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Introduction

Online Learning: A procedure for obtaining a machine learning
model that uses an unique sample (new) at each iteration
Moreover: The distribution of the data is unknown (or change over
the time), the data have not ever seen before, and batch
procedure is not feasible
Online Learning problems, Where?
But pure online learning problems?

Which is the motivation?→ Computational Efficiency and Shifting
problem

Could we get good models processing an unique sample at each
iteration?
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Introduction - Notation

The student should know:
Basic Machine Learning concepts
Linear models
Kernel methods

The notation:
Samples are vectors: x ∈ <d

Weight vector: w ∈ <d

Class-label: y ∈ {−1,+1}
Class-label (multiclass): y ∈ [1 . . .M]
Loss function: `(·)
Kernels: K (·, ·)
Set of indexes (of support vectors): S = {· · · }
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Linear Models

PRHLT-UPV, Roberto Paredes Pascal 2 - BootCamp (July, 2010) 6 / 94



Linear Models

Linear models:

y = sgn(w′ · x′ + w ′0) (1)

where w0 ∈ < and x′,w′ ∈ <d ′

Normally we use a compact notation:

y = sgn(w · x) (2)

where w = {w ′0,w ′1,w ′2, . . . ,w ′d ′} and x = {1, x ′1, x ′2, . . . , x ′d ′}

Let be d = d ′ + 1 then w,x ∈ <d
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Linear Models
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Linear Models: Perceptron

The goal: Given a set of data X = {(x1, y1), (x2, y2), . . . , (xT , yT )}
find a w that gives the minimum classification error

Classifier: sgn(wx)
Decision boundary: wx = 0
Margin (sample i): yi(wxi)
Error criterion (sample i): yi(wxi) < 0

Perceptron: update the model for the misclassified labels
following the rule:

wnew = w + yixi

Why this updating rule?
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Linear Models: Perceptron

The goal: Given a set of data X = {(x1, y1), (x2, y2), . . . , (xn, yn)}
find a w that gives the minimum classification error

Classifier: sgn(wx)
Decision boundary: wx = 0
Margin (sample i): yi(wxi)
Error criterion (sample i): yi(wxi) < 0

If
∃ u ∈ <d yiuxi > 0 ∀i = 1 . . . n

then the problem is linearly separable. Note: || u || no matters
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Online Learning: Perceptron
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Online Learning: Perceptron

Perceptron Online Learning:

Initialize w1 = 0

For all t = 1 . . .T do:

Receives xt and compute y = sign(wtxt)

If y 6= yt then wt+1 = wt + ytxt

else wt+1 = wt

The algorithm returns wT +1
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Online Learning: Perceptron - Bounding the number of
errors

Let be X = {(x1, y1), (x2, y2), . . . , (xT , yT )} a finite data set
Let be u∗ the linear model with minimum number of errors for X
Let be wT +1 the linear model obtained for X using the Perceptron
Which is the relation between the number of errors of u∗ and the
Perceptron?

T∑
t=1

ε(wt ) ≤
T∑

t=1

ε(u∗) + constant

Is the constant value small?
Note:

∑T
t=1 ε(wt ) is an online error while

∑T
t=1 ε(u∗) is the error of

some u∗ with all the samples available

PRHLT-UPV, Roberto Paredes Pascal 2 - BootCamp (July, 2010) 15 / 94



Online Learning: Perceptron - Bounding the number of
errors

To find u∗ that minimizes the number of errors for given set X is a
NP-hard problem, we have to relax the expression introducing
some convex loss: Hinge loss
The hinge loss is `(w; (x, y)) = max(0,1− y(wx))
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Online Learning: Perceptron - Bounding the number of
errors

We redefine the previous relations as:

T∑
t=1

ε(wt ) ≤
T∑

t=1

`(u∗) + constant

And we get:

T∑
t=1

ε(wt ) ≤
T∑

t=1

`(u) + || u ||2 + || u ||

√√√√ T∑
t=1

`(u)

Note: for any u
It is worth to see how to get this relation
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Online Learning: Perceptron - General Model

General model:

y = sign(wtxt ) = sign(
t−1∑
i=1

yiαixixt )

Common algorithmic structure:
Receives xt and compute y
If y · yt > βt then αt = 0
else wt+1 = wt + αtytxt , where αt > 0
optionally w is scaled.: wt+1 ← ctwt+1

Perceptron: αt = 1,βt = 0 and ct = 1
Well-known algorithms like: Relaxed Online Maximum Margin
Algorithm (ROMMA),Approximate Maximal Margin Classification
Algorithm (ALMA) and Margin Infused Relaxed Algorithm (MIRA)
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Online Learning: Perceptron - MIRA

MIRA for two-class problem: (Crammer and Singer (2003))

Apply the common algorithmic structure presented before
For each xt define αt as:

αt = G
(
−yt (wtxt )

|| xt ||2

)
where

G(z) =


0 if z < 0
z if 0 ≤ z ≤ 1
1 if 1 < z
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Online Learning: Perceptron - The shifting Perceptron

The Shifting Perceptron Algorithm (SPA) (Cavallanti, Cesa-Bianchi
and Gentile (2006))

Goal: The tracking ability→ weak dependence on the past:

Memory boundeness (Online Learning on a Budget)

Weight decay:

If yt 6= sign(wtxt ) then

wt+1 = (1− λk )wt + ytxt , k ← k + 1, λk =
λ

λ+ k
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Online Learning: Perceptron - The Shifting Perceptron

The Shifting Perceptron implements an exponential decaying
scheme
Let be xi the i − th sample with mistake
αi = (1− λ)k−i , where k is the total mistakes at the moment
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Online Learning: Perceptron - Extension to Multiclass

Let be M the number of classes
Kesler’s construction: x ∈ <d is transformed into M − 1 samples
x′ ∈ <M×d

Useless under the practical point of view
Very useful for converting multiclass problems into two class
problems for the purpose of obtaining a convergence proof

In a practical scenario:
w ∈ <d →W ∈ <M×d

Given a pair (xt , yt ) compute: y = arg maxi=1...M Wix
If y 6= yt then an error is produced
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Online Learning: Perceptron - Multiclass algorithms

A family of additive multiclass algorithms: (Crammer and Singer
(2003))
Given (xt , yt ), yt ∈ {1,2, . . . ,M}
Compute y = arg maxi=1...M Wix
If y 6= yt :

Wyt ←Wyt + αyt xt
Wr ←Wr + αr xt , ∀r ∈ E , whereE = {r : Wr xt > Wyt xt}
Imposing the constrain αyt = −

∑
r∈E αr

Some examples:

αr =


− 1
|E | if r ∈ E

1 if r = yt

0 otherwise

αr =


−1 if r = arg maxs∈E Wsxt

1 if r = yt

0 otherwise
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Online Learning: Perceptron - Multiclass algorithms

Error Bound for this family of algorithms:

T∑
t=1

ε(Wt ) ≤ 2
(R + D)2

γ2

where
D2 =

∑T
t=1(d t )2

d t = max{0, γ − (Ŵyt xt −maxi 6=yt Ŵixt})}
R = maxt || xt ||

In particular for the best:

Ŵ = arg min
W:||W||=1

T∑
t=1

2
(R + D)2

γ2
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Online Learning: Perceptron - MIRA

MIRA for multi-class problem:

Given (xt , yt ), yt ∈ {1,2, . . . ,M}

Compute y = arg maxi=1...M Wix

If y 6= yt

Find τ that solves the optimization problem:

minτ 1
2

∑M
i=1 ||Wi + τixt ||

subject to:

{
τi ≤ δr ,yt i = 1 . . .M∑M

i=1 τi = 0

Update Wi = Wi + τixt

Is still MIRA an ultraconservative algorithm?
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Online Learning: Kernel Perceptron
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Online Learning: Kernel Perceptron

A linear Perceptron in a RKHS: Referring Kernel Hilbert Space

The Perceptron model becomes a linear combination of kernels

All past mistaken samples xt become support vectors

The number of support vectors in not bounded in principle
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Online Learning: Kernel Perceptron

General model: Kernel Perceptron

Linear Perceptron: y = sign(wtxt ) = sign(
∑t−1

i=1 yiαixixt )

Kernel extension: y = sign(wtxt ) = sign(
∑t−1

i=1 yiαiK (xi ,xt ))

The weight αi can be seen as the importance of xi

All the previous algorithms can be applied, for instance MIRA:

y = sign(wtxt ) = sign(
t−1∑
i=1

yiαiK (xi ,xt ))

αi = G
(
−yi(wixi)

|| xi ||2

)
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Passive-Aggressive Online Learning
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Passive-Aggressive (PA) Online Learning

Online Learning:
1 At each time t we received a sample xt
2 The class-label y for this xt is obtained from our model
3 The real class-label yt is then received
4 Some loss is measured (divergence between yt and y )
5 Modify the model to get zero loss
6 go to 1

Some important considerations:
At each time t we only observe an unique pair (xt , yt )
The modifications to the model should preserve what was learned
from previous pairs: {(x1, y1) . . . (xt−1, yt−1)}
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Passive-Aggressive (PA) Online Learning

Things to do:

We have to define how to measure the loss, loss function

→ The loss for the pair (xt , yt) should be 0

We have to solve how to preserve the previous learning

→ Define a distance between the models

→ The distance between models should be minimum
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Passive-Aggressive (PA) Online Learning

Using a linear model and the hinge-loss function:
The class label is y = sgn(wtxt )
The hinge loss is `(w; (xt , yt )) = max(0,1− yt (wxt ))

The model divergence can be computed as || w′ −w ||2
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Passive-Aggressive (PA) Online Learning

Minimization problem (Crammer et al. 2006):

wt+1 = arg min
w∈<d

1
2
|| w−wt ||2 s.t . `(w; (xt , yt )) = 0

Find a vector w near to the current wt that classifies correctly (and
with some margin) the new sample xt
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Passive-Aggressive (PA) Online Learning

Lagrangian:

L(w, τ) =
1
2
|| w−wt ||2 + τ(1− yt (wxt ))

Setting the derivatives of L with respect to w to zero:

0 = ∇wL(w, τ) = w−wt − τytxt → w = wt + τytxt

Plugging back to the Lagrangian equation:

L(τ) = −1
2
τ2 || xt ||2 + τ(1− yt (wtxt ))

Setting the derivatives w.r.t τ to zero:

0 =
∂L(τ)

∂τ
= −τ || xt ||2 + (1− ytwtxt ) → τ = 1−yt (wt xt )

||xt ||2

Exercise: Check these expressions
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Passive-Aggressive (PA) Online Learning

Solution:

wt+1 = wt + τytxt τ =
`(wt ; (xt , yt ))

|| xt ||2

Geometrical interpretation
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Passive-Aggressive (PA) Online Learning

Advantage:
The model modification: wt+1 −wt = τtytxt is as much as needed
to get `t = 0

Certainly such modification leads to the minimum of 1
2 || w−wt ||2

Problem:
But this minimum could be too much in case of outliers or problems
that are not linearly separable

In some iteration t the model could forget what has learned before,
|| wt+1 −wt ||2 ↑↑

Solution: Introduce a parameter that controls the Aggressiveness
of the algorithm

PRHLT-UPV, Roberto Paredes Pascal 2 - BootCamp (July, 2010) 36 / 94



Passive-Aggressive (PA) Online Learning

Applying the same ideas introduced previously (Vapnik, 1998) to
derive soft-margin classifiers

New minimization:

wt+1 = arg min
w∈<d

1
2
|| w−wt ||2 +Cξ s.t . `(w; (xt , yt )) ≤ ξ and ξ ≥ 0

Larger values of C imply a more aggressive update strategy
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Passive-Aggressive (PA) Online Learning

Two models:

PA-I

wt+1 = arg min
w∈<d

1
2
|| w−wt ||2 +Cξ s.t . `(w; (xt , yt )) ≤ ξ and ξ ≥ 0

PA-II

wt+1 = arg min
w∈<d

1
2
|| w−wt ||2 +Cξ2 s.t . `(w; (xt , yt )) ≤ ξ

Exercise: Obtain the PA-I and PA-II updating rules
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Passive-Aggressive (PA) Online Learning

Solutions to the two proposed models:

PA-I

τt = min
{

C,
`t

|| xt ||2

}

PA-II
τt =

`t

|| xt ||2 + 1
2C

In both cases: wt+1 = wt + τtytxt
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Passive-Aggressive (PA) Online Learning

PA Algorithm:

- Initialize w1 = (0, . . . ,0)

- For t = 1,2, . . .
- Receive sample xt

- Compute y = sgn(wtxt)

- Receive correct label yt

- Compute loss, `t = max{0, 1− yt(wtxt)}

- Compute τt = min
{

C, `t
||xt ||2

}
(PA-I)

- Update wt+1 = wt + τtytxt
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Passive-Aggressive (PA) Online Learning

Some demos
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PA with kernels

The linear model is compact, all the model is stored in w

wt =
t−1∑
i=1

τiyixi

wtxt =
t−1∑
i=1

τiyi(xtxi)

The inner product can be replaced with a general Mercel kernel
K (xi , xt )

wtxt =
t−1∑
i=1

τiyiK (xt ,xi)

How is the algorithm affected ?
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PA with kernels

PA Algorithm:

- Initialize w1 = (0, . . . ,0)

- For t = 1,2, . . .
- Receive sample xt

- Compute y = sgn(wtxt)

- Receive correct label yt

- Compute loss, `t = max{0, 1− yt(wtxt)}

- Compute τt = min
{

C, `t
||xt ||2

}
(PA-I)

- Update wt+1 = wt + τtytxt

PRHLT-UPV, Roberto Paredes Pascal 2 - BootCamp (July, 2010) 43 / 94



PA with kernels

PA Algorithm:

- Initialize w1 = (0, . . . ,0)

- For t = 1,2, . . .
- Receive sample xt

- Compute y = sgn(
∑t

i=1 τiyiK (xt , xi))

- Receive correct label yt

- Compute loss, `t = max{0, 1− yt(
∑t

i=1 τiyiK (xt , xi))}

- Compute τt = min
{

C, `t
||xt ||2

}
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- Update wt+1 = wt + τtytxt
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PA with kernels

Some important issues:
The weight vector w is not used anymore

If τi = 0 we can avoid the kernel K (xt ,xi )

Those vectors xt that produce some loss τt > 0 become support
vectors

Some disadvantages:
This model is more expensive

The value τi associated to previous sample xi is no reconsidered

The number of support vectors used to be higher than the
necessary
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Passive-Aggressive (PA) Online Learning

Some demos
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PA for Regression
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PA for Regression

Modify the PA for regression problems
A different loss is required:

`ε = max(0, | wx− y | −ε)

Similar optimization problem:

wt+1 = arg min
w∈<d

1
2
|| w−wt ||2 s.t . `ε(w; (xt , yt )) = 0

Solution:

wt+1 = wt + sign(yt − ŷt )τtxt where τt =
`t
|| x ||2
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PA for Regression

PA-I and PA-II can also be obtained for the regression model

PA− I τt = min
{

C,
`ε

|| xt ||2

}

PA− II τt =
`ε

|| xt ||2 + 1
2C
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PA for multiclass problems

w ∈ <d

For each class m, the sample x is mapped Φ(x,m) ∈ <d

Given a pair (xt , yt ) compute the M mappings: Φ(x,1) . . .Φ(x,M)

Simplified constrained optimization:

wt+1 = arg min
w

1
2
|| w−wt ||2 s.t . w(Φ(xt , yt )− Φ(xt , st )) ≥ 1

where st = argmaxi∈{1...M}, i 6=yt wt Φ(xt , i)
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PA for multiclass problems

The solution to this multiclass optimization problem is:

wt+1 = wt + τt (Φ(xt , yt )− Φ(xt , st ))

where τt = `t
||Φ(xt ,yt )−Φ(xt ,st )||2
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PA for multiclass problems

Another approximation wt Φ(xt , r) = Wr
t xt

Then W ∈ <M×d

For each class m, the sample x is mapped Φ(x,m) ∈ <d

Simplified constrained optimization:

Wt+1 = arg min
W

1
2
||W−Wt ||2 s.t . (Wyt xt −Wst xt ) ≥ 1

where st = argmaxi∈{1...M}, i 6=yt Wixt
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PA for multiclass problems

The solution to this multiclass optimization problem is:

Wyt
t+1 = Wyt

t + τtxt

Wst
t+1 = Wst

t − τtxt

where τt = `t
2||xt ||2
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Online Learning on a Budget
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Online Classification on a Budget

Every time a sample produces `t > 0 this sample is added to the
support vector set

Under certain circumstances the set of support vectors grows
considerably

The computational efficiency decreases, for the following samples
and for the test phase

In real applications usually the memory resources could be very
limited

Solution→ limit the number of support vectors to B

Moreover in changing tasks budget algorithms uses to outperform
non-budget algorithms
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Online Classification on a Budget: Budget Perceptron

Budget Perceptron (BP) Crammer, Kandola and Singer (2004)
Linear version:

For t = 1 . . .
Get new sample xt

Compute y = wtxt

If yty < β then
S = S ∪ {t}
αt = 1
wt+1 = wt + ytαtxt

DC(S,wt+1)

DC(S,w)
For all i ∈ S

If β ≤ yi (w− yiαixi ) then
w = w− yiαixi

S = S/{i}

return S,w
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Online Classification on a Budget: Budget Perceptron

Budget Perceptron (BP) Crammer, Kandola and Singer (2004)

For t = 1 . . .
Get new sample xt

Compute
y =

∑
i∈S yiαiK (xt ,xi )

If yty < β then
S = S ∪ {t}
αt = 1
DC(S)

DC(S)
For all i ∈ S

if β ≤ yi (
∑

j∈S,j 6=i yjαjK (xi ,xj ))
then

S = S/{i}

return S
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Online Classification on a Budget: Budget Perceptron

Budget Perceptron (BP) with fixed-size S

For t = 1 . . .
Get new sample xt

Compute y =
∑

i∈S yiαiK (xt ,xi )

If yty < β then
if | S |= B then Remove(S)
S = S ∪ {t}
αt = 1

Remove(S)
Find s = arg maxi∈S{yi (

∑
j∈S,j 6=i yjαjK (xi ,xj ))}

S = S/{s}
return S
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Online Classification on a Budget: Forgetron

Forgetron: Dekel, Shalev-Shwartz and Singer (2006)

First, consider the Remove-Oldest Perceptron
Can be seen as a simple modification of the kernel Perceptron
Algorithm:

1 if `t < 0 do nothing
2 if `t > 0 and nsv < B then add sample xt , nsv = nsv + 1
3 if `t > 0 and nsv >= B then add sample xt but remove oldest

sample in sv set

Dekel et al. discussed the damage caused by removing the oldest
sample

The key for controlling this damage is to ensure that the sample
being removed has small influence
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Online Classification on a Budget: Forgetron

Second, Shrinking Perceptron:

wtxt =
t−1∑
i=1

σiyiK (xt ,xi)

where σi ∈ [0,1]
When a new xt is added to the sv set:

Its associated weight σt = 1
The weights of previous sample in sv are decreased σi = φσi for
0 < i < t
where 0 < φ < 1

If the weights decrease rapidly enough the contribution of older
samples becomes negligible
But again, a damage is produced on the accuracy of the online
algorithm
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Online Classification on a Budget: Forgetron

Forgetron combines two approaches, Remove-Oldest Perceptron
and Shrinking Perceptron

Very important to define the value of φ, more concretely φt

Self-tuned Forgetron:

φt =


min{1, −b+

√
d

2a } if a > 0 ∨ (a < 0 ∧ d > 0 ∧ −b−
√

d
2a > 1)

min{1,−c/b} if a = 0
1 otherwise
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Online Classification on a Budget: LBP

Least recent Budget Perceptron (LBP) (Cavallanti, Cesa-Bianchi
and Gentile (2007))

An aggressive variant of Forgetron

For t = 1 . . .
Get new sample xt

Compute y =
∑

i∈S yiαiK (xt ,xi )

If yty < β then
if | S |< B then {S = S ∪ {t}; αt = 1}
else S = S/min{S}
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Online Classification on a Budget: Stoptron

Stop learning when budget is exceeded (Orabona, Keshet and
Caputo (2008))

For t = 1 . . .
Get new sample xt

Compute y =
∑

i∈S yiαiK (xt ,xi )

If yty < β then
if | S |< B then {S = S ∪ {t}; αt = 1}
else S = S
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Online Classification on a Budget: Randomized
Budget Perceptron

Randomized Budget Perceptron (RBP) (Cavallanti, Cesa-Bianchi
and Gentile (2007))

For t = 1 . . .
Get new sample xt

Compute y =
∑

i∈S yiαiK (xt ,xi )

If yty < β then
S = S ∪ {t}
αt = 1
if | S |= B then Remove(S)

Remove(S)
Select randomly s ∈ S
S = S/{s}
return S
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Online PA on a Budget

Budget Passive Aggressive (BPA) (Wang and Vucetic (2010))
The key idea is to add a new constrain to the PA optimization
problem:

wt+1 = arg min
w∈<d

1
2
|| w−wt ||2 +Cξ s.t . `(w; (xt , yt )) ≤ ξ and ξ ≥ 0

The new constrain is:

w = wt − αrφ(xr ) +
∑
i∈V

βiφ(xi)

where φ(x) denotes a mapping from original input space to the
feature space: K (x,x′) = φ(x)φ(x′)
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Online PA on a Budget

The new constraint:

w = wt − αrφ(xr ) +
∑
i∈V

βiφ(xi)

Intuitively BPA is removing support vector xr but add new support
vector as a linear combination of the support vectors that belongs
to V
This set V ⊆ S ∪ {t} − {r} to be defined
Then no new support vector are added at all if {t} is not included
in V :

wt =
∑
i∈S

αiφ(xi)

w =
∑
i∈V

(αi + βi)φ(xi) +
∑

i∈S−V

αiφ(xi) − αrφ(xr )
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Online PA on a Budget

Denote wr
t+1 the solution of the new optimization problem when xr

is removed
Find the r∗ that minimizes the PA objective function:

Q(w) =
1
2
|| w−wt ||2 +C · H(w; (xt , yt ))

r∗ = arg min
r∈S∪{t}

Q(wr
t+1)

Assuming r is known w r
t+1 is:

wr
t+1 = wt − αrφ(xr ) +

∑
i∈V

βiφ(xi)

where
β = αr K−1kr + τytK−1kt

τ = min
(

C,max
(

1− yt (ft (xt )− αr ktr + αr (K−1kr )T kt )

(K−1kt )T kt

))
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Online PA on a Budget

Several choices to define the set V

BPA-Simple (BPA-S)→ V = {t} → O(B)

βt =
αr krt

ktt
+ τyt

τ = min
(

C,
H(wt ; (xt , yt ))

ktt

)

BPA-Projection (BPA-P)→ V = S + {t}− {r} → O(B ·B2)→ O(B3)

BPA-Nearest-Neighbor (BPA-NN)→ V = {t}+ NN(r)→ O(B2)
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Online PA on a Budget

         914

Zhuang Wang, Slobodan Vucetic

Table 1: Results on 7 benchmark datasets
Time Algs Adult Banana Checkerb NCheckerb Cover Phoneme USPS Avg

21K×123 4.3K×2 10K×2 10K×2 10K×54 10K×41 7.3K×256

75% 55% 50% 50% 51% 50% 52%

Memory-unbounded online algorithms

O(N)

Pcptrn 80.2±0.2 87.4±1.5 96.3±0.6 83.4±0.7 76.0±0.4 78.9±0.6 94.6±0.1 85.3
(#SV) (4.5K) (0.6K) (0.5K) (2.8K) (2.8K) (2.4K) (0.4K)

PA 83.6±0.2 89.1±0.7 97.2±0.1 95.8±1.0 81.6±0.2 82.6±0.9 96.7±0.1 89.5
(#SV) (15K) (2K) (2.6K) (5.9K) (9.9K) (7.2K) (4.5K)

PAR 84.1±0.1 89.3±0.7 97.5±0.1 96.2±0.8 82.7±0.3 83.7±0.7 96.7±0.1 90.0
(#SV) (4.4K) (1.5K) (2.6K) (3.3K) (9.8K) (6.5K) (4.5K)

Budgeted online algorithms (B=100)

O(B)

Stptrn 76.5±2.0 86.7±2.1 87.3±0.9 75.4±4.3 64.2±1.7 67.6±2.7 89.1±1.2 78.1
Rand 76.2±3.6 84.1±2.6 85.6±1.2 69.4±2.9 61.3±3.2 65.0±4.4 87.1±0.9 75.5
Fogtrn 72.8±6.1 82.8±2.4 86.1±1.0 68.2±3.5 60.8±2.7 65.6±1.2 86.2±2.1 74.6
PA+Rnd 78.4±1.9 84.9±2.1 83.3±1.4 75.1±3.6 63.1±1.5 64.0±3.9 86.2±1.1 76.4
BPA-S 82.4±0.1 89.4±1.3 90.0±0.8 87.4±0.7 68.6±1.9 67.4±3.0 89.6±1.3 82.1
BPAR-S 82.4±0.1 89.5±1.7 90.0±1.0 88.2±1.2 69.3±1.8 67.0±3.2 89.3±1.2 82.2
BPA-NN 82.8±0.4 89.6±1.4 94.0±1.2 90.2±1.3 69.1±1.8 74.3±0.7 90.8±0.9 84.4
BPAR-NN 83.1±0.0 89.8±1.1 94.2±0.9 92.3±0.5 70.3±0.8 74.6±0.8 90.8±0.6 85.0

O(B2) Pjtrn++ 80.1±0.1 89.5±1.1 95.4±0.7 88.1±0.7 68.7±1.0 74.6±0.7 89.2±0.7 83.7

O(B3)
BPA-P 83.0±0.2 89.6±1.1 95.4±0.7 91.7±0.8 74.3±1.4 75.2±1.0 92.8±0.7 86.0
BPA-PR 84.0±0.0 89.6±0.8 95.2±0.8 94.1±0.9 75.0±1.0 74.9±0.6 92.6±0.7 86.5

Budgeted online algorithms (B=200)

O(B)

Stptrn 78.7±1.8 85.6±1.5 92.8±1.1 76.0±3.1 65.5±2.3 70.5±2.6 92.3±0.7 80.2
Rand 76.4±2.8 83.6±2.0 90.3±1.3 74.5±2.1 62.4±2.4 67.3±2.5 89.8 ±1.1 77.8
Fogtrn 72.9±6.8 85.0±1.3 90.9±1.7 72.2±4.4 62.1±2.8 68.0±2.3 90.3±0.9 77.3
PA+Rnd 80.1±2.4 86.7±1.9 87.0±1.3 78.3±1.8 64.2±2.7 68.7±4.3 88.8±0.8 79.1
BPA-S 82.7±0.2 89.5±0.7 93.4±0.5 89.7±0.9 71.7±1.7 71.3±2.3 92.6±0.9 84.4
BPAR-S 83.1±0.1 89.5±0.9 93.9±0.6 90.8±0.8 71.7±1.2 71.6±2.2 92.1±0.6 84.7
BPA-NN 83.1±0.4 89.6±1.1 95.5±0.4 91.7±1.3 72.7±1.0 75.8±1.0 92.8±0.6 85.9
BPAR-NN 83.3±0.4 89.5±1.4 95.2±0.5 93.3±0.6 72.7±1.4 77.2±1.7 94.0±0.4 86.5

O(B2) Pjtrn++ 82.9±0.1 89.5±1.2 95.8±0.5 92.5±1.0 75.1±2.0 75.2±0.6 93.2±0.6 86.3

O(B3)
BPA-P 83.8±0.0 89.7±0.7 95.9±0.6 92.8±0.7 76.0±1.3 78.0±0.3 94.8±0.3 87.3
BPAR-P 84.6±0.0 90.3±1.5 95.6±1.2 94.5±1.1 76.3±1.0 77.6±0.6 94.8±0.3 87.7

petitive to BPA-P. This clearly illustrates the success
of the nearest neighbor strategy. Interestingly, BPAR-
NN is more accurate than the recently proposed Pro-
jectron++, despite its significantly lower cost. The
baseline budgeted PA algorithm PA+Rand is less suc-
cessful than any of the proposed BPA algorithms. The
performance of the perceptron-based budgeted algo-
rithms Stoptron, Random and Forgetron is not im-
pressive.

As the budget increases from 100 to 200, the accu-
racy of all budgeted algorithms is improved towards
the accuracy of non-budgeted algorithms. Covertype
and Phoneme are the most challenging data sets for
budgeted algorithms, because they represent highly
complex concepts and have a low level of noise. Con-
sidering that more than 98% and 72% of examples in
these two data sets become SVs in PA, the accuracy of
online budgeted algorithms with small budgets of B =
100 or 200 is impressive. It is clear that higher budget
would result in further improvements in accuracy of
the budgeted algorithms.

Detailed Results on 1 Million Examples. In this
experiment, we illustrate the superiority of the bud-
geted online algorithms over the non-budget ones on
a large-scale learning problem. A data set of 1 million
NCheckerboard examples was used. The non-budgeted
algorithms PA, PAR and four most successful bud-
geted algorithms from Table 1, BPA-NN, BPAR-NN,
BPA-P and BPAR-P were used in this experiment.
The hyper-parameter tuning was performed on a sub-
set of 10,000 examples. Considering the long runtime
of PA and PAR, they were early stopped when the
number of SVs exceeded 10,000. From Figure 2(a) we
can observe that PA has the fastest increase in train-
ing time. The training time of both non-budgeted al-
gorithms grows quadratically with the training size, as
expected. Unlike them, runtime of BPAR-NN indeed
scales linearly. BPAR-NN with B = 200 is about two
times slower than with B = 100, which confirms that
its runtime scales only linearly with B. Figures 2(b)
and 2(c) show the accuracy evolution curves. From
Figure 2 (b) we can see the accuracy curve of BPAR-P
steadily increased during the online process and even-

PRHLT-UPV, Roberto Paredes Pascal 2 - BootCamp (July, 2010) 69 / 94



Online Learning Applications
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Online Learning for Video Tagging
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Introduction

Video Tagging (concept detection) is a key block of video retrieval
systems
Generally solved by means of casting the concept detection as a
binary classification problem
SVM’s can be considered state-of-the-art to solve such binary
problems
Video Tagging must cover a wide range of potential users to gain
attraction
SVM’s scales poorly in such scenario
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Video Tagging

Each concept is treated as a binary problem
The video is processed and shots are detected
For each shot one (or more) key-frames are extracted
Each key-frame (image) is usually represented by bag of words
(visual terms)
For each key-frame the concept presence is evaluated
Final decision for the whole video is evaluated by means of the
fusion of the key-frame scores
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Video Tagging

Tagging process:

  

shot
segmentation

keyframe
extraction

feature
extraction

statistical
models

intra-concept
fusion

inter-concept
fusion

[0, 17,  -2, ...]
[0,   8, 15, ...]
...

video shot keyframes features local scores concept
scores

fused concept
scores

sun: 
40%

tree: 
90%

sun: 
70%

tree: 
80%
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Video Tagging

Training and Testing:

  

training data 
acquisition

keyframe
extraction

feature
extraction

statistical
modeling

[0, 17,  -2, ...]
[0,   8, 15, ...]
...

videos+
annotations

shots keyframes features
statistical 
models

shot
segmentation

keyframe
extraction

feature
extraction

statistical
modeling fusion

[0, 17,  -2, ...]
[0,   8, 15, ...]
...

video shot keyframes features concept scores concept
score

“sun”

target 
concept

shot
segmentation

sun:
40%

sun:
40%

4 feature pipelines training

4 feature pipelines testing

Manual
annotation
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Video Tagging

A video X is represented by a set of key-frames x1, .., xn

A score sc(c, xi) is assigned to each pair key-frame xi and
concept c
The score at video level can be computed by fusing the scores of
the different key frames:

sc(c,X ) = Fusion(sc(c, x1), · · · , sc(c, xn))

In the present work we propose the following avg+max fusion:

sc(c,X ) =
1
n

n∑
i=1

sc(c, xi) + max
1<=i<=n

sc(c, xi)
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Linear Approaches

Assuming a vectorial representation of the key-frames xi , xi ∈ <d

Computing the key-frame score as follows:

sc(c, xi) = wcxi

wc is a weight vector associated to concept c

This linear approach has the following properties:
is very compact, few bytes per concept
is very fast and simple to compute
can take profit of the sparsity of the vectorial representation xi
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Online Learning: PAMIR

We propose to maximize the following discriminative index1 :

J(wc) =
∑
∀xp∈Xp

∑
∀xn∈Xn

(wcxp −wcxn)

xp ∈ Xp is a key-frame of a positive video
xn ∈ Xn is a key-frame of a negative video

very costly optimization problem, O(| Xp | | Xn |)

1D. Grangier and S. Bengio. “A discriminative kernel-based model to rank images
from text queries”. IEEE Transactions on PAMI, 30(8):1371–1384, 2008.
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Online Learning: PAMIR

The weight vector wc is estimated using an online iterative
procedure solving:

wi
c = arg min

1
2
|| wc −wi−1

c ||2 + C l(wc ; xp,xn)

where i is the iteration and C is the aggressiveness parameter

The cost function l(·) is the hinge loss function:

l(wc ; xp,xn) =

{
0 wc(xp − xn) > 1
1−wc(xp − xn) otherwise
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Online Learning: PAMIR

The solution to this minimization is:

wi
c = wi−1

c + Γi(xp − xn)

where the Lagrange multiplier Γi is:

Γi = min
{
C,

l(wc ; xp,xn)

|| xp − xn ||2

}

When the loss l(wc ; xp,xn) is zero no model update is performed
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Stochastic Gradient Descent: MROC

We proposed to maximize the AROC for the binary problem
defined by the positive and negative key-frames 2:

J(wc) =
1

| Xp || Xn |
∑
∀xp∈Xp

∑
∀xn∈Xn

step(wcxp −wcxn)

where step(·) is the step function centered at 0.

This index is optimized following a gradient descent approach
Sigmoid function instead of step:

Sβ(z) =
1

1 + exp(−βz)
.

2M. Villegas and R. Paredes. “Score Fusion by Maximizing the Area Under the
ROC Curve”. IbPria’09, volume 5524 of LNCS, pages 473–480,June 2009
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Stochastic Gradient Descent: MROC

The index gradient is:

∂J(wc)

∂wc
=

1
| Xp | | Xn |

∑
∀xp∈Xp

∑
∀xn∈Xn

sigm′(wcxp −wcxn)(xp − xn)

The weight vector wc update is:

w′c = wc + µ
∂J(wc)

∂wc

Pairs (xp,xn) are randomly selected from the pool of all the
possible pairs, stochastic gradient descent.
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Stochastic Gradient Descent: MROC

Plot of sigmoid derivative using β = 10:
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Experiments

Dataset: Youtube-22Concepts

The overall length of the dataset is about 194 hrs

2,200 real-world online video clips for 22 concepts

75% training and 25% testing was used

SIFT descriptors clustered to a vocabulary of 2,000 visual words

Performance: Average Precision averaged for all concepts, mean
average precision (MAP)

Comparing SVM(libsvm), linearSVM(liblinear), PAMIR and MROC
(C-implementation)
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Results

MAP results and time (secs) required for training one concept:

Method / #samples MAP Time (secs)
SVM(χ2) 200 25.5% 94
SVM(χ2) 1500 42.5% 525
SVM(lin.) 1500 36.2% 117
SVM(liblinear) 1500 34.5% 17
SVM(χ2) 9000 52.3% 16540
SVM(liblinear) 9000 42.6% 91
PAMIR 9000 46.8% 37
MROC 9000 47.0% 24
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Results per concept
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Results

Test time (secs) required for all the test key-frames:

Method / training samples Time (secs)

SVM(χ2) 200 89
SVM(χ2) 1500 456
SVM(χ2) 9000 2040
linear 9000 0.2
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Conclusions

Linear approaches can be applied to Video Tagging with relatively
good results

We obtain a fast and compact classifier

The linear model is easy to update, new pairs

Better (high dimensional) representations of the images could
provide a linear separation of the concept space
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Online Learning for Relevance
Feedback on Image Retrieval
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Introduction

Relevance Feedback on Image Retrieval can be considered an
online learning problem
For a given set of images retrieved the users judge the relevance
of each image to the query introduced
The set of relevant and non-relevant images forms an online set of
samples
Then, a linear classifier must be found in order to discriminate
between relevant and non-relevant images
This linear classifier is applied to the complete set of images
available
Notation and methodology similar to the Video Tagging problem
An example: RISE demo
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Datasets

Two different datasets, Corel and MSRC

Corel has 1,000 images and 10 different classes
MSRC has 4,325 images and 33 different classes

MSRC is a more challenging task

Evaluation measure: Average Precision (AvgP%)
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Results

Table: Average Precision for Corel dataset along 5 iterations of RF

Method It 1 It 2 It 3 It 4 It 5
Relevance Score 50.0 57.6 61.2 62.62 62.96
PA - Linear 50.0 46.6 57.9 60.8 61.6
PA - RBF 50.0 47.4 50.5 52.0 52.3
PA - HI 50.0 59.5 62.1 63.6 64.5
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Results

Table: Average Precision for MSRC dataset along 5 iterations of RF

Method It 1 It 2 It 3 It 4 It 5
Relevance Score 21.3 22.8 23.9 24.4 24.7
PA - Linear 21.3 18.4 21.2 22.0 22.4
PA - RBF 21.3 20.4 21.2 21.5 21.6
PA - HI 21.3 24.9 25.7 26.9 26.3
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