Var[X] = E[X?] - E[X]?

Here, Var[X] = YL x2pi— (XL xipi)?.
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Discrete random variables

» More generally for any measurable function f : F — RY,
the expectation of f(X) is :

E[f(X)] = Y, cqf(X)P(X(w)=x)
E[f(X)] = Y f(xi)Px(x)

Here, E[f(X)] = SN, f(x)p;

2°R/A5



Bernoulli variables

» X ~ B(p), hence
F={0,1},p1=p,po=1-p.
» The expectation of X is :
EX] = Y xip

E[X] = 0x(1—-p)+1xp
EX] = p

» The variance of X is :

Var[X] = Sy x2pi— (N, xip)?
Var[X] = 02(1 —p)+12%p— p?
Var[X] = p(1 - p).

» The expectation of f(X) is :

E[f(X)] = SN, f(x)pi
E[f(X)] = f(0)«(1—p)+f(1)=p.

27/45



Discrete random vectors

» X has d coordinates, each of which is a discrete variable.
X: (X1,~'~ ,Xd)T . (Q,.A) — (.7'-:.7:1 X e X fd,2]:),
> P(X = x;) = pj + P(X = (x',---,x9), where x' € F;.

» The expectation of X is the vector of the expectation of
each coordinate :

E[X] = (E[X],--- vE[TXi]V"E[Xd])T

» The variance is replaced by the covariance matrix :
» Cov(X)is ad x d-matrix.
» Cov(X);; = Var(Xp).
> If i # j, Cov(X)i; = Cov(X;, X;) = E[X;X]] — E[X]E[X].

2Q/48



Discrete random vectors

Example

> X = (X1,X2) with
» Xi ~ B(p1),

> Xi ~ B(pz),
» X; and X, are decorrelated i.e. Cov(Xi, Xz) = 0.

» The expectation of X'is :
E[X1] > ( P )
E[X] = =
Xl < E[X] P2
» The covariance matrix of X is :
Var[Xi] Cov[ X1, Xz] ) _ ( pi(1—p1) 0

Cov[X] = < Cov[Xe, Xi]  Var[Xs] 0 p2(1 = p2)

Note : independence = decorrelation but the inverse is false !

2Q/45



Continuous random variables
Real random variables

> X (Q,A) — (R, B(R)).

» P(X = x;) = pi + P(X € [a, b]) = Px(][a, b]).
Note : Px > 0 and [, dPx(x) =1.

» The expectations and variances are defined as previsouly :

EX] = JoX(w)dP(w)

E[X] = [gxdPx(x)
E[f(X)] = Jof(X(w))dP(w)
E[ff(X)] = [ f(x)dPx(x)

E[Var(X)] = E[X?] - E[X]?

» If dPx(x) = fx(x)dx then fx is the probability density
function of X (pdf).
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Continuous random variables

Uniform distribution on [a, b]

| 2 XNU[ab]
» E[f(X)] = [z f( dPXX)—baf[ab]f(X
> pdf @ fx(x) = gLz07a6(X)

Gaussian distribution

of mean m and variance o2 :
> X~ Nm,oz

> E[f(X)] = [ f(x)dPx(x) = [p f x)>1<\/21 exp — 5‘022’)’3) dx

> pdf : fx(x) = \/21”7 exp—%
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Continuous random variables

All we have seen previously extends to continuous random
vectors such as :

Gaussian vector of mean m and covariance matrix X2 :
> X = (X‘Ia"' 7Xd) ’V'/\/’m,):2

—m)T1(x—
> pdf : fx(x) = {_M}

1
(@rdet(x))oz &P

E[f(x)]:fRdf(X1a"'7Xd)dPX(X17"'aXd) r—
. s—1(x—
= Jpa F(X) * gy exp{——(x )’ (x “‘)}dx

22/AH



Joint probabilities

Two simultaneaous coin tosses :

» Each coin is fair P(heads) = 3

» All the possible outcomes of both draws
({ heads, heads},{ heads, tails},{ tails, heads} ,{ tails, tails} )
are equiprobable with P({ heads, heads}) = 1.

» Consider Z = (X1, X2), X; the random variable for tossing
coin j. This means that :

P(Z € Ax B) =P(X; € A)P(Xz € B)

or in other words :

Pxix) = Pxi Px,

Xi and X, are independent.

22/45



Joint probabilities

But this is not always the case :

X/Y | Sick (S) Sane (A)
Positive test (P) 90 100
Negative test (N) 10 900
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Joint probabilities

But this is not always the case :

X/Y | Sick (S) Sane (A) | Total

Positive test (P) 90 100 190
Negative test (N) 10 900 910
Total 100 1000 1100

» P(X = positive) = 190/1100
» P(Y = sick) = 100/1100
» Clearly :
P((X,Y) = (positive, sick)) = 90/1100
£
P(X = positive)P(Y = sick) = 100 + 190,/11002
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Independence

AR/A8

Definition (Independence)

X and Y are independent random variables ( X 1L Y) if and
only if their joint probability Px y is the product of their marginal
probabilities : ]P’X’y = PxPy.

Also, Xi,..X, are independent iff Px, .. x, = [[/_4 Px;.

» Equivalently :
» VAB P((X,Y)e Ax B)=P(X € A)P(Y € B)
> vf, g E[f(X)g(Y)] = E[f(X)]E[g(Y)]

» If X and Y are independent then Cov(X, Y) = 0.

» For Gaussian variables only : Cov(X,Y) =0« X 1L Y.



Independence
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Definition (Independence)

X and Y are independent random variables ( X 1L Y) if and
only if their joint probability Px y is the product of their marginal
probabilities : ]P’X’y = PxPy.

Also, Xi,..X, are independent iff Px, .. x, = [[/_4 Px;.

» Equivalently :
» VAB P((X,Y)e Ax B)=P(X € A)P(Y € B)
> vf, g E[f(X)g(Y)] = E[f(X)]E[g(Y)]

» If X and Y are independent then Cov(X, Y) = 0.
» For Gaussian variables only : Cov(X,Y) =0« X 1L Y.

If X and Y are indepedent, knowing X does not give any
information on Y, what if they are not independent ?



Conditional probabilities

X/Y | Sick (S) Fit (F) | Total

Positive test (P) 90 100 190
Negative test (N) 10 900 910
Total 100 1000 | 1100
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Conditional probabilities

X/Y | Sick (S) Fit (F) | Total

Positive test (P) 90 100 190
Negative test (N) 10 900 910
Total 100 1000 | 1100

» Amongst all people :
P(Y = sick) = 100/1100,
P(Y = fit) = 1000/1100

» Amongst people with a positive test :
P(Y = sick|X = positive) = 90/190,
P(Y = fit| X = positive) = 100,190,

» Amongst people with a negative test :
P(Y = sick|X = negative) = 10/910,
P(Y = fit| X = negative) = 900,/910,
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Conditional probabilities

X/Y | Sick (S) Fit (F) | Total

Positive test (P) 90 100 190
Negative test (N) 10 900 910
Total 100 1000 | 1100

» Amongst people with a positive test :
P(Y = sick|X = positive) = 90/190,
P(Y = fit| X = positive) = 100/190,
» Note :
P(Y = sick|X = negative)P(X = negative) = P((Y, X) =
(sick, negative)),

Definition (Conditional probabilities)

P(A and B) = P(A|B)P(B) = P(B|A)P(A)
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Conditional probabilities

More generally :

Definition
The conditional probability P,y is the probability s.t. :

Y E[A(X, V)] = [ f(X,Y)dPxy = | dPy [ f(X,Y)dPxy
|

» For discrete random variables :
P((X, Y) = (x,y)) =P(Y = y|X = X)P(X = X)
» If (X, Y)and Y have pdf p(x vy and py, then Pyy is a the

correspoding pdf : pxjy = %

» E[X]|Y] is the conditional esperance of X given Y is a

random variable. It is the projection of X on the set of
rndom variables of the form g(Y).
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Bayes rule, maximum likelihood, maximum a posteriori

Framework :
» Y is a random variable, Y is observed
» © is a random variable, © is the parameter.
» Goal : given observed data Y, find the best guess for ©.

Probabilities
» The conditional probability of the observations : Py e.
» The prior : Pe.
» The posterior : Pg)y.

Bayes rule

Py(o(y,0)Po (6)
Poyv(©,y) = fPYT!)?ef,y)Pe(ef)de

Estimator
» Maximum likelihood : Oy = argmax, Py|g(y, 0).
» Maximum a posteriori : Oyap = argmax, Pgy (0, y).
» Bayes mean square estimator : 6y = E[O]Y].
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Information theory

2Q/45

» Entropy measures the amount of disorder of X :
» H(X) = — [ Px(x)log(Px(x))dx. Note: H(X) > 0.
> For dlscrete random variables :

» X ~ U maximizes the entropy H = log(N).
> X ~ §x; minimizes the entropy H = lN log(N).

» The Kullback-Leibler divergence compares the laws of X
and Y :

» D(X||Y) = [ Px(x Iog(ﬁxg))dx Note : D(X||Y) # D(Y]|X).
» D(X||Y)>0 and [D(X||Y)=0% Px=Pyl.

» The mutual information measures the amount of shared
information between X and Y :

» I(X,Y) = D(Px,y)||PxPy). Note:I(X,Y)=IY,X).
» I(X,Y)>0 and [/(X,Y)=0< X 1 Y].

» The perplexity is a measure of complexity of a distribution :
> P(X) = 2HX),
» this is a common way of evaluating language models.



Approximations and confidence intervals

» Statistical learning (classification) :
» Goal : from i.i.d' samples (x;, ¥;)i1...n, find a hypothesis f
that minimizes the risk : E[loss(f(X), Y)]
» E[loss(f(x), Y)] is not known, only its empirical version is
accessible : 1 3" loss(f(x;), yi)

. independent identically distributed
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» Statistical learning (classification) :
» Goal : from i.i.d' samples (x;, ¥;)i1...n, find a hypothesis f
that minimizes the risk : E[loss(f(X), Y)]
» E[loss(f(x), Y)] is not known, only its empirical version is
accessible : 1 3" loss(f(x;), yi)

— need to control how far is the empirical loss to the true one.
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Approximations and confidence intervals

» Statistical learning (classification) :
» Goal : from i.i.d' samples (x;, ¥;)i1...n, find a hypothesis f
that minimizes the risk : E[loss(f(X), Y)]
» E[loss(f(x), Y)] is not known, only its empirical version is
accessible : 1 3" loss(f(x;), yi)

— need to control how far is the empirical loss to the true one.

» Some tools to do so are :

» Markov inequality : P(X > ¢) < EX]

> Chebicheff inequality : P(|X — E[X]| > ¢) < Ya1XI
Apply thisto S, = 1 3°7 | X;, with X; i.i.d X, one gets :

P(|S, — E[X]| > ¢) < Y20

(Sn is the empirical risk, E[X] the true one.)
» Chernoff-Hoeffding bound : P(|S, — E[X]| > €) < =2

. independent identically distributed



Approximations and confidence intervals

» Statistical learning (classification) :
» Goal : from i.i.d' samples (x;, ¥;)i1...n, find a hypothesis f
that minimizes the risk : E[loss(f(X), Y)]
» E[loss(f(x), Y)] is not known, only its empirical version is
accessible : 1 3" loss(f(x;), yi)

— need to control how far is the empirical loss to the true one.

» Some tools to do so are :

» Markov inequality : P(X > ¢) < EX]

> Chebicheff inequality : P(|X — E[X]| > ¢) < Ya1XI
Apply thisto S, = 1 3°7 | X;, with X; i.i.d X, one gets :

P(|S, — E[X]| > ¢) < 2L

(Sn is the empirical risk, E[X] the true one.)
» Chernoff-Hoeffding bound : P(|S, — E[X]| > €) < =2

. independent identically distributed



Approximations and confidence intervals
» Proof of Markov inequality
E[X] = dP = dP dP
X = [ xdeuo) /Xzf X0+ [ xaPe()

E[X]

IA

/ xdPx(x) <e dPx(x)

X>e

E[X]

A\

eP(X > €)

» From bounds to confidence intervals
Chebicheff inequality : P(|S, — E[X]| > €) < Vifg[;(]
» Yo < 5 implies : P(|S, — E[X]| > ¢) < & or
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Approximations and confidence intervals
» Proof of Markov inequality
E[X] = dP = dP dP
X = [ xdeuo) /Xzf X0+ [ xaPe()

E[X]

IA

/ xdPx(x) <e dPx(x)

X>e

E[X] < eP(X>¢)

» From bounds to confidence intervals
Chebicheff inequality : P(|S, — E[X]| > €) < Vif[2X]

€

> Y2lX] < 5 implies : P(|S, — E[X]| > ¢) < or

Ifn> %[ZX] then with probability at least 1—4, |S,—E[X]| <e.
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Approximations and confidence intervals
» Proof of Markov inequality
E[X] = dP = dP dP
X = [ xdeuo) /Xzf X0+ [ xaPe()

E[X]

IA

/ xdPx(x) < e dPx(x)

X>e

A\

E[X] eP(X > €)

» From bounds to confidence intervals
Chebicheff inequality : P(|S, — E[X]| > €) < Vif[2X]

€

> Y2lX] < 5 implies : P(|S, — E[X]| > ¢) < or

Ifn> %[ZXI then with probability at least 14, |S,—E[X]| <e.

Var[X]
de2 Y

» Thenifn= we obtain :

41/45



Approximations and confidence intervals
» Proof of Markov inequality
E[X] = dP = dP dP
X = [ xdeuo) /Xzf X0+ [ xaPe()

E[X]

IA

/ xdPx(x) < e dPx(x)

X>e

A\

E[X] eP(X > €)

» From bounds to confidence intervals
Chebicheff inequality : P(|S, — E[X]| > ¢) <
» YlX] < 5 implies : P(|S, — E[X]| > ¢) < d or

Var[X]

ne2

Ifn> %[ZXI then with probability at least 14, |S,—E[X]| <e.

Var[X]

5.z, We obtain :

» Thenifn=

For all n, with probability at least 1 — 4, |S, — E[X]| < 1/ YIX.

Elloss(f(X), Y)] € Eemplloss(f(X), Y)] + [f\/ IOy, Vanrfsx]]
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Minimizing a function

Goal : find the global minimimum/minimizer of f : R — R.

Potentials problems / partial solutions :
» Existence of a global minimum ?
— fis continuous and coercive (f(x)—oo when || x|| — o0).

» Characterization of the minimizers ?
< fis C'. If x* is a local minimizer then its gradient

V(x) = Oga.
< fis C?. x* is a local minimizer iff its gradient Vf(x) = Oga
and its hessian V2f(x) is a non-negative matrix.
» Characterization of the global minimizers ?
Zeroing the gradient is not sufficient (maxima, saddle points,...) !
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Minimizing a function

Goal : find the global minimimum/minimizer of f : R — R for
xeQ.

» Constrained minimization (Q # RY) : characterization of
the minimizers ?

< minimizers may be on the border of Q : Vf(x*) # 0!

» Gradient descents :
» Algorithms of the form :  x'*! = x! — 4, Vf(x?)
» Ex : Gauss-Newton, conjuguate gradient descent,...
» Convergence ?

» What if f is not differentiable ?
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Convex fonctions

Definition (convex functions)

f:RY — Ris convex iff Y\ € [0,1], Vx, y € RY,
fAX 4+ (1= X)y) < M(x)+ (1 = V()

» Other characterizations
» If f € C?, f convex iff its V2f is non-negative.
» f:RY — R, fconvex iff f is non-decreasing iff f/ > 0
» flies over all its tangents.
» Ex. : affine fonctions, square loss, exp,...
» Properties
» no maxima, no saddle points and non local minima!
» Vf(x) = 0= xis a global minimizer.
Convex functions are easier to minimize !

44/45



Convex fonctions

Definition (convex functions)
f:RY — Ris convex iff YA € [0, 1], Vx,y € RY,
fOX + (1= AN)y) < M(x)+ (1= ()

f:RY — Ris stricly convex iff YA € [0,1], Vx,y € R, st x # y
(resp. f(Ax + (1 = A)y) < M(x)+ (1 = Nf(y))

» Other characterizations
» If f € C?, f convex iff its V2f is non-negative.
» f:RY — R, fconvex iff f is non-decreasing iff f/ > 0
» flies over all its tangents.
» Ex. : affine fonctions, square loss, exp,...
» Properties
» no maxima, no saddle points and non local minima!
» Vf(x) = 0= xis a global minimizer.
Convex functions are easier to minimize !
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A convex and constrained problem in classification

Problem
> Inputs : {X;, yi}i=1.n Xi € RY, y; € {0,1}.
» Goal : (P) Min J(w, b) = }||w|? + 37 max(0,1 — y;(wx; + b))

Resolution :

» Rewrite (P) as :
Min J(w, b, &) = sw? + S & st yi(wx; +b) > 1—¢and & >0

» Introduce a Lagrange multiplier for each constraint :
L(w, b, a,n) = 3Iw|? + 37 & + X2, i1 — & — yi(wx; + b)) + 3, mii,
a;i > 0,n > 0.

» The first order conditions dyJ = 0, d:J = 0, 9pf = 0 yield :
w = Z,-Oé,'y,‘X,' Z,a,-y,-:o Vi,1 =+ ;i

» Which substituted in (P) gives the dual problem :
Maximize J(a) = 3| 3= aiyixil? — a1 st 0 < a <1
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