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Reference material

D. Koller and N. Friedman (2009): Probabilistic graphical models:
principles and techniques.

C. Bishop (2006): Pattern recognition and machine learning.
(Graphical models chapter available online, as well as the figures —
many are used in these slides after post-processing by Iain Murray
and Frank Wood.)

K. Murphy (2001): An introduction to graphical models.

Michael Jordan (1999): Learning in graphical models.

S. Lauritzen (1996): Graphical models.

J. Pearl (1988): Probabilistic reasoning in intelligent systems.

Tutorials (e.g Tiberio Caetano at ECML 2009) and talks on
videolectures!

http://research.microsoft.com/en-us/um/people/cmbishop/prml/
http://www.cs.ubc.ca/~murphyk/Papers/intro_gm.pdf


Statistical machine learning:
A mariage between statistics and computer science

Data is omnipresent (web, images, sound, sensors, ...), but
inherently noisy and unreliable

Modelling strategy is to assume the data was generated according to
some (hierarchy of) probability distributions

Amount of data grows exponentially over time, so computational
complexity is major issue!

Questions we would like to answer:

Estimate parameters of the model in light of the data
Compute probabilities of particular outcomes given these parameters
Find particularly interesting realizations (e.g. most probable
assignment)
Can we do these tasks efficiently?



Graphical models:
A marriage between probability theory and graph theory

Designed to deal with uncertainty and complexity, increasingly
important in machine learning and computational statistics

Multivariate probabilistic models, structured in terms of conditional
independence assumptions

Graph theoretic aspect provides intuitive representation and is
helpful to analyse, reason on and devise new models

Complex sytems are built by combining simpler parts and the
possible relations among them in a probabilistic way

Probability theory is the glue, ensuring whole system is consistent
and can take data into account



Graphical models are applied in ...

Bioinformatics

Natural language processing

Document processing

Speech processing

Image processing

Computer vision

Time series analysis

Economics

Physics

Social Sciences

...



Organising document collections (Blei et al., JMLR 2003)

Discovering themes/topics in large text corpora

Simple generative model for text (bag-of-words assumption)

Monitor trends, discover social network, etc.



Bioinformatics (Husmeier et al.)

Pairwise sequence alignment with gaps

Biological sequences come in families

Understand evolution, different species, etc.



Image denoising (McAuley et al., ICML 2006)

(Markov random fields, use neighborhood information)



Printer infrastructure management
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Basics

xn

N

N

µ

xi

yi

Nodes denote random variables, shaded nodes are observed,
unshaded are unobserved (latent, hidden) random variables

(Lack of) edges represent conditional independencies, plates indicate
replications

Directed graphs: Bayesian networks or nets, belief networks,
generative models, etc.

Undirected graphs: Markov networks, Markov Random Fields, etc.

Combinations are called chain graphs



Conditional independence (CI)

Statistical independence: X ⊥⊥ Y

p(x , y) = p(x)p(y)

Conditional independence: X ⊥⊥ Y |Z

p(x , y |z) = p(x |y , z)p(y |z) = p(x |z)p(y |z),

p(x |y , z) = p(x |z),

p(y |x , z) = p(y |z).

Graphical models are useful when the compactness of the model
arises from conditional independence statements:

p(x , y |z)︸ ︷︷ ︸
f1(3 variables)

= p(x |z)︸ ︷︷ ︸
f2(2 variables)

× p(y |z)︸ ︷︷ ︸
f3(2 variables)

CI imposes constraints on the model (some random variables cannot
take arbitrary values while conditioning)



CI examples

My wife’s mood ⊥⊥ my boss’ mood | my mood

My genome ⊥⊥ my grandmother’s genome | my mother’s genome

My position on a board game ⊥⊥ my first position | my last position

The color of a pixel ⊥⊥ the color of faraway pixels | the color of
neighboring pixels

This year’s harvest ⊥⊥ last year’s harvest | this year’s cummulative
sunshine and rainfall

...



Probabilistic graphical model

Let {Xn}Nn=1 be a set of random variables.

A probabilistic graphical model is a family of joint probability
distributions p(x1, . . . , xN) for which some CI assumptions hold.

The set of CI assumptions {Xi ⊥⊥ Xj |Xk} induces a structure in
p(x1, . . . , xN), which can be read off from the graph.

This structure allows us to make computations more tractable and
storage more efficient.

In the case of Bayesian networks this is sometimes called a directed
factorisation (DF) filtering of the joint:

p(x) DF
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Bayesian networks (directed graphical models)

a

b

c

A Bayesian network is a set of probability distributions associated to
a directed acyclic graph (DAG).

Node a is a parent of node b if there is a link from a to b
(conversely we say that b is a child of a).

A node is independent of its ancestors given its parents.

Choosing a topological ordering (a, b, c) will lead to a particular
decomposition of the joint:

p(a, b, c) = p(c |a, b)p(b|a)p(a).

Random variables can be discrete or continuous.



Factorisation in directed graphical models

CIs and a fixed ordering of the nodes of the DAG lead to a particular
factorisation of the joint.

For a graph with N nodes, we decompose the joint in terms of
conditionals on the parents:

p(x1, . . . , xN) =
N∏

n=1

p(xn|pan), pan : parents of xn.

The factorisation is in terms of local conditional distributions.

The decomposition is not unique, but the joint is correctly
normalised.

Is this type of factorisation useful?



Factorisation in directed graphical models

x1 x2 xM

Consider the special case where M = 3:

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2), ∀m : xm ∈ {1, . . . ,K}.

Factorisation allows us to exploit the distributive law to make
computations more tractable:

without: p(x2) =
∑

x1,x3
p(x1, x2, x3) is O(K 3)

with: p(x2) =
∑

x2
p(x1, x2)

∑
x3
p(x3|x2) is O(2K 2)

Factorisation leads to a more efficient representation:

without: requires KM − 1 parameters
with: requires K − 1 + (M − 1)K (K − 1) parameters



D-separation

CIs are usually known by the (human) expert.

CIs are imposed by removing links.

Is the CI property equivalent to factorisation?

Do we induce other (hidden) CIs?

D-separation are a set of rules to read off CIs directly from a DAG.

D-separation does not require manipulations of the joint, but it does
imply a factorised form (∼ simplification).



Head-to-tail nodes: independence

a c b

Consider the head-to-tail node c . Are a and b independent?

Let’s check p(a, b)
?
= p(a)p(b):

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a)p(c |a)p(b|c)

= p(a)
∑
c

p(c |a)p(b|c) = p(a)
∑
c

p(b, c |a)

= p(a)p(b|a)

In general we do not obtain the statistical independence property.



Head-to-tail nodes: conditional independence

a c b

Assume c is observed. Are a and b conditionally independent?

Let’s check p(a, b|c)
?
= p(a|c)p(b|c):

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(c |a)p(b|c)

p(c)
= p(a|c)p(b|c)

We obtain the conditional independence property: a ⊥⊥ b|c .

Applying Bayes rule reverts the link!



Tail-to-tail nodes: independence

c

a b

Consider the tail-to-tail node c . Are a and b independent?

Let’s check p(a, b)
?
= p(a)p(b):

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a|c)p(b|c)p(c)

=
∑
c

p(a)p(c |a)p(b|c) = p(a)
∑
c

p(b, c |a)

= p(a)p(b|a)

In general we do not obtain the statistical independence property.



Tail-to-tail nodes: conditional independence

c

a b

Assume c is observed. Are a and b conditionally independent?

Let’s check p(a, b|c)
?
= p(a|c)p(b|c):

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a|c)p(b|c)p(c)

p(c)
= p(a|c)p(b|c)

We obtain the conditional independence property: a ⊥⊥ b|c .



Head-to-head nodes: independence

c

a b

Consider the head-to-head node c . Are a and b independent?

Let’s check p(a, b)
?
= p(a)p(b):

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a)p(b)p(c |a, b)

= p(a)p(b)
∑
c

p(c |a, b) = p(a)p(b)

We obtain the statistical independence property: a ⊥⊥ b.



Head-to-head nodes: conditional independence

c

a b

Assume c is observed. Are a and b conditionally independent?

Let’s check p(a, b|c)
?
= p(a|c)p(b|c):

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(b)p(c |a, b)

p(c)

In general we do not obtain the conditional independence property.



Blocked paths

A blocked path is one containing at least one of the following types of
nodes:

An observed head-to-tail or tail-to-tail node.

An unobserved head-to-head node, of which none of the descendants
are observed.

f

e b

a

c

f

e b

a

c



D-separation, CI and factorisation

Let A, B and C be nonintersecting sets of nodes. A ⊥⊥ B|C if all
possible paths from any node in A to any node in B are blocked:

If the arrows on the path meet head-to-tail or tail-to-tail at some
nodes, then these nodes are in C ;
If the arrows on the path meet head-to-head at some nodes, then
none of these nodes or its descendants are inC .

Parameters do not play a role in d-separation (are always
tail-to-tail), but integrating them out usually destroys CIs

CI properties and factorisation are equivalent:

fact ⇒ CI: Let p be a probability distribution that factorises
according to a DAG. If A, B and C are disjoint
subsets of nodes such that A is d-separated from B
by C , then p(A,B,C ) satisfies A ⊥⊥ B|C .

CI ⇒ fact: If p satisfies the CI properties implied by d-separation
over a particular DAG, then it factorises according to
this DAG.



Markov blanket in Bayesian networks

xi

Consider a Bayesian network associated to a DAG:

p(x1, . . . , xN) =
∏
n

p(xn|pan).

Using CI we can express any conditional p(xi |{xj}j 6=i ):

p(xi |{xn}n 6=i ) =

∏
n p(xn|pan)∑

xi

∏
n p(xn|pan)

∝ p(xi |pai )
∏
ni

p(xni |pani ),

where pani includes node xi .

The Markov blanket of xi is the minimal set of nodes that isolates xi
from the rest of the graph, that is parents and children of xi , as well
as co-parents of the children of xi .
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Markov random fields (undirected graphical models)

Some CI assumptions cannot be satisfied by any Bayesian network.

Markov random fields (MRFs) allow for the specification of a
different class of CIs.

Based on different graphical semantics, we would like CI to be
directly determined by simple graph separation.

A

C

B

D

A MRF is a set of probability distributions associated to an
undirected graph.

The absence of edges imply CIs, random variables can be discrete or
continuous.



Graph separation

A

C
B

A ⊥⊥ B|C if all paths connecting nodes in A to nodes in B pass
through nodes in C .

We say that the path is blocked and the CI property holds.

The Markov blanket in MRFs takes a very simple form: it consists of
all the neighboring nodes.



Cliques

x1

x2

x3

x4

A clique of a graph is a complete subgraph (every pair of nodes is
connected by an edge).

A maximal clique of a graph is clique which is not a subset of
another clique.



Factorisation in undirected graphical models

For a graph with K maximal cliques, we can decompose the joint as

p(x1, . . . , xN) =
1

Z

K∏
k=1

ψCk
(xCk

),

where xCk
are the nodes belonging to the maximal clique Ck .

The factorisation is in terms of local potential functions {ψCk
(·)}k ,

with ψCk
(·) ≥ 0 for all k .

The potential functions do not necessarily have a probabilistic
interpretation (do not have to be conditionals or marginals).

Computing the normalising constnat Z (also known as partition
function) is the main difficulty:

Z =
∑
x1

. . .
∑
xN

K∏
k=1

ψCk
(xCk

).

For continuous random variables the sum is replaced by an integral.



Separation, CI and factorisation

CI properties and factorisation are equivalent in MRFs with positive
potentials:

fact ⇒ CI: Let p be probability distribution that factorises
according to an undirected graph. If A, B and C are
disjoint subsets of nodes such that C separates A
from B, then p(A,B,C ) satisfies A ⊥⊥ B|C .

CI ⇒ fact: If p is strictly positive (p(x) > 0,∀x) and satisfies the
CI properties implied by graph separation over the
undirected graph, then it factorises according to this
graph.

The latter is known as the Hammersley-Clifford theorem.

ψC (xC ) being restricted to be positive, we interpret it as a
Boltzmann distribution:

ψC (xC ) ∝ e−E(xC ),

where E (xC ) is the energy function.



MRFs versus Bayesian networks

Similarities:

CI properties of the joint are encoded into the graph structure and
define families of structured probability distributions.

CI properties are related to concepts of separation of (groups of)
nodes in the graph.

Local entities in the graph imply the simplified algebraic structure
(factorization) of the joint.

Reasoning in graphical models does not require to specifiy the local
functions.

Differences:

The set of probability distributions represented by MRFs is different
from the set represented by Bayesian networks.

MRFs have a normalization constant that couples all factors,
whereas Bayesian networks have not.

Factors in Bayesian networks are probability distributions, while
factors in MRFs are nonnegative potentials.



Mapping a Bayesian networks into a MRF

x1 x2 xN−1 xN

Bayesian network:

p(x1, . . . , xN) = p(x1)p(x2|x1)p(x2|x1) . . . p(xN |xN−1).

MRF:

p(x1, . . . , xN) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N(xN−1, xN).

The mapping is here straightforward.

When there are head-to-head nodes one has to add edges to convert
the Bayesian network into the undirected graph (∼ moralisation):

x1 x3

x4

x2

x1 x3

x4

x2
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Exact inference in graphical models

Assume some nodes are clamped, i.e. some random variables are
observed (data).

The goal is to compute the posterior distribution of one or more
subsets of nodes given the observed ones.

Exact probabilistic inference algorithms:

Belief propagation (and sum-product)
Max-product (and max-sum)
Junction tree algorithm

The distributive law is the key to efficient inference in graphical
models:

ab + ac︸ ︷︷ ︸
3 operations

= a(b + c)︸ ︷︷ ︸
2 operations

.

Most inference algorithms can be viewed as propagating messages
around the graph.

The focus will be on discrete random variables, but results equally
hold for continuous random variables (replacing sums by integrals).



Graphical interpretation of Bayes’ rule

x

y

x

y

x

y

(a) (b) (c)

p(y |x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x |y)

prior︷︸︸︷
p(y)

p(x)︸︷︷︸
evidence

Allows us to update a prior belief on some random variable y into a
posterior belief, based on the observation x .

DAG (b) leads to p(x , y) = p(x)p(y |x).

Applying Bayes’ rule results in DAG (c): p(x , y) = p(y)p(x |y).



Belief propagation in a (Markov) chain

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

Can we compute the marginal p(xn) efficiently?

Naive computation is O(KN) if xn can take K values for all n:

p(xn) =
1

Z

∑
x1

. . .
∑
xn−1

∑
xn+1

. . .
∑
xN

ψ1,2(x1, x2) . . . ψN−1,N(xN−1, xN).

Using the distributive law is O(NK 2): p(xn) = 1
Z µα(xn)µβ(xn),

where µα(xn) and µβ(xn) are messages passed forward and
backward along the chain:

µα(xn) =
∑
xn−1

ψn−1,n(xn−1, xn)
[∑
xn−2

. . .
[∑

x1

ψ1,2(x1, x2)
]
. . .
]
,

µβ(xn) =
∑
xn+1

ψn,n+1(xn, xn+1)
[∑
xn+2

. . .
[∑

xN

ψN−1,N(xN−1, xN)
]
. . .
]
.



Belief propagation in a (Markov) chain

To compute p(xn), we only need the incoming messages to xn.

To compute a message to the right (left), we need all previous
messages coming from the left (right).

The messages can be computed recursively:

µα(xn) =
∑

xn−1
ψn−1,n(xn−1, xn)µα(xn−1), µα(x1) = 1,

µβ(xn) =
∑

xn+1
ψn,n+1(xn, xn+1)µβ(xn+1), µβ(xN) = 1.

A chain with N nodes require 2(N − 1) messages to be computed,
observed nodes are clamped to their observed values.

Computing the normalising constant can be done at any node and is
O(K ):

Z =
∑

xn
µα(xn)µβ(xn).

Joint distributions of neighboring nodes are expressed in terms of the
same messages:

p(xn, xn−1) =
1

Z
µα(xn−1)ψn−1,n(xn−1, xn)µβ(xn)



Belief propagation in a tree

In chains the forward (backward) message arriving in a node xn
captures all the information from the nodes to the left (right) of xn.

Every node can be seen as a leaf node after it has received the
forward or backward message.

True leaves give us the right place to start the message passing
along the chain.

This property also holds in (poly)trees (graph where only a single
path connects any pair of nodes, no loops).



Factor graph

x1 x2 x3

fa fb fc fd

The nodes are (groups of) random variables and squares are factors.

Family of joint probability distributions associated to a bipartite
graph:

p(x) =
∏
s

fs(xs).

Factor fs is a function of the neighboring nodes xs .

Factor graphs incorporate explicit details about the factorisation, but
factor nodes do no correspond to CIs.

They preserve the tree structure of DAGs and undirected graphs!



Converting a DAG into a factor graph

x1 x2

x3

x1 x2

x3

f

x1 x2

x3

fc

fa fb

Create nodes corresponding to the orginal DAG.

Create factor nodes corresponding the conditional distributions.

Conversion is not unique:

f (x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2),

fa(x1) = p(x1), fb(x2) = p(x2), fc(x1, x2, x3) = p(x3|x1, x2).



Converting an undirected graph into a factor graph

x1 x2

x3

x1 x2

x3

f

x1 x2

x3

fa

fb

Create nodes corresponding to the orginal undirected graph.

Create factor nodes corresponding the potential functions.

Conversion is not unique:

f (x1, x2, x3) = ψ1,2,3(x1, x2, x3),

fa(x1, x2, x3)fb(x2, x3) = ψ1,2,3(x1, x2, x3).



Sum-product algorithm

fs

x1

x2

x3

General class of exact inference algorithm in trees

Operates on factor graphs

Designed to evaluate local marginals efficiently

Shares computations whenever possible

The idea is again to exploit the distributive law

Messages sent out of factors nodes to other factor nodes



Sum-product algorithm

xfs

µfs→x(x)
F
s
(x
,X

s
)

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

xm

fl

fL

fs

Fl(xm, Xml)

We are interested in the marginal p(xn):

p(xn) =
∑
x\xn

∏
s

fs(xs) =
∏
s

µfs→xn(xn).

Let fs be a factor neighboring xn and let x1, . . . , xm be the other
nodes neighboring fs . The message from fs to xn is defined as

µfs→xn(xn) =
∑
x1

. . .
∑
xM

fs(xs)
∏
m

µxm→fs (xm).

Let fl be the other factors neighboring xm. The message from xm to
node fs is defined as

µxm→fs (xm) =
∏
l

µfl→xm(xm).



Sum-product algorithm

Messages are computed recursively in the tree.

Some node xn is viewed as the root (choice has no impact on result).

The recursion states at the leave nodes or leave factors:

x f

µx→f (x) = 1

xf

µf→x(x) = f(x)

The algorithm proceeds in two steps to compute all marginals:
1 Messages are propagated from the leaves to some root until this root

has received the messages from all its neighbors to compute p(xn).
2 Messages are then passed outwards from this root to the leaves.

The total number of messages to compute is two times the number
of edges (only twice the number computations for a single marginal).

For factor graphs derived from undirected graphs Z can be
computed at any node.

The marginal associated to a factor is given by

p(xs) = fs(xs)
∏

n∈nes
µxn→fs (xn), nes : neigbors of fs .



Incorporating data

So far we focussed on computing marginals in absence of data.

The goal in inference is to compute posterior distributions over
hidden variables z conditionned on observations x:

p(z|x) ∝ p(x, z).

Observations correspond to clamped nodes (their value is fixed):

p(z|x = x̂) ∝ p(x, z)
∏
i

δx̂i (xi ),

where δ(·) is the Kronecker delta (or Dirac for continuous r.v.)

The sum-product algorithm leads to the posteriors p(zn|x) for all n
up to a normalisation constant.

The normalising constant is obtained as before.



Hidden Markov model (HMM)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Flexible model for sequential data (e.g. time series, DNA, text, ...)

Markov property (future is independent of past given present):

zn−1 ⊥⊥ zn+1|zn.

Hidden Markov chain of discrete variables, observed variables {xn}
are discrete or continuous:

p(x1, . . . , xN , z1, . . . , zN) = p(z1)

(
N∏

n=2

p(zn|zn−1)

)(
N∏

n=1

p(xn|zn)

)
.

D-separation shows that xn given {xi}i<n does not exhibit any CI!



Sum-product in action (HMM factor graphs)

χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

Factor graph:

gn = p(xn|zn), ψn(zn−1, zn) = p(zn|zn−1), χ(z1) = p(z1).

Simplified factor graph:

fn(zn−1, zn) = p(zn|zn−1)p(xn|zn), h(z1) = p(z1)p(x1|z1).

h fn

z1 zn−1 zn



Sum-product in action (HMM forward recursion)

h fn

z1 zn−1 zn

Let h be the leaf node and zN the root node.

Left messages from/to factors are given by

µfn→zn(zn) =
∑
zn−1

fn(zn−1, zn)µzn−1→fn(zn−1),

µzn−1→fn(zn−1) = µfn−1→zn−1(zn−1).

We obtain the forward recursion (from leaf to root):

µfn→zn(zn) = p(xn|zn)
∑
zn−1

p(zn|zn−1)µfn−1→zn−1(zn−1),

µh→z1(z1) = p(x1|z1)p(z1).



Sum-product in action (HMM backward recursion)

h fn

z1 zn−1 zn

Right messages from/to factors are given by

µfn→zn−1(zn−1) =
∑
zn

fn(zn−1, zn)µzn→fn(zn),

µzn→fn(zn) = µfn+1→zn(zn).

We obtain the backward recursion (from root to leaf):

µfn→zn−1(zn−1) =
∑
zn

p(xn|zn)p(zn|zn−1)µfn+1→zn(zn),

µzN→fN (z1) = 1 = µfN→zN−1
(zN−1).

The posterior marginals are proportional to the product of the
incoming messages.



HMM with 3 states and Gaussian noise
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(5% probability of state transition.)



Applications of HMMs

Speech processing

Handwritten recognition

Matching of DNA sequences

Financial time series

Prediction of energy consumption

...



Max-product algorithm

Max-product is a variant of sum-product algorithm

The goal is to find the most probable joint configuration:

x∗ = argmax
x

p(x), x = (x1, . . . , xN).

Different from computing all marginals by sum-product and then
maximise them individually.

The distributive law still applies:

max(ab, ac) = amax(b, c), a > 0.

Max-product works exactly the same way as sum-product for
messages from leaves to root, just replace sums by max operator!



Max-sum algorithm

To avoid numerical undeflow we use the max-sum algorithm, which
operates on the logarithm of the joint:

x∗ = argmax
x

ln p(x) = argmax
x

∑
s

ln fs(xs).

This is ok as the logarithm is a monotonic (a > b ⇒ ln a > ln b),
such that

max(ln ab, ln ac) = ln a + max(ln b, ln c).

Max-sum works exactly the same way as sum-product for messages
from leaves to root: replace sums by max and products by sums of
logarithms.

For messages from root to leaves the story is different...



Max-sum algorithm with backtracking

k = 1

k = 2

k = 3

n− 2 n− 1 n n+ 1

When propagating messages from leaves to root, multiple
configurations can lead to a maximum value of the joint.

Store the maximising configurations of previous variables wrt the
next variables and backtrack to restore the maximising path.

Max-sum with backtracking on a chain is known as the Viterbi
algorithm.



Junction-tree algorithm

Generalization of sum-product for arbitrary graphs (not just trees)

Can be applied to any graph (DAG or undirected), but efficient only
for certain classes of graphs.

DAGs are first transformed into undirected graphs by moralisation.

JT operates on chordal graphs (triangulated graph), which are
eventually transformed into junction trees.

Exact marginalization is performed by means of sum-product type of
algorithm.

Complexity grows exponentially with the treewidth (number of
variables in largest clique).



Overview

Introduction

Bayesian networks

Markov networks (Markov Random fields)

Elements of exact inference

Elements of learning



Learning in graphical models

Probabilistic inference aims at computing posterior distributions of
hidden variables (or their most likely configuration) given data.

The quality of statistical models depend on the parameter setting:

p(x1, . . . , xN ; θ1, . . . , θK ) =
1

Z (θ)

∏
s

fs(xs ;θs).

The goal of learning or statistical inference is to estimate these
parameters:

Maximum likelihood
Maximum a posteriori
Expectation-maximisation algorithm

We assume the data X = {x(i)}Mi=1 are drawn i.i.d.:

All x(i) are drawn from p(x;θ) (identical assumption)
x(i) ⊥⊥ x(j) for i 6= j (independence assumption)



Maximum likelihood (ML)

Assume there are no latent (hidden) variables.

The joint probability of observing i.i.d. data is a function of the
parameters:

`(θ; X) = ln
∏
i

p(x(i);θ) =
∑
i

∑
s

ln fs(x(i)s ;θs)−M lnZ (θ).

The goal in maximum likelihood learning is to find the parameters
that maximise the log-likelihood function:

θ∗ = argmax
θ

`(θ; X).

Altenatively one can minimise the negative log-likelihood.

A local optimum must satisfy ∇θ`(θ; X) = 0, or equivalently
∇θs `(θ; X) = 0 for all s.



ML in Bayesian networks

ML estimation reduces to the estimation of s local ML estimation
problems.

We have lnZ (θ) = 0 and the constraints {∑xs
fs(xs ;θs) = 1}.

We obtain a set 2S equations by taking the derivatives wrt the
parameters {θs} and the Lagrange multipliers {λs}.
Each pair of equations in θs and λs can be solved independently.

Your favourite numerical optimisation tool can be used when there is
no closed form solution.



Maximum likelihood in MRFs

In MRFs we have lnZ (θ) 6= 0, such that the resulting equations are
coupled!

The optimisation problem is often difficult and nonlinear, with
multiple local optima.

The problem becomes convex for distributions in the exponential
family, which includes the Gaussian, Binomial, Multinomial, Poisson,
Gamma, Beta, etc. as special cases.



Maximum a posteriori (MAP)

ML estimation can lead to overfitting (for small data set).

MAP estimation is a first step towards Bayesian statistics.

The idea is to impose a prior distribution on the parameters, which
has the effect of penalising unreasonable values.

MAP estimation maximises p(θ|X) ∝ p(X|θ)p(θ):

`MAP(θ; X) =
∑
i

∑
s

ln fs(x(i)s ;θs)−M lnZ (θ) +
∑
s

ln p(θs).

MAP is sometimes called penalised maximum likelihood, it is a way
of introducing regularisation

MAP estimation leads to point estimates of θ (while Bayesian
statistics is interested in the full posterior).



Expectation-maximisation (EM)

Assume there are observed as well as latent variables:

p(x, z;θ) =
1

Z (θ)

∏
s

fs(xs , zs ;θs).

If we knew the latent variables {z(i)}, the problem would reduce to
ML (or MAP) estimation.

Since {z(i)} are unobserved, ML requires to maximise the incomplete
log-likelihood:

`(θ; X) = ln
∏
i

∑
z(i)

p(x(i), z(i);θ)

=
∑
i

ln
∑
z(i)

∏
s

fs(x(i)s ;θs)−M lnZ (θ).

The product is “blocked” inside the logarithm because of the sum,
making the marginalisation often analytically intractable.



EM (lower bound)

The key idea is to maximise the expected value of the log-complete
likelihood since Z = {z(i)} are unobserved:

`(θ; X) = ln
∑

Z

p(X,Z;θ)

= ln
∑

Z

q(Z)
p(X,Z;θ)

q(Z)

≥
∑

Z

q(Z) ln
p(X,Z;θ)

q(Z)
≡ L(q,θ)

where q(Z) is called the variational distribution.

The lower bound follows from Jensen’s inequality:

f (x) is convex⇒ E(f (x)) ≥ f (E(x)).

The quantity −L(q,θ) can be interpretted as the (variational) free
energy from statistical physics.



EM (principle)

ln p(X|θ)L(q,θ)

KL(q||p)

ln p(X|θold)L(q,θold)

KL(q||p) = 0

ln p(X|θnew)L(q,θnew)

KL(q||p)

EM is based on two decompositions of the bound L(q,θ):

L(q,θ) = ln p(X|θ)−KL[q(Z)‖p(Z|X,θ)],

L(q,θ) = Eq{ln p(X,Z|θ)}+ H[q(Z)].

where KL[q‖p] = Eq{ln q
p} is the Kullback-Leibler divergence (or relative

entropy) and H[q] = −E{ln q)} the entropy.



EM (algorithm)
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Maximise lower bound by alternating between 2 steps:

E step: Minimise KL for fixed θ by setting q(Z) = p(Z|X,θ).
M step: Maximise Eq{ln p(X,Z|θ)} for given q(Z).

Gradient ascent to local maxima of `(θ; X), by construction it
ensures monotonic increase of the bound.

ML estimates of the parameters, still ok if q is a good approximation
of the posterior (approximate E step).

Sum-product algorithm can be used in E step.



Mixture of Bernoulli distributions

x

z

p(x|µ,π) =
∑
k

πkp(x|µk) =
∑
k

πkBernoulli(µk),

p(x|µk) =
∏
n

µxn
kn(1− µkn)1−xn , πk ∈ [0, 1],

∑
k

πk = 1.

No closed form solution for ML estimates of θ = {µk , πk}.
For each set of binary variales x we introduce a discrete latent
variable z which indicates the mixture component:

p(z |π) = Discrete(π) =
∏
k

π
δk (z)
k .

The new graphical model is completed by

p(x|z ,µ) =
∏
k

[∏
n

Bernoulli(µkn)

]δk (z)
.



Mixture of Bernoullis (application)

Pixelised handwritten digits, converted from grey scale to binary
images by thresholding

Goal is to cluster the images (recognise digit automatically), learning
is done with EM algorithm

The bottom figure shows the mean images for each of the 3 clusters,
as well as the mean image when considering a single Bernoulli.



Mixture of Bernoullis (EM updates)

E step : responsibilities:

ρik ≡ E{z (i) = k} =
πkp(x(i)|µk)∑
k′ πk′p(x(i)|µk′)

M step : mean and mixture proportions:

µk =
1

Mk

M∑
i=1

ρikx(i), Mk =
M∑
i=1

ρik ,

πk =
Mk

M
.



Mixture of Gaussians (Old Faithful geyser data)

xn

zn

N

µ Σ

π p(x|µ,π) =
∑
k

πkN (µk ,Σk),

πk ∈ [0, 1],
∑
k

πk = 1.
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Want to know more about our research?

Xerox Research Centre Europe (Grenoble, France):
www.xrce.xerox.com
Research positions in machine learning, natural language processing,
machine translation, textual and visual pattern analysis, mechansim
design, social network analysis...
Internship and PhD opportunities all year round, so don’t hesitate to
get in touch!

file:www.xrce.xerox.com

