Online Learning

Roberto Paredes

Pattern Recognition and Human Language Technologies Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Index

- Introduction
- Online Learning: Perceptron
- Online Learning: Kernel Perceptron
- Passive-Aggressive (PA) Online Learning
- Online Learning on a Budget
- Online Learning Applications

Introduction

Introduction

- Online Learning: A procedure for obtaining a machine learning model that uses an unique sample (new) at each iteration
- Moreover: The distribution of the data is unknown (or change over the time), the data have not ever seen before, and batch procedure is not feasible
- Online Learning problems, Where?
- But pure online learning problems?
- Which is the motivation? Computational Efficiency and Shifting
problem

Could we get good models processing an unique sample at each iteration?

Introduction

- Online Learning: A procedure for obtaining a machine learning model that uses an unique sample (new) at each iteration
- Moreover: The distribution of the data is unknown (or change over the time), the data have not ever seen before, and batch procedure is not feasible
- Online Learning problems, Where?
- But pure online learning problems?
- Which is the motivation? \rightarrow Computational Efficiency and Shifting problem

Could we get good models processing an unique sample at each iteration?

Introduction - Notation

- The student should know:
- Basic Machine Learning concepts
- Linear models
- Kernel methods
- The notation:
- Samples are vectors: $\mathbf{x} \in \Re^{d}$
- Weight vector: $\mathbf{w} \in \Re^{d}$
- Class-label: $y \in\{-1,+1\}$
- Class-label (multiclass): $y \in[1 \ldots M]$
- Loss function: $\ell(\cdot)$
- Kernels: $K(\cdot, \cdot)$
- Set of indexes (of support vectors): $S=\{\cdots\}$

Linear Models

Linear Models

- Linear models:

$$
\begin{equation*}
y=\operatorname{sgn}\left(\mathbf{w}^{\prime} \cdot \mathbf{x}^{\prime}+w_{0}^{\prime}\right) \tag{1}
\end{equation*}
$$

where $w_{0} \in \Re$ and $\mathbf{x}^{\prime}, \mathbf{w}^{\prime} \in \Re^{d^{\prime}}$

- Normally we use a compact notation:

$$
\begin{gather*}
y=\operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}) \tag{2}\\
\text { where } \mathbf{w}=\left\{w_{0}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{d^{\prime}}^{\prime}\right\} \text { and } \mathbf{x}=\left\{1, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{d^{\prime}}^{\prime}\right\}
\end{gather*}
$$

- Let be $d=d^{\prime}+1$ then $\mathbf{w}, \mathbf{x} \in \Re^{d}$

Linear Models

Linear Models: Perceptron

- The goal: Given a set of data $X=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{T}, y_{T}\right)\right\}$ find a w that gives the minimum classification error

$$
\begin{array}{ll}
\text { Classifier: } & \operatorname{sgn}(\mathbf{w x}) \\
\text { Decision boundary: } & \mathbf{w x}=0 \\
\text { Margin (sample i): } & y_{i}\left(\mathbf{w} \mathbf{x}_{i}\right) \\
\text { Error criterion (sample i): } & y_{i}\left(\mathbf{w} \mathbf{x}_{i}\right)<0
\end{array}
$$

- Perceptron: update the model for the misclassified labels following the rule:

$$
\mathbf{w}_{\text {new }}=\mathbf{w}+y_{i} \mathbf{x}_{i}
$$

Why this updating rule?

Linear Models: Perceptron

- The goal: Given a set of data $X=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{T}, y_{T}\right)\right\}$ find a w that gives the minimum classification error

$$
\begin{array}{ll}
\text { Classifier: } & \operatorname{sgn}(\mathbf{w x}) \\
\text { Decision boundary: } & \mathbf{w x}=0 \\
\text { Margin (sample i): } & y_{i}\left(\mathbf{w} \mathbf{x}_{i}\right) \\
\text { Error criterion (sample i): } & y_{i}\left(\mathbf{w} \mathbf{x}_{i}\right)<b, b \in \Re^{+}
\end{array}
$$

- Perceptron: update the model for the misclassified labels following the rule:

$$
\mathbf{w}_{\text {new }}=\mathbf{w}+y_{i} \mathbf{x}_{i}
$$

Linear Models: Perceptron

Linear Models: Perceptron

- The goal: Given a set of data $X=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ find a w that gives the minimum classification error

Classifier:	$\operatorname{sgn}(\mathbf{w x})$
Decision boundary:	$\mathbf{w x}=0$
Margin (sample i):	$y_{i}\left(\mathbf{w} \mathbf{x}_{i}\right)$
Error criterion (sample i):	$y_{i}\left(\mathbf{w} \mathbf{x}_{i}\right)<0$

If

$$
\exists \mathbf{u} \in \Re^{d} \quad y_{i} \mathbf{u} \mathbf{x}_{i}>0 \quad \forall i=1 \ldots n
$$

then the problem is linearly separable. Note: || u || no matters

Online Learning: Perceptron

Online Learning: Perceptron

- Perceptron Online Learning:
- Initialize $\mathbf{w}_{1}=\mathbf{0}$
- For all $t=1 \ldots T$ do:
- Receives \mathbf{x}_{t} and compute $y=\operatorname{sign}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)$
- If $y \neq y_{t}$ then $\mathbf{w}_{t+1}=\mathbf{w}_{t}+y_{t} \mathbf{x}_{t}$ else $\mathbf{w}_{t+1}=\mathbf{w}_{t}$
- The algorithm returns \mathbf{w}_{T+1}

Online Learning: Perceptron - Bounding the number of errors

- Let be $X=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{T}, y_{T}\right)\right\}$ a finite data set
- Let be \mathbf{u}^{*} the linear model with minimum number of errors for X
- Let be \mathbf{w}_{T+1} the linear model obtained for X using the Perceptron
- Which is the relation between the number of errors of \mathbf{u}^{*} and the Perceptron?

$$
\sum_{t=1}^{T} \varepsilon\left(\mathbf{w}_{t}\right) \leq \sum_{t=1}^{T} \varepsilon\left(\mathbf{u}^{*}\right)+\text { constant }
$$

- Is the constant value small?
- Note: $\sum_{t=1}^{T} \varepsilon\left(\mathbf{w}_{t}\right)$ is an online error while $\sum_{t=1}^{T} \varepsilon\left(\mathbf{u}^{*}\right)$ is the error of some \mathbf{u}^{*} with all the samples available

Online Learning: Perceptron - Bounding the number of errors

- To find \mathbf{u}^{*} that minimizes the number of errors for given set X is a NP-hard problem, we have to relax the expression introducing some convex loss: Hinge loss
- The hinge loss is $\ell(\mathbf{w} ;(\mathbf{x}, y))=\max (0,1-y(\mathbf{w x}))$

Online Learning: Perceptron - Bounding the number of errors

- We redefine the previous relations as:

$$
\sum_{t=1}^{T} \varepsilon\left(\mathbf{w}_{t}\right) \leq \sum_{t=1}^{T} \ell\left(\mathbf{u}^{*}\right)+\text { constant }
$$

- And we get:

$$
\sum_{t=1}^{T} \varepsilon\left(\mathbf{w}_{t}\right) \leq \sum_{t=1}^{T} \ell(\mathbf{u})+\|u\|^{2}+\|u\| \sqrt{\sum_{t=1}^{T} \ell(\mathbf{u})}
$$

- Note: for any u
- It is worth to see how to get this relation

Online Learning: Perceptron - General Model

- General model:

$$
y=\operatorname{sign}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)=\operatorname{sign}\left(\sum_{i=1}^{t-1} y_{i} \alpha_{i} \mathbf{x}_{i} \mathbf{x}_{t}\right)
$$

- Common algorithmic structure:
- Receives \mathbf{x}_{t} and compute y
- If $y \cdot y_{t}>\beta_{t}$ then $\alpha_{t}=0$
- else $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\alpha_{t} y_{t} \mathbf{x}_{t}$, where $\alpha_{t}>0$
- optionally \mathbf{w} is scaled.: $\mathbf{w}_{t+1} \leftarrow c_{t} \mathbf{w}_{t+1}$
- Perceptron: $\alpha_{t}=1, \beta_{t}=0$ and $c_{t}=1$
- Well-known algorithms like: Relaxed Online Maximum Margin Algorithm (ROMMA),Approximate Maximal Margin Classification Algorithm (ALMA) and Margin Infused Relaxed Algorithm (MIRA)

Online Learning: Perceptron - MIRA

- MIRA for two-class problem: (Crammer and Singer (2003))
- Apply the common algorithmic structure presented before
- For each \mathbf{x}_{t} define α_{t} as:

$$
\alpha_{t}=G\left(-\frac{y_{t}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)}{\left\|\mathbf{x}_{t}\right\|^{2}}\right) \quad \text { where }
$$

$$
G(z)= \begin{cases}0 & \text { if } z<0 \\ z & \text { if } 0 \leq z \leq 1 \\ 1 & \text { if } 1<z\end{cases}
$$

Online Learning: Perceptron - The shifting Perceptron

- The Shifting Perceptron Algorithm (SPA) (Cavallanti, Cesa-Bianchi and Gentile (2006))
- Goal: The tracking ability \rightarrow weak dependence on the past:
- Memory boundeness (Online Learning on a Budget)
- Weight decay:

$$
\begin{aligned}
& \text { If } y_{t} \neq \operatorname{sign}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right) \text { then } \\
& \qquad \mathbf{w}_{t+1}=\left(1-\lambda_{k}\right) \mathbf{w}_{t}+y_{t} \mathbf{x}_{t}, \quad k \leftarrow k+1, \quad \lambda_{k}=\frac{\lambda}{\lambda+k}
\end{aligned}
$$

Online Learning: Perceptron - The Shifting Perceptron

- The Shifting Perceptron implements an exponential decaying scheme
- Let be x_{i} the i - th sample with mistake
- $\alpha_{i}=(1-\lambda)^{k-i}$, where k is the total mistakes at the moment

Online Learning: Perceptron - Extension to Multiclass

- Let be M the number of classes
- Kesler's construction: $\mathbf{x} \in \Re^{d}$ is transformed into $M-1$ samples $\mathbf{x}^{\prime} \in \Re^{M \times d}$
- Useless under the practical point of view
- Very useful for converting multiclass problems into two class problems for the purpose of obtaining a convergence proof
- In a practical scenario:
- $\mathbf{w} \in \Re^{d} \rightarrow \mathbf{W} \in \Re^{M \times d}$
- Given a pair $\left(\mathbf{x}_{t}, y_{t}\right)$ compute: $y=\arg \max _{i=1 \ldots M} \mathbf{W}^{i} \mathbf{x}$
- If $y \neq y_{t}$ then an error is produced

Online Learning: Perceptron - Multiclass algorithms

- A family of additive multiclass algorithms: (Crammer and Singer (2003))
- Given $\left(\mathbf{x}_{t}, y_{t}\right), y_{t} \in\{1,2, \ldots, M\}$
- Compute $y=\arg \max _{i=1 \ldots M} \mathbf{W}^{i} \mathbf{x}$
- If $y \neq y_{t}$:
- $\mathbf{W}^{y_{t}} \leftarrow \mathbf{W}^{y_{t}}+\alpha_{y_{t}} \mathbf{x}_{t}$
- $\mathbf{W}^{r} \leftarrow \mathbf{W}^{r}+\alpha_{r} \mathbf{x}_{t}, \quad \forall r \in E$, where $E=\left\{r: \mathbf{W}^{r} \mathbf{x}_{t}>\mathbf{W}^{y_{t}} \mathbf{x}_{t}\right\}$
- Imposing the constrain $\alpha_{y_{t}}=-\sum_{r \in E} \alpha_{r}$
- Some examples:

$$
\alpha_{r}=\left\{\begin{array}{ll}
-\frac{1}{|E|} & \text { if } r \in E \\
1 & \text { if } r=y_{t} \\
0 & \text { otherwise }
\end{array} \quad \alpha_{r}= \begin{cases}-1 & \text { if } r=\arg \max _{s \in E} \mathbf{W}^{s} \mathbf{x}_{t} \\
1 & \text { if } r=y_{t} \\
0 & \text { otherwise }\end{cases}\right.
$$

Online Learning: Perceptron - Multiclass algorithms

- Error Bound for this family of algorithms:

$$
\sum_{t=1}^{T} \varepsilon\left(\mathbf{W}_{t}\right) \leq 2 \frac{(R+D)^{2}}{\gamma^{2}}
$$

where

$$
\begin{aligned}
& D^{2}=\sum_{t=1}^{T}\left(d^{t}\right)^{2} \\
& \left.d^{t}=\max \left\{0, \gamma-\left(\hat{\mathbf{W}}^{y_{t}} \mathbf{x}_{t}-\max _{i \neq y_{t}} \hat{\mathbf{W}}^{i} \mathbf{x}_{t}\right\}\right)\right\} \\
& R=\max _{t}\left\|\mathbf{x}_{t}\right\|
\end{aligned}
$$

- In particular for the best:

$$
\hat{\mathbf{W}}=\underset{\mathbf{W}:| | \mathbf{W} \|=1}{\arg \min } \sum_{t=1}^{T} 2 \frac{(R+D)^{2}}{\gamma^{2}}
$$

Online Learning: Perceptron - MIRA

- MIRA for multi-class problem:

Given $\left(\mathbf{x}_{t}, y_{t}\right), y_{t} \in\{1,2, \ldots, M\}$
Compute $y=\arg \max _{i=1 \ldots M} \mathbf{W}^{i} \mathbf{x}$
If $y \neq y_{t}$
Find τ that solves the optimization problem:

$$
\begin{aligned}
& \min _{\tau} \frac{1}{2} \sum_{i=1}^{M}\left\|\mathbf{W}^{i}+\tau_{i} \mathbf{x}_{t}\right\| \\
& \text { subject to: }\left\{\begin{array}{l}
\tau_{i} \leq \delta_{r, y_{t}} \quad i=1 \ldots M \\
\sum_{i=1}^{M} \tau_{i}=0
\end{array}\right.
\end{aligned}
$$

Update $\mathbf{W}^{i}=\mathbf{W}^{i}+\tau_{i} \mathbf{x}_{t}$

- Is still MIRA an ultraconservative algorithm?

Online Learning: Kernel Perceptron

Online Learning: Kernel Perceptron

- A linear Perceptron in a RKHS: Referring Kernel Hilbert Space
- The Perceptron model becomes a linear combination of kernels
- All past mistaken samples \mathbf{x}_{t} become support vectors
- The number of support vectors in not bounded in principle

Online Learning: Kernel Perceptron

- General model: Kernel Perceptron
- Linear Perceptron: $y=\operatorname{sign}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)=\operatorname{sign}\left(\sum_{i=1}^{t-1} y_{i} \alpha_{i} \mathbf{x}_{i} \mathbf{x}_{t}\right)$
- Kernel extension: $y=\operatorname{sign}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)=\operatorname{sign}\left(\sum_{i=1}^{t-1} y_{i} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{t}\right)\right)$
- The weight α_{i} can be seen as the importance of \mathbf{x}_{i}
- All the previous algorithms can be applied, for instance MIRA:

$$
\begin{gathered}
y=\operatorname{sign}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)=\operatorname{sign}\left(\sum_{i=1}^{t-1} y_{i} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{t}\right)\right) \\
\alpha_{i}=G\left(-\frac{y_{i}\left(\mathbf{w}_{i} \mathbf{x}_{i}\right)}{\left\|\mathbf{x}_{i}\right\|^{2}}\right)
\end{gathered}
$$

Passive-Aggressive Online Learning

Passive-Aggressive (PA) Online Learning

- Online Learning:
(1) At each time t we received a sample \mathbf{x}_{t}
(2) The class-label y for this \mathbf{x}_{t} is obtained from our model
(3) The real class-label y_{t} is then received
(4) Some loss is measured (divergence between y_{t} and y)
(5) Modify the model to get zero loss
(6) go to 1
- Some important considerations:
- At each time t we only observe an unique pair $\left(\mathbf{x}_{t}, y_{t}\right)$
- The modifications to the model should preserve what was learned from previous pairs: $\left\{\left(\mathbf{x}_{1}, y_{1}\right) \ldots\left(\mathbf{x}_{t-1}, y_{t-1}\right)\right\}$

Passive-Aggressive (PA) Online Learning

- Things to do:
- We have to define how to measure the loss, loss function
\rightarrow The loss for the pair (\mathbf{x}_{t}, y_{t}) should be 0
- We have to solve how to preserve the previous learning
\rightarrow Define a distance between the models
\rightarrow The distance between models should be minimum

Passive-Aggressive (PA) Online Learning

- Using a linear model and the hinge-loss function:
- The class label is $y=\operatorname{sgn}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)$
- The hinge loss is $\ell\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right)=\max \left(0,1-y_{t}\left(\mathbf{w} \mathbf{x}_{t}\right)\right)$

- The model divergence can be computed as $\left\|\mathbf{w}^{\prime}-\mathbf{w}\right\|^{2}$

Passive-Aggressive (PA) Online Learning

- Minimization problem (Crammer et al. 2006):

$$
\mathbf{w}_{t+1}=\underset{w \in \Re^{d}}{\arg \min } \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2} \quad \text { s.t. } \ell\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right)=0
$$

- Find a vector \mathbf{w} near to the current \mathbf{w}_{t} that classifies correctly (and with some margin) the new sample \mathbf{x}_{t}

Passive-Aggressive (PA) Online Learning

- Lagrangian:

$$
\mathcal{L}(\mathbf{w}, \tau)=\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}+\tau\left(1-y_{t}\left(\mathbf{w} \mathbf{x}_{t}\right)\right)
$$

- Setting the derivatives of \mathcal{L} with respect to \mathbf{w} to zero:

$$
0=\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \tau)=\mathbf{w}-\mathbf{w}_{t}-\tau y_{t} \mathbf{x}_{t} \rightarrow \mathbf{w}=\mathbf{w}_{t}+\tau y_{t} \mathbf{x}_{t}
$$

- Plugging back to the Lagrangian equation:

$$
\mathcal{L}(\tau)=-\frac{1}{2} \tau^{2}\left\|\mathbf{x}_{t}\right\|^{2}+\tau\left(1-y_{t}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)\right)
$$

- Setting the derivatives w.r.t τ to zero:

$$
0=\frac{\partial \mathcal{L}(\tau)}{\partial \tau}=-\tau\left\|\mathbf{x}_{t}\right\|^{2}+\left(1-y_{t} \mathbf{w}_{t} \mathbf{x}_{t}\right) \rightarrow \tau=\frac{1-y_{t}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)}{\left\|\mathbf{x}_{t}\right\|^{2}}
$$

Exercise: Check these expressions

Passive-Aggressive (PA) Online Learning

- Solution:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}+\tau y_{t} \mathbf{x}_{t} \quad \tau=\frac{\ell\left(\mathbf{w}_{t} ;\left(\mathbf{x}_{t}, y_{t}\right)\right)}{\left\|\mathbf{x}_{t}\right\|^{2}}
$$

- Geometrical interpretation

Passive-Aggressive (PA) Online Learning

- Advantage:
- The model modification: $\mathbf{w}_{t+1}-\mathbf{w}_{t}=\tau_{t} y_{t} \mathbf{x}_{t}$ is as much as needed to get $\ell_{t}=0$
- Certainly such modification leads to the minimum of $\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}$
- Problem:
- But this minimum could be too much in case of outliers or problems that are not linearly separable
- In some iteration t the model could forget what has learned before,

$$
\left\|\mathbf{w}_{t+1}-\mathbf{w} t\right\|^{2} \uparrow \uparrow
$$

- Solution: Introduce a parameter that controls the Aggressiveness of the algorithm

Passive-Aggressive (PA) Online Learning

- Applying the same ideas introduced previously (Vapnik, 1998) to derive soft-margin classifiers
- New minimization:
$\mathbf{w}_{t+1}=\underset{w \in \Re^{d}}{\arg \min } \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}+C \xi$ s.t. $\ell\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right) \leq \xi$ and $\xi \geq 0$
- Larger values of C imply a more aggressive update strategy

Passive-Aggressive (PA) Online Learning

- Two models:
- PA-I

$$
\mathbf{w}_{t+1}=\underset{w \in \Re^{d}}{\arg \min } \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}+C \xi \text { s.t. } \ell\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right) \leq \xi \text { and } \xi \geq 0
$$

- PA-II

$$
\mathbf{w}_{t+1}=\underset{w \in \Re^{d}}{\arg \min } \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}+C \xi^{2} \quad \text { s.t. } \ell\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right) \leq \xi
$$

Exercise: Obtain the PA-I and PA-II updating rules

Passive-Aggressive (PA) Online Learning

- Solutions to the two proposed models:
- PA-I

$$
\tau_{t}=\min \left\{C, \frac{\ell_{t}}{\left\|\mathbf{x}_{t}\right\|^{2}}\right\}
$$

- PA-II

$$
\tau_{t}=\frac{\ell_{t}}{\left\|\mathbf{x}_{t}\right\|^{2}+\frac{1}{2 C}}
$$

- In both cases: $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\tau_{t} y_{t} \mathbf{x}_{t}$

Passive-Aggressive (PA) Online Learning

- PA Algorithm:
- Initialize $\mathbf{w}_{1}=(0, \ldots, 0)$
- For $t=1,2, \ldots$
- Receive sample \mathbf{x}_{t}
- Compute $y=\operatorname{sgn}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)$
- Receive correct label y_{t}
- Compute loss, $\ell_{t}=\max \left\{0,1-y_{t}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)\right\}$
- Compute $\tau_{t}=\min \left\{C, \frac{\ell_{t}}{\left\|x_{t}\right\|^{2}}\right\}$ (PA-I)
- Update $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\tau_{t} y_{t} \mathbf{x}_{t}$

Passive-Aggressive (PA) Online Learning

- Some demos

PA with kernels

- The linear model is compact, all the model is stored in w

$$
\begin{gathered}
\mathbf{w}_{t}=\sum_{i=1}^{t-1} \tau_{i} y_{i} \mathbf{x}_{i} \\
\mathbf{w}_{t} \mathbf{x}_{t}=\sum_{i=1}^{t-1} \tau_{i} y_{i}\left(\mathbf{x}_{t} \mathbf{x}_{i}\right)
\end{gathered}
$$

- The inner product can be replaced with a general Mercel kernel $K\left(x_{i}, x_{t}\right)$

$$
\mathbf{w}_{t} \mathbf{x}_{t}=\sum_{i=1}^{t-1} \tau_{i} y_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)
$$

- How is the algorithm affected?

PA with kernels

- PA Algorithm:
- Initialize $\mathbf{w}_{1}=(0, \ldots, 0)$
- For $t=1,2, \ldots$
- Receive sample \mathbf{x}_{t}
- Compute $y=\operatorname{sgn}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)$
- Receive correct label y_{t}
- Compute loss, $\ell_{t}=\max \left\{0,1-y_{t}\left(\mathbf{w}_{t} \mathbf{x}_{t}\right)\right\}$
- Compute $\tau_{t}=\min \left\{C, \frac{\ell_{t}}{\left\|x_{t}\right\|^{2}}\right\}$ (PA-I)
- Update $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\tau_{t} y_{t} \mathbf{x}_{t}$

PA with kernels

- PA Algorithm:
- Initialize $\mathbf{w}_{1}=(0, \ldots, 0)$
- For $t=1,2, \ldots$
- Receive sample \mathbf{x}_{t}
- Compute $y=\operatorname{sgn}\left(\sum_{i=1}^{t} \tau_{i} y_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)\right)$
- Receive correct label y_{t}
- Compute loss, $\ell_{t}=\max \left\{0,1-y_{t}\left(\sum_{i=1}^{t} \tau_{i} y_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)\right)\right\}$
- Compute $\tau_{t}=\min \left\{C, \frac{\ell_{t}}{\left\|x_{t}\right\|^{2}}\right\}$ (PA-I)
- Update $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\tau_{t}{ }_{t} \mathbf{x}_{t}$

PA with kernels

- Some important issues:
- The weight vector wis not used anymore
- If $\tau_{i}=0$ we can avoid the kernel $K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)$
- Those vectors \mathbf{x}_{t} that produce some loss $\tau_{t}>0$ become support vectors
- Some disadvantages:
- This model is more expensive
- The value τ_{i} associated to previous sample \mathbf{x}_{i} is no reconsidered
- The number of support vectors used to be higher than the necessary

Passive-Aggressive (PA) Online Learning

- Some demos

PA for Regression

PA for Regression

- Modify the PA for regression problems
- A different loss is required:

$$
\ell_{\epsilon}=\max (0,|\mathbf{w} \mathbf{x}-y|-\epsilon)
$$

- Similar optimization problem:

$$
\mathbf{w}_{t+1}=\underset{w \in \Re^{d}}{\arg \min } \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2} \quad \text { s.t. } \ell_{\epsilon}\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right)=0
$$

- Solution:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}+\operatorname{sign}\left(y_{t}-\hat{y}_{t}\right) \tau_{t} \mathbf{x}_{t} \quad \text { where } \quad \tau_{t}=\frac{\ell_{t}}{\|\mathbf{x}\|^{2}}
$$

PA for Regression

- PA-I and PA-II can also be obtained for the regression model

$$
\begin{array}{ll}
\mathrm{PA}-\mathrm{I} & \tau_{t}=\min \left\{C, \frac{\ell_{\epsilon}}{\left\|\mathbf{x}_{t}\right\|^{2}}\right\} \\
\mathrm{PA}-\mathrm{II} & \tau_{t}=\frac{\ell_{\epsilon}}{\left\|\mathbf{x}_{t}\right\|^{2}+\frac{1}{2 C}}
\end{array}
$$

PA for multiclass problems

- $\mathbf{w} \in \Re^{d}$
- For each class m, the sample \mathbf{x} is mapped $\Phi(\mathbf{x}, m) \in \Re^{d}$
- Given a pair $\left(\mathbf{x}_{t}, y_{t}\right)$ compute the M mappings: $\Phi(\mathbf{x}, 1) \ldots \Phi(\mathbf{x}, M)$
- Simplified constrained optimization:

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w}}{\arg \min } \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2} \quad \text { s.t. } \mathbf{w}\left(\Phi\left(\mathbf{x}_{t}, y_{t}\right)-\Phi\left(\mathbf{x}_{t}, s_{t}\right)\right) \geq 1
$$

where $s_{t}=\operatorname{argmax}_{i \in\{1 \ldots M\}, i \neq y_{t}} \mathbf{w}_{t} \Phi\left(\mathbf{x}_{t}, i\right)$

PA for multiclass problems

- The solution to this multiclass optimization problem is:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}+\tau_{t}\left(\Phi\left(\mathbf{x}_{t}, y_{t}\right)-\Phi\left(\mathbf{x}_{t}, s_{t}\right)\right)
$$

where $\tau_{t}=\frac{\ell_{t}}{\left\|\Phi\left(\mathbf{x}_{t}, y_{t}\right)-\Phi\left(\mathbf{x}_{t}, s_{t}\right)\right\|^{2}}$

PA for multiclass problems

- Another approximation $\mathbf{w}_{t} \Phi\left(\mathbf{x}_{t}, r\right)=\mathbf{W}_{t}^{r} \mathbf{x}_{t}$
- Then $\mathbf{W} \in \Re^{M \times d}$
- For each class m, the sample \mathbf{x} is mapped $\Phi(\mathbf{x}, m) \in \Re^{d}$
- Simplified constrained optimization:

$$
\mathbf{W}_{t+1}=\underset{\mathbf{W}}{\arg \min } \frac{1}{2}\left\|\mathbf{W}-\mathbf{W}_{t}\right\|^{2} \quad \text { s.t. }\left(\mathbf{W}^{y_{t}} \mathbf{x}_{t}-\mathbf{W}^{s_{t}} \mathbf{x}_{t}\right) \geq 1
$$

where $s_{t}=\operatorname{argmax}_{i \in\{1 \ldots M\}, i \neq y_{t}} \mathbf{W}^{i} \mathbf{x}_{t}$

PA for multiclass problems

- The solution to this multiclass optimization problem is:

$$
\mathbf{W}_{t+1}^{y_{t}}=\mathbf{W}_{t}^{y_{t}}+\tau_{t} \mathbf{x}_{t}
$$

$$
\mathbf{W}_{t+1}^{s_{t}}=\mathbf{W}_{t}^{S_{t}}-\tau_{t} \mathbf{x}_{t}
$$

where $\tau_{t}=\frac{\ell_{t}}{2\left\|\mathbf{x}_{t}\right\|^{2}}$

Online Learning on a Budget

Online Classification on a Budget

- Every time a sample produces $\ell_{t}>0$ this sample is added to the support vector set
- Under certain circumstances the set of support vectors grows considerably
- The computational efficiency decreases, for the following samples and for the test phase
- In real applications usually the memory resources could be very limited
- Solution \rightarrow limit the number of support vectors to B
- Moreover in changing tasks budget algorithms uses to outperform non-budget algorithms

Online Classification on a Budget: Budget Perceptron

- Budget Perceptron (BP) Crammer, Kandola and Singer (2004)
- Linear version:

For $t=1 \ldots$
Get new sample \mathbf{x}_{t}
Compute $y=\mathbf{w}_{t} \mathbf{x}_{t}$
If $y_{t} y<\beta$ then
$S=S \cup\{t\}$
$\alpha_{t}=1$
$\mathbf{w}_{t+1}=\mathbf{w}_{t}+y_{t} \alpha_{t} \mathbf{x}_{t}$
$\mathrm{DC}\left(\mathrm{S}, \mathbf{w}_{t+1}\right)$

DC(S,w)
For all $i \in S$
If $\beta \leq y_{i}\left(\mathbf{w}-y_{i} \alpha_{i} \mathbf{x}_{i}\right)$ then $\mathbf{w}=\mathbf{w}-y_{i} \alpha_{i} \mathbf{x}_{i}$ $S=S /\{i\}$
return S, \mathbf{w}

Online Classification on a Budget: Budget Perceptron

- Budget Perceptron (BP) Crammer, Kandola and Singer (2004)

For $t=1 \ldots$
Get new sample \mathbf{x}_{t}
Compute

$$
y=\sum_{i \in S} y_{i} \alpha_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)
$$

If $y_{t} y<\beta$ then
$S=S \cup\{t\}$
$\alpha_{t}=1$
DC(S)

DC(S)
For all $i \in S$
if $\beta \leq y_{i}\left(\sum_{j \in S, j \neq i} y_{j} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)$ then

$$
S=S /\{i\}
$$

return S

Online Classification on a Budget: Budget Perceptron

- Budget Perceptron (BP) with fixed-size S

For $t=1 \ldots$.
Get new sample \mathbf{x}_{t}
Compute $y=\sum_{i \in S} y_{i} \alpha_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)$
If $y_{t} y<\beta$ then
if $|S|=B$ then Remove(S)
$S=S \cup\{t\}$
$\alpha_{t}=1$
Remove(S)
Find $s=\arg \max _{i \in S}\left\{y_{i}\left(\sum_{j \in S, j \neq i} y_{j} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)\right\}$
$S=S /\{s\}$
return S

Online Classification on a Budget: Forgetron

- Forgetron: Dekel, Shalev-Shwartz and Singer (2006)
- First, consider the Remove-Oldest Perceptron
- Can be seen as a simple modification of the kernel Perceptron
- Algorithm:
(1) if $\ell_{t}<0$ do nothing
(2) if $\ell_{t}>0$ and $n s v<B$ then add sample \mathbf{x}_{t}, $n s v=n s v+1$
(3) if $\ell_{t}>0$ and $n s v>=B$ then add sample \mathbf{x}_{t} but remove oldest sample in sv set
- Dekel et al. discussed the damage caused by removing the oldest sample
- The key for controlling this damage is to ensure that the sample being removed has small influence

Online Classification on a Budget: Forgetron

- Second, Shrinking Perceptron:

$$
\mathbf{w}_{t} \mathbf{x}_{t}=\sum_{i=1}^{t-1} \sigma_{i} y_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)
$$

where $\sigma_{i} \in[0,1]$

- When a new \mathbf{x}_{t} is added to the sv set:
- Its associated weight $\sigma_{t}=1$
- The weights of previous sample in sv are decreased $\sigma_{i}=\phi \sigma_{i}$ for $0<i<t$
- where $0<\phi<1$
- If the weights decrease rapidly enough the contribution of older samples becomes negligible
- But again, a damage is produced on the accuracy of the online algorithm

Online Classification on a Budget: Forgetron

- Forgetron combines two approaches, Remove-Oldest Perceptron and Shrinking Perceptron
- Very important to define the value of ϕ, more concretely ϕ_{t}
- Self-tuned Forgetron:

$$
\phi_{t}= \begin{cases}\min \left\{1, \frac{-b+\sqrt{d}}{2 a}\right\} & \text { if } a>0 \vee\left(a<0 \wedge d>0 \wedge \frac{-b-\sqrt{d}}{2 a}>1\right) \\ \min \{1,-c / b\} & \text { if } a=0 \\ 1 & \text { otherwise }\end{cases}
$$

Online Classification on a Budget: LBP

- Least recent Budget Perceptron (LBP) (Cavallanti, Cesa-Bianchi and Gentile (2007))
- An aggressive variant of Forgetron

For $t=1$...
Get new sample \mathbf{x}_{t}
Compute $y=\sum_{i \in S} y_{i} \alpha_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)$
If $y_{t} y<\beta$ then
if $|S|<B$ then $\left\{S=S \cup\{t\} ; \alpha_{t}=1\right\}$ else $S=S / \min \{S\}$

Online Classification on a Budget: Stoptron

- Stop learning when budget is exceeded (Orabona, Keshet and Caputo (2008))

For $t=1 \ldots$
Get new sample \mathbf{x}_{t}
Compute $y=\sum_{i \in S} y_{i} \alpha_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)$
If $y_{t} y<\beta$ then
if $|S|<B$ then $\left\{S=S \cup\{t\} ; \alpha_{t}=1\right\}$ else $S=S$

Online Classification on a Budget: Randomized Budget Perceptron

- Randomized Budget Perceptron (RBP) (Cavallanti, Cesa-Bianchi and Gentile (2007))

For $t=1 \ldots$
Get new sample \mathbf{x}_{t}
Compute $y=\sum_{i \in S} y_{i} \alpha_{i} K\left(\mathbf{x}_{t}, \mathbf{x}_{i}\right)$
If $y_{t} y<\beta$ then

$$
\begin{aligned}
& S=S \cup\{t\} \\
& \alpha_{t}=1 \\
& \text { if }|S|=B \text { then Remove(S) }
\end{aligned}
$$

Remove(S)

Select randomly $s \in S$ $S=S /\{s\}$
return S

Online PA on a Budget

- Budget Passive Aggressive (BPA) (Wang and Vucetic (2010))
- The key idea is to add a new constrain to the PA optimization problem:

$$
\mathbf{w}_{t+1}=\underset{w \in \Re^{d}}{\arg \min } \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}+C \xi \quad \text { s.t. } \ell\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right) \leq \xi \text { and } \xi \geq 0
$$

- The new constrain is:

$$
\mathbf{w}=\mathbf{w}_{t}-\alpha_{r} \phi\left(\mathbf{x}_{r}\right)+\sum_{i \in V} \beta_{i} \phi\left(\mathbf{x}_{i}\right)
$$

where $\phi(\mathbf{x})$ denotes a mapping from original input space to the feature space: $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \phi\left(\mathbf{x}^{\prime}\right)$

Online PA on a Budget

- The new constraint:

$$
\mathbf{w}=\mathbf{w}_{t}-\alpha_{r} \phi\left(\mathbf{x}_{r}\right)+\sum_{i \in V} \beta_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- Intuitively BPA is removing support vector \mathbf{x}_{r} but add new support vector as a linear combination of the support vectors that belongs to V
- This set $V \subseteq S \cup\{t\}-\{r\}$ to be defined
- Then no new support vector are added at all if $\{t\}$ is not included in V :

$$
\begin{gathered}
\mathbf{w}_{t}=\sum_{i \in S} \alpha_{i} \phi\left(\mathbf{x}_{i}\right) \\
\mathbf{w}=\sum_{i \in V}\left(\alpha_{i}+\beta_{i}\right) \phi\left(\mathbf{x}_{i}\right)+\sum_{i \in S-V} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)-\alpha_{r} \phi\left(\mathbf{x}_{r}\right)
\end{gathered}
$$

Online PA on a Budget

- Denote \mathbf{w}_{t+1}^{r} the solution of the new optimization problem when \mathbf{x}_{r} is removed
- Find the r^{*} that minimizes the PA objective function:

$$
\begin{gathered}
Q(\mathbf{w})=\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}+C \cdot H\left(\mathbf{w} ;\left(\mathbf{x}_{t}, y_{t}\right)\right) \\
r^{*}=\underset{r \in S \cup\{t\}}{\arg \min } Q\left(\mathbf{w}_{t+1}^{r}\right)
\end{gathered}
$$

- Assuming r is known w_{t+1}^{r} is:

$$
\mathbf{w}_{t+1}^{r}=\mathbf{w}_{t}-\alpha_{r} \phi\left(\mathbf{x}_{r}\right)+\sum_{i \in V} \beta_{i} \phi\left(\mathbf{x}_{i}\right)
$$

where

$$
\begin{gathered}
\beta=\alpha_{r} \mathbf{K}^{-1} \mathbf{k}_{r}+\tau y_{t} \mathbf{K}^{-1} \mathbf{k}_{t} \\
\tau=\min \left(C, \max \left(\frac{1-y_{t}\left(f_{t}\left(\mathbf{x}_{t}\right)-\alpha_{r} k_{t r}+\alpha_{r}\left(\mathbf{K}^{-1} \mathbf{k}_{r}\right)^{T} \mathbf{k}_{t}\right)}{\left(\mathbf{K}^{-1} \mathbf{k}_{t}\right)^{T} \mathbf{k}_{t}}\right)\right)
\end{gathered}
$$

Online PA on a Budget

- Several choices to define the set V
- BPA-Simple (BPA-S) $\rightarrow V=\{t\} \rightarrow O(B)$

$$
\begin{gathered}
\beta_{t}=\frac{\alpha_{r} k_{r t}}{k_{t t}}+\tau y_{t} \\
\tau=\min \left(C, \frac{H\left(\mathbf{w}_{t} ;\left(\mathbf{x}_{t}, y_{t}\right)\right)}{k_{t t}}\right)
\end{gathered}
$$

- BPA-Projection (BPA-P) $\rightarrow V=S+\{t\}-\{r\} \rightarrow O\left(B \cdot B^{2}\right) \rightarrow O\left(B^{3}\right)$
- BPA-Nearest-Neighbor (BPA-NN) $\rightarrow V=\{t\}+N N(r) \rightarrow O\left(B^{2}\right)$

Online PA on a Budget

Table 1: Results on 7 benchmark datasets

Time	Algs	Adult	Banana	Checkerb	NCheckerb	Cover	Phoneme	USPS	Avg
	$21 \mathrm{~K} \times 123$	$4.3 \mathrm{~K} \times 2$	$10 \mathrm{~K} \times 2$	$10 \mathrm{~K} \times 2$	$10 \mathrm{~K} \times 54$	$10 \mathrm{~K} \times 41$	$7.3 \mathrm{~K} \times 256$		
	75%	55%	50%	50%	51%	50%	52%		

$O(N)$	Pcptrn	80.2 ± 0.2	87.4 ± 1.5	96.3 ± 0.6	83.4 ± 0.7	76.0 ± 0.4	78.9 ± 0.6	94.6 ± 0.1	85.3
	(\#SV)	(4.5K)	(0.6K)	(0.5K)	(2.8K)	(2.8K)	(2.4K)	(0.4K)	
	$\begin{aligned} & \text { PA } \\ & \text { (\#SV) } \end{aligned}$	$\begin{gathered} 83.6 \pm 0.2 \\ (15 \mathrm{~K}) \end{gathered}$	$\begin{gathered} 89.1 \pm 0.7 \\ (2 \mathrm{~K}) \end{gathered}$	$\begin{gathered} 97.2 \pm 0.1 \\ (2.6 \mathrm{~K}) \end{gathered}$	$\begin{gathered} 95.8 \pm 1.0 \\ (5.9 \mathrm{~K}) \end{gathered}$	$\begin{gathered} 81.6 \pm 0.2 \\ (9.9 \mathrm{~K}) \end{gathered}$	$\begin{gathered} 82.6 \pm 0.9 \\ (7.2 \mathrm{~K}) \end{gathered}$	$\begin{gathered} 96.7 \pm 0.1 \\ (4.5 \mathrm{~K}) \end{gathered}$	89.5
	$\begin{aligned} & \mathrm{PA}^{R} \\ & (\# \mathrm{SV}) \end{aligned}$	$\begin{gathered} \mathbf{8 4 . 1} \pm 0.1 \\ (4.4 \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 9 . 3} \pm 0.7 \\ (1.5 \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{9 7 . 5} \pm 0.1 \\ (2.6 \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{9 6 . 2} \pm 0.8 \\ (3.3 \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 2 . 7} \pm 0.3 \\ (9.8 \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 3 . 7} \pm 0.7 \\ (6.5 \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{9 6 . 7} \pm 0.1 \\ (4.5 \mathrm{~K}) \end{gathered}$	90.0

$O(B)$	Stptrn	76.5 ± 2.0	86.7 ± 2.1	87.3 ± 0.9	75.4 ± 4.3	64.2 ± 1.7	67.6 ± 2.7	89.1 ± 1.2	78.1
	Rand	76.2 ± 3.6	84.1 ± 2.6	85.6 ± 1.2	69.4 ± 2.9	61.3 ± 3.2	65.0 ± 4.4	87.1 ± 0.9	75.5
	Fogtrn	72.8 ± 6.1	82.8 ± 2.4	86.1 ± 1.0	68.2 ± 3.5	60.8 ± 2.7	65.6 ± 1.2	86.2 ± 2.1	74.6
	PA+Rnd	78.4 ± 1.9	84.9 ± 2.1	83.3 ± 1.4	75.1 ± 3.6	63.1 ± 1.5	64.0 ± 3.9	86.2 ± 1.1	76.4
	BPA-S	82.4 ± 0.1	89.4 ± 1.3	90.0 ± 0.8	87.4 ± 0.7	68.6 ± 1.9	67.4 ± 3.0	89.6 ± 1.3	82.1
	$\mathrm{BPA}^{\text {- }}$-S	82.4 ± 0.1	89.5 ± 1.7	90.0 ± 1.0	88.2 ± 1.2	69.3 ± 1.8	67.0 ± 3.2	89.3 ± 1.2	82.2
	BPA-NN	82.8 ± 0.4	89.6 ± 1.4	94.0 ± 1.2	90.2 ± 1.3	69.1 ± 1.8	74.3 ± 0.7	90.8 ± 0.9	84.4
	$\mathrm{BPA}^{R}-\mathrm{NN}$	$\mathbf{8 3 . 1} \pm 0.0$	89.8 ± 1.1	94.2 ± 0.9	$\mathbf{9 2 . 3} \pm 0.5$	70.3 ± 0.8	74.6 ± 0.8	90.8 ± 0.6	85.0
$O\left(B^{2}\right)$	Pjtrn++	80.1 ± 0.1	89.5 ± 1.1	$\mathbf{9 5 . 4} \pm 0.7$	88.1 ± 0.7	68.7 ± 1.0	74.6 ± 0.7	89.2 ± 0.7	83.7
$O\left(B^{3}\right)$	BPA-P	83.0 ± 0.2	$\mathbf{8 9 . 6} \pm 1.1$	$\mathbf{9 5 . 4} \pm 0.7$	91.7 ± 0.8	74.3 ± 1.4	75.2 ± 1.0	$\mathbf{9 2 . 8} \pm 0.7$	86.0
	BPA-P ${ }^{R}$	84.0 ± 0.0	$\mathbf{8 9 . 6} \pm 0.8$	95.2 ± 0.8	$\mathbf{9 4 . 1} \pm 0.9$	75.0 ± 1.0	$\mathbf{7 4 . 9} \pm 0.6$	$\mathbf{9 2 . 6} \pm 0.7$	86.5

$O(B)$	Stptrn	78.7 ± 1.8	85.6 ± 1.5	92.8 ± 1.1	76.0 ± 3.1	65.5 ± 2.3	70.5 ± 2.6	92.3 ± 0.7	80.2
	Rand	76.4 ± 2.8	83.6 ± 2.0	90.3 ± 1.3	74.5 ± 2.1	62.4 ± 2.4	67.3 ± 2.5	89.8 ± 1.1	77.8
	Fogtrn	72.9 ± 6.8	85.0 ± 1.3	90.9 ± 1.7	72.2 ± 4.4	62.1 ± 2.8	68.0 ± 2.3	90.3 ± 0.9	77.3
	$\mathrm{PA}+\mathrm{Rnd}$	80.1 ± 2.4	86.7 ± 1.9	87.0 ± 1.3	78.3 ± 1.8	64.2 ± 2.7	68.7 ± 4.3	88.8 ± 0.8	79.1
	BPA-S	82.7 ± 0.2	89.5 ± 0.7	93.4 ± 0.5	89.7 ± 0.9	71.7 ± 1.7	71.3 ± 2.3	92.6 ± 0.9	84.4
	$\mathrm{BPA}^{R}-\mathrm{S}$	83.1 ± 0.1	89.5 ± 0.9	93.9 ± 0.6	90.8 ± 0.8	71.7 ± 1.2	71.6 ± 2.2	92.1 ± 0.6	84.7
	BPA-NN	83.1 ± 0.4	89.6 ± 1.1	95.5 ± 0.4	91.7 ± 1.3	72.7 ± 1.0	75.8 ± 1.0	92.8 ± 0.6	85.9
	BPA^{R} - NN	83.3 ± 0.4	89.5 ± 1.4	95.2 ± 0.5	$\mathbf{9 3 . 3} \pm 0.6$	72.7 ± 1.4	77.2 ± 1.7	94.0 ± 0.4	86.5
$O\left(B^{2}\right)$	Pjtrn++	82.9 ± 0.1	89.5 ± 1.2	$\mathbf{9 5 . 8} \pm 0.5$	92.5 ± 1.0	75.1 ± 2.0	75.2 ± 0.6	93.2 ± 0.6	86.3
$O\left(B^{3}\right)$	BPA-P	83.8 ± 0.0	$\mathbf{8 9 . 7} \pm 0.7$	$\mathbf{9 5 . 9} \pm 0.6$	92.8 ± 0.7	76.0 ± 1.3	78.0 ± 0.3	$\mathbf{9 4 . 8} \pm 0.3$	87.3
	$\mathrm{BPA}^{R}-\mathrm{P}$	84.6 ± 0.0	$\mathbf{9 0 . 3} \pm 1.5$	95.6 ± 1.2	$\mathbf{9 4 . 5} \pm 1.1$	76.3 ± 1.0	77.6 ± 0.6	$\mathbf{9 4 . 8} \pm 0.3$	87.7

Online Learning Applications

Online Learning for Video Tagging

Introduction

- Video Tagging (concept detection) is a key block of video retrieval systems
- Generally solved by means of casting the concept detection as a binary classification problem
- SVM's can be considered state-of-the-art to solve such binary problems
- Video Tagging must cover a wide range of potential users to gain attraction
- SVM's scales poorly in such scenario

Video Tagging

- Each concept is treated as a binary problem
- The video is processed and shots are detected
- For each shot one (or more) key-frames are extracted
- Each key-frame (image) is usually represented by bag of words (visual terms)
- For each key-frame the concept presence is evaluated
- Final decision for the whole video is evaluated by means of the fusion of the key-frame scores

Video Tagging

- Tagging process:

Video Tagging

- Training and Testing:

Video Tagging

- A video \mathcal{X} is represented by a set of key-frames $x_{1}, . ., x_{n}$
- A score $\operatorname{sc}\left(c, x_{i}\right)$ is assigned to each pair key-frame x_{i} and concept c
- The score at video level can be computed by fusing the scores of the different key frames:

$$
s c(c, \mathcal{X})=\operatorname{Fusion}\left(s c\left(c, x_{1}\right), \cdots, s c\left(c, x_{n}\right)\right)
$$

- In the present work we propose the following avg+max fusion:

$$
s c(c, \mathcal{X})=\frac{1}{n} \sum_{i=1}^{n} s c\left(c, x_{i}\right)+\max _{1<=i<=n} s c\left(c, x_{i}\right)
$$

Linear Approaches

- Assuming a vectorial representation of the key-frames $x_{i}, \mathbf{x}_{i} \in \Re^{d}$
- Computing the key-frame score as follows:

$$
s c\left(c, x_{i}\right)=\mathbf{w}_{c} \mathbf{x}_{i}
$$

\mathbf{w}_{c} is a weight vector associated to concept c

- This linear approach has the following properties:
- is very compact, few bytes per concept
- is very fast and simple to compute
- can take profit of the sparsity of the vectorial representation \mathbf{x}_{i}

Online Learning: PAMIR

- We propose to maximize the following discriminative index ${ }^{1}$:

$$
J\left(\mathbf{w}_{c}\right)=\sum_{\forall \mathbf{x}_{p} \in X_{p}} \sum_{\forall \mathbf{x}_{n} \in X_{n}}\left(\mathbf{w}_{c} \mathbf{x}_{p}-\mathbf{w}_{c} \mathbf{x}_{n}\right)
$$

$\mathbf{x}_{p} \in X_{p}$ is a key-frame of a positive video
$\mathbf{x}_{n} \in X_{n}$ is a key-frame of a negative video

- very costly optimization problem, $O\left(\left|X_{p}\right|\left|X_{n}\right|\right)$
${ }^{1}$ D. Grangier and S. Bengio. "A discriminative kernel-based model to rank images from text queries". IEEE Transactions on PAMI, 30(8):1371-1384, 2008.

Online Learning: PAMIR

- The weight vector \mathbf{w}_{C} is estimated using an online iterative procedure solving:

$$
\mathbf{w}_{c}^{i}=\arg \min \frac{1}{2}\left\|\mathbf{w}_{c}-\mathbf{w}_{c}^{i-1}\right\|^{2}+\mathcal{C} l\left(\mathbf{w}_{c} ; \mathbf{x}_{p}, \mathbf{x}_{n}\right)
$$

where i is the iteration and \mathcal{C} is the aggressiveness parameter

- The cost function $I(\cdot)$ is the hinge loss function:

$$
I\left(\mathbf{w}_{c} ; \mathbf{x}_{p}, \mathbf{x}_{n}\right)= \begin{cases}0 & \mathbf{w}_{c}\left(\mathbf{x}_{p}-\mathbf{x}_{n}\right)>1 \\ 1-\mathbf{w}_{c}\left(\mathbf{x}_{p}-\mathbf{x}_{n}\right) & \text { otherwise }\end{cases}
$$

Online Learning: PAMIR

- The solution to this minimization is:

$$
\mathbf{w}_{c}^{i}=\mathbf{w}_{c}^{i-1}+\Gamma^{i}\left(\mathbf{x}_{p}-\mathbf{x}_{n}\right)
$$

where the Lagrange multiplier Γ^{i} is:

$$
\Gamma^{i}=\min \left\{\mathcal{C}, \frac{I\left(\mathbf{w}_{c} ; \mathbf{x}_{p}, \mathbf{x}_{n}\right)}{\left\|\mathbf{x}_{p}-\mathbf{x}_{n}\right\|^{2}}\right\}
$$

- When the loss $I\left(\mathbf{w}_{c} ; \mathbf{x}_{p}, \mathbf{x}_{n}\right)$ is zero no model update is performed

Stochastic Gradient Descent: MROC

- We proposed to maximize the AROC for the binary problem defined by the positive and negative key-frames ${ }^{2}$:

$$
J\left(\mathbf{w}_{c}\right)=\frac{1}{\left|X_{p}\right|\left|X_{n}\right|} \sum_{\forall \mathbf{x}_{p} \in X_{p}} \sum_{\forall \mathbf{x}_{n} \in X_{n}} \operatorname{step}\left(\mathbf{w}_{c} \mathbf{x}_{p}-\mathbf{w}_{c} \mathbf{x}_{n}\right)
$$

where $\operatorname{step}(\cdot)$ is the step function centered at 0 .

- This index is optimized following a gradient descent approach
- Sigmoid function instead of step:

$$
S_{\beta}(z)=\frac{1}{1+\exp (-\beta z)}
$$

[^0]
Stochastic Gradient Descent: MROC

- The index gradient is:

$$
\frac{\partial J\left(\mathbf{w}_{c}\right)}{\partial \mathbf{w}_{c}}=\frac{1}{\left|X_{p}\right|\left|X_{n}\right|} \sum_{\forall \mathbf{x}_{p} \in X_{p}} \sum_{\forall \mathbf{x}_{n} \in X_{n}} \operatorname{sigm}^{\prime}\left(\mathbf{w}_{c} \mathbf{x}_{p}-\mathbf{w}_{c} \mathbf{x}_{n}\right)\left(\mathbf{x}_{p}-\mathbf{x}_{n}\right)
$$

- The weight vector \mathbf{w}_{C} update is:

$$
\mathbf{w}_{c}^{\prime}=\mathbf{w}_{c}+\mu \frac{\partial J\left(\mathbf{w}_{c}\right)}{\partial \mathbf{w}_{c}}
$$

- Pairs $\left(\mathbf{x}_{p}, \mathbf{x}_{n}\right)$ are randomly selected from the pool of all the possible pairs, stochastic gradient descent.

Stochastic Gradient Descent: MROC

- Plot of sigmoid derivative using $\beta=10$:

- Saving \mathbf{w}_{C} updates discarding pairs with low values of $\operatorname{sigm}^{\prime}(\cdot)$

Experiments

- Dataset: Youtube-22Concepts
- The overall length of the dataset is about 194 hrs
- 2,200 real-world online video clips for 22 concepts
- 75% training and 25% testing was used
- SIFT descriptors clustered to a vocabulary of 2,000 visual words
- Performance: Average Precision averaged for all concepts, mean average precision (MAP)
- Comparing SVM(libsvm), linearSVM(liblinear), PAMIR and MROC (C-implementation)

Results

- MAP results and time (secs) required for training one concept:

Method / \#samples		MAP	Time (secs)
SVM $\left(\chi^{2}\right)$	200	25.5%	94
SVM $\left(\chi^{2}\right)$	1500	42.5%	525
SVM(lin.)	1500	36.2%	117
SVM(liblinear)	1500	34.5%	17
SVM $\left(\chi^{2}\right)$	9000	52.3%	16540
SVM(liblinear)	9000	42.6%	91
PAMIR	9000	46.8%	37
MROC	9000	47.0%	24

Results per concept

Results

- Test time (secs) required for all the test key-frames:

Method / training samples	Time (secs)	
$\operatorname{SVM}\left(\chi^{2}\right)$	200	89
$\operatorname{SVM}\left(\chi^{2}\right)$	1500	456
$\operatorname{SVM}\left(\chi^{2}\right)$	9000	2040
linear	9000	0.2

Conclusions

- Linear approaches can be applied to Video Tagging with relatively good results
- We obtain a fast and compact classifier
- The linear model is easy to update, new pairs
- Better (high dimensional) representations of the images could provide a linear separation of the concept space

Online Learning for Relevance Feedback on Image Retrieval

Introduction

- Relevance Feedback on Image Retrieval can be considered an online learning problem
- For a given set of images retrieved the users judge the relevance of each image to the query introduced
- The set of relevant and non-relevant images forms an online set of samples
- Then, a linear classifier must be found in order to discriminate between relevant and non-relevant images
- This linear classifier is applied to the complete set of images available
- Notation and methodology similar to the Video Tagging problem
- An example: RISE demo

Datasets

- Two different datasets, Corel and MSRC
- Corel has 1,000 images and 10 different classes
- MSRC has 4, 325 images and 33 different classes
- MSRC is a more challenging task
- Evaluation measure: Average Precision (AvgP\%)

Results

Table: Average Precision for Corel dataset along 5 iterations of RF

Method	It 1	It 2	It 3	It 4	It 5
Relevance Score	50.0	57.6	61.2	62.62	62.96
PA - Linear	50.0	46.6	57.9	60.8	61.6
PA - RBF	50.0	47.4	50.5	52.0	52.3
PA - HI	50.0	59.5	62.1	63.6	64.5

Results

Table: Average Precision for MSRC dataset along 5 iterations of RF

Method	It 1	It 2	It 3	It 4	It 5
Relevance Score	21.3	22.8	23.9	24.4	24.7
PA - Linear	21.3	18.4	21.2	22.0	22.4
PA - RBF	21.3	20.4	21.2	21.5	21.6
PA - HI	21.3	24.9	25.7	26.9	26.3

References

- F. Rosenblatt. "The perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review, 65:386-407, 1958
- B. Novikoff. "On convergence proofs on perceptrons". In Proceedings of the Symposium on the Mathematical Theory of Automata, 1962
- V. N. Vapnik. "Statistical Learning Theory". Wiley, 1998.
- R. O. Duda, P. E. Hart and D. G. Stork. "Pattern Classification (2nd ed.)". John Wiley and Sons, 2001.
- Claudio Gentile. "A New Approximate Maximal Margin Classification Algorithm". JMLR, 2(Dec):213-242, 2001.
- Koby Crammer and Yoram Singer. "Ultraconservative Online Algorithms for Multiclass Problems". JMLR, 3:951-991, 2003.
- Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer. "Online Passive-Aggressive Algorithms". JMLR, 7(Mar):551-585, 2006.
- Giovanni Cavallanti, Nicolò Cesa-Bianchi and Claudio Gentile. "Tracking the best hyperplane with a simple budget Perceptron". Machine Learning, 69:143-167, 2007
- Ofer Dekel, Shai Shalev-Shwartz and Yoram Singer. "The Forgetron: A Kernel-Based Perceptron on a Budget". SIAM J. Comput, 37: 1342-1372, 2008
- Zhuang Wang and Slobodan Vucetic. "Online Passive-Aggressive Algorithms on a Budget". Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) 2010.

[^0]: ${ }^{2}$ M. Villegas and R. Paredes. "Score Fusion by Maximizing the Area Under the ROC Curve". IbPria'09, volume 5524 of LNCS, pages 473-480, June 2009

