Online Learning

Roberto Paredes

Pattern Recognition and Human Language Technologies Instituto Tecnológico de Informática Universidad Politécnica de Valencia

- Introduction
- Online Learning: Perceptron
- Online Learning: Kernel Perceptron
- Passive-Aggressive (PA) Online Learning
- Online Learning on a Budget
- Online Learning Applications

Introduction

- Online Learning: A procedure for obtaining a machine learning model that uses an unique sample (new) at each iteration
- Moreover: The distribution of the data is unknown (or change over the time), the data have not ever seen before, and *batch* procedure is not feasible
- Online Learning problems, Where?
- But pure online learning problems?
- Which is the motivation? → Computational Efficiency and Shifting problem

Could we get good models processing an unique sample at each iteration?

- Online Learning: A procedure for obtaining a machine learning model that uses an unique sample (new) at each iteration
- Moreover: The distribution of the data is unknown (or change over the time), the data have not ever seen before, and *batch* procedure is not feasible
- Online Learning problems, Where?
- But *pure* online learning problems?
- Which is the motivation?→ Computational Efficiency and Shifting problem

Could we get good models processing an unique sample at each iteration?

Introduction - Notation

The student should know:

- Basic Machine Learning concepts
- Linear models
- Kernel methods

The notation:

- Samples are vectors: $\mathbf{x} \in \Re^d$
- Weight vector: $\mathbf{w} \in \Re^d$
- Class-label: *y* ∈ {−1, +1}
- Class-label (multiclass): $y \in [1 \dots M]$
- Loss function: ℓ(·)
- Kernels: $K(\cdot, \cdot)$
- Set of indexes (of support vectors): $S = \{\cdots\}$

Linear Models

• Linear models:

$$y = \text{sgn}(\mathbf{w}' \cdot \mathbf{x}' + w_0') \tag{1}$$
 where $w_0 \in \Re$ and $\mathbf{x}', \mathbf{w}' \in \Re^{d'}$

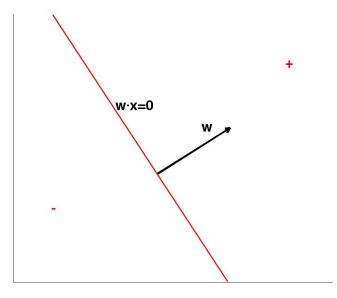
• Normally we use a *compact* notation:

$$y = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}) \tag{2}$$

where
$$\mathbf{w} = \{w'_0, w'_1, w'_2, \dots, w'_{d'}\}$$
 and $\mathbf{x} = \{1, x'_1, x'_2, \dots, x'_{d'}\}$

• Let be
$$d = d' + 1$$
 then $\mathbf{w}, \mathbf{x} \in \Re^d$

Linear Models



• The goal: Given a set of data $X = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_T, y_T)\}$ find a **w** that gives the minimum classification error

Classifier:sgn(wx)Decision boundary:wx = 0Margin (sample i): $y_i(wx_i)$ Error criterion (sample i): $y_i(wx_i) < 0$

• **Perceptron**: update the model for the misclassified labels following the rule:

$$\mathbf{w}_{new} = \mathbf{w} + y_i \mathbf{x}_i$$

Why this updating rule?

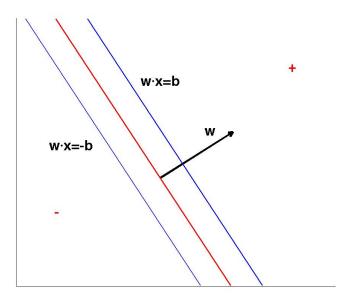
• The goal: Given a set of data $X = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_T, y_T)\}$ find a **w** that gives the minimum classification error

Classifier:sgn(wx)Decision boundary:wx = 0Margin (sample i): $y_i(wx_i)$ Error criterion (sample i): $y_i(wx_i) < b$, $b \in \Re^+$

• **Perceptron**: update the model for the misclassified labels following the rule:

$$\mathbf{w}_{new} = \mathbf{w} + y_i \mathbf{x}_i$$

Linear Models: Perceptron



- The goal: Given a set of data $X = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$ find a **w** that gives the minimum classification error
 - Classifier:sgn(wx)Decision boundary:wx = 0Margin (sample i): $y_i(wx_i)$ Error criterion (sample i): $y_i(wx_i) < 0$

lf

$$\exists \mathbf{u} \in \Re^d \quad y_i \mathbf{u} \mathbf{x}_i > 0 \quad \forall i = 1 \dots n$$

then the problem is linearly separable. Note: || u || no matters

Online Learning: Perceptron

Online Learning: Perceptron

- Perceptron Online Learning:
 - Initialize $\mathbf{w}_1 = \mathbf{0}$
 - For all *t* = 1 . . . *T* do:
 - Receives \mathbf{x}_t and compute $y = sign(\mathbf{w}_t \mathbf{x}_t)$
 - If $y \neq y_t$ then $\mathbf{w}_{t+1} = \mathbf{w}_t + y_t \mathbf{x}_t$ else $\mathbf{w}_{t+1} = \mathbf{w}_t$
 - The algorithm returns $\mathbf{w}_{\mathcal{T}+1}$

Online Learning: Perceptron - Bounding the number of errors

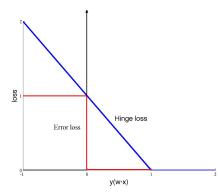
- Let be $X = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_T, y_T)\}$ a finite data set
- Let be **u*** the linear model with minimum number of errors for *X*
- Let be \mathbf{w}_{T+1} the linear model obtained for X using the Perceptron
- Which is the relation between the number of errors of **u*** and the Perceptron?

$$\sum_{t=1}^{T} \varepsilon(\mathbf{w}_t) \leq \sum_{t=1}^{T} \varepsilon(\mathbf{u}^*) + constant$$

- Is the constant value small?
- Note: $\sum_{t=1}^{T} \varepsilon(\mathbf{w}_t)$ is an online error while $\sum_{t=1}^{T} \varepsilon(\mathbf{u}^*)$ is the error of some \mathbf{u}^* with all the samples available

Online Learning: Perceptron - Bounding the number of errors

- To find u* that minimizes the number of errors for given set X is a NP-hard problem, we have to relax the expression introducing some convex loss: Hinge loss
- The hinge loss is $\ell(\mathbf{w}; (\mathbf{x}, y)) = max(0, 1 y(\mathbf{wx}))$



Online Learning: Perceptron - Bounding the number of errors

• We redefine the previous relations as:

$$\sum_{t=1}^{T} \varepsilon(\mathbf{w}_t) \leq \sum_{t=1}^{T} \ell(\mathbf{u}^*) + constant$$

• And we get:

$$\sum_{t=1}^{T} \varepsilon(\mathbf{w}_t) \leq \sum_{t=1}^{T} \ell(\mathbf{u}) + || u ||^2 + || u || \sqrt{\sum_{t=1}^{T} \ell(\mathbf{u})}$$

- Note: for any u
- It is worth to see how to get this relation

Online Learning: Perceptron - General Model

General model:

$$y = sign(\mathbf{w}_t \mathbf{x}_t) = sign(\sum_{i=1}^{t-1} y_i \alpha_i \mathbf{x}_i \mathbf{x}_t)$$

- Common algorithmic structure:
 - Receives **x**_t and compute y
 - If $y \cdot y_t > \beta_t$ then $\alpha_t = 0$
 - else $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t \mathbf{y}_t \mathbf{x}_t$, where $\alpha_t > 0$
 - optionally **w** is scaled.: $\mathbf{w}_{t+1} \leftarrow c_t \mathbf{w}_{t+1}$
- Perceptron: $\alpha_t = 1, \beta_t = 0$ and $c_t = 1$
- Well-known algorithms like: Relaxed Online Maximum Margin Algorithm (ROMMA), Approximate Maximal Margin Classification Algorithm (ALMA) and Margin Infused Relaxed Algorithm (MIRA)

Online Learning: Perceptron - MIRA

• MIRA for two-class problem: (Crammer and Singer (2003))

- Apply the common algorithmic structure presented before
- For each x_t define α_t as:

$$\alpha_t = G\left(-\frac{\mathbf{y}_t(\mathbf{w}_t\mathbf{x}_t)}{||\mathbf{x}_t||^2}\right) \text{ where }$$

$$G(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } 0 \le z \le 1 \\ 1 & \text{if } 1 < z \end{cases}$$

Online Learning: Perceptron - The shifting Perceptron

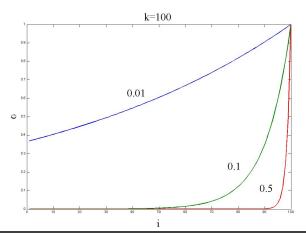
- The Shifting Perceptron Algorithm (SPA) (*Cavallanti, Cesa-Bianchi* and Gentile (2006))
- Goal: The tracking ability \rightarrow weak dependence on the past:
 - Memory boundeness (Online Learning on a Budget)
 - Weight decay:

If $y_t \neq sign(\mathbf{w}_t \mathbf{x}_t)$ then

$$\mathbf{w}_{t+1} = (1 - \lambda_k)\mathbf{w}_t + y_t\mathbf{x}_t, \ k \leftarrow k+1, \ \lambda_k = \frac{\lambda}{\lambda+k}$$

Online Learning: Perceptron - The Shifting Perceptron

- The Shifting Perceptron implements an exponential decaying scheme
- Let be x_i the i th sample with mistake
- $\alpha_i = (1 \lambda)^{k-i}$, where k is the total mistakes at the moment



- Let be *M* the number of classes
- Kesler's construction: $\mathbf{x} \in \Re^d$ is transformed into M 1 samples $\mathbf{x}' \in \Re^{M \times d}$
- Useless under the practical point of view
- Very useful for converting multiclass problems into two class problems for the purpose of obtaining a convergence proof
- In a practical scenario:
 - $\mathbf{w} \in \Re^d \to \mathbf{W} \in \Re^{M \times d}$
 - Given a pair (\mathbf{x}_t, y_t) compute: $y = \arg \max_{i=1...M} \mathbf{W}^i \mathbf{x}$
 - If $y \neq y_t$ then an error is produced

Online Learning: Perceptron - Multiclass algorithms

- A family of additive multiclass algorithms: (*Crammer and Singer* (2003))
- Given $(\mathbf{x}_t, y_t), y_t \in \{1, 2, ..., M\}$
- Compute $y = \arg \max_{i=1...M} \mathbf{W}^i \mathbf{x}$

• If
$$y \neq y_t$$
:

- $\mathbf{W}^{\mathbf{y}_t} \leftarrow \mathbf{W}^{\mathbf{y}_t} + \alpha_{\mathbf{y}_t} \mathbf{x}_t$
- $\mathbf{W}^r \leftarrow \mathbf{W}^r + \alpha_r \mathbf{x}_t, \ \forall r \in E, \ \text{where} E = \{r : \mathbf{W}^r \mathbf{x}_t > \mathbf{W}^{y_t} \mathbf{x}_t\}$
- Imposing the constrain $\alpha_{y_t} = -\sum_{r \in E} \alpha_r$
- Some examples:

$$\alpha_r = \begin{cases} -\frac{1}{|E|} & \text{if } r \in E \\ 1 & \text{if } r = y_t \\ 0 & \text{otherwise} \end{cases} \qquad \alpha_r = \begin{cases} -1 & \text{if } r = \arg\max_{s \in E} \mathbf{W}^s \mathbf{x}_t \\ 1 & \text{if } r = y_t \\ 0 & \text{otherwise} \end{cases}$$

Online Learning: Perceptron - Multiclass algorithms

• Error Bound for this family of algorithms:

$$\sum_{t=1}^{T} \varepsilon(\mathbf{W}_t) \leq 2 \frac{(R+D)^2}{\gamma^2}$$

where

$$D^{2} = \sum_{t=1}^{T} (d^{t})^{2}$$

$$d^{t} = \max\{0, \gamma - (\hat{\mathbf{W}}^{y_{t}} \mathbf{x}_{t} - \max_{i \neq y_{t}} \hat{\mathbf{W}}^{i} \mathbf{x}_{t}\})\}$$

$$R = \max_{t} || \mathbf{x}_{t} ||$$

• In particular for the best:

$$\hat{\mathbf{W}} = \operatorname*{arg\,min}_{\mathbf{W}:||\mathbf{W}||=1} \sum_{t=1}^{T} 2\frac{(R+D)^2}{\gamma^2}$$

Online Learning: Perceptron - MIRA

• MIRA for multi-class problem:

```
Given (\mathbf{x}_t, y_t), y_t \in \{1, 2, ..., M\}
Compute y = \arg \max_{i=1...M} \mathbf{W}^i \mathbf{x}
If y \neq y_t
```

Find τ that solves the optimization problem:

$$\begin{array}{l} \min_{\tau} \frac{1}{2} \sum_{i=1}^{M} || \mathbf{W}^{i} + \tau_{i} \mathbf{x}_{t} || \\ \text{subject to:} \begin{cases} \tau_{i} \leq \delta_{r,y_{t}} & i = 1 \dots M \\ \sum_{i=1}^{M} \tau_{i} = 0 \end{cases} \end{array}$$

Update $\mathbf{W}^i = \mathbf{W}^i + \tau_i \mathbf{x}_t$

Is still MIRA an ultraconservative algorithm?

Online Learning: Kernel Perceptron

- A linear Perceptron in a RKHS: Referring Kernel Hilbert Space
- The Perceptron model becomes a linear combination of kernels
- All past mistaken samples **x**_t become support vectors
- The number of support vectors in not bounded in principle

Online Learning: Kernel Perceptron

- General model: Kernel Perceptron
 - Linear Perceptron: $y = sign(\mathbf{w}_t \mathbf{x}_t) = sign(\sum_{i=1}^{t-1} y_i \alpha_i \mathbf{x}_i \mathbf{x}_t)$
 - Kernel extension: $y = sign(\mathbf{w}_t \mathbf{x}_t) = sign(\sum_{i=1}^{t-1} y_i \alpha_i K(\mathbf{x}_i, \mathbf{x}_t))$
- The weight α_i can be seen as the *importance* of \mathbf{x}_i
- All the previous algorithms can be applied, for instance MIRA:

$$y = sign(\mathbf{w}_t \mathbf{x}_t) = sign(\sum_{i=1}^{t-1} y_i \alpha_i K(\mathbf{x}_i, \mathbf{x}_t))$$
$$\alpha_i = G\left(-\frac{y_i(\mathbf{w}_i \mathbf{x}_i)}{||\mathbf{x}_i||^2}\right)$$

• Online Learning:

- At each time t we received a sample x_t
- The class-label y for this x_t is obtained from our model
- The real class-label y_t is then received
- Some loss is measured (divergence between y_t and y)
- Modify the model to get zero loss
- 💿 go to 1

• Some important considerations:

- At each time t we only observe an unique pair (\mathbf{x}_t, y_t)
- The modifications to the model should preserve what was learned from previous pairs: {(x₁, y₁)...(x_{t-1}, y_{t-1})}

• Things to do:

• We have to define how to measure the loss, loss function

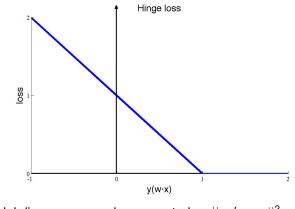
 \rightarrow The loss for the pair (**x**_t, y_t) should be 0

- We have to solve how to preserve the previous learning
 - \rightarrow Define a *distance* between the models

\rightarrow The distance between models should be minimum

• Using a *linear* model and the *hinge-loss* function:

- The class label is $y = \operatorname{sgn}(\mathbf{w}_t \mathbf{x}_t)$
- The hinge loss is $\ell(\mathbf{w}; (\mathbf{x}_t, y_t)) = max(0, 1 y_t(\mathbf{w}\mathbf{x}_t))$



• The model divergence can be computed as $||~ \boldsymbol{w}' - \boldsymbol{w}~||^2$

• Minimization problem (Crammer et al. 2006):

$$\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{w \in \Re^d} \frac{1}{2} || \mathbf{w} - \mathbf{w}_t ||^2 \quad s.t. \ \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) = 0$$

Find a vector w near to the current w_t that classifies correctly (and with some margin) the new sample x_t

• Lagrangian:

$$\mathcal{L}(\mathbf{w},\tau) = \frac{1}{2} ||\mathbf{w} - \mathbf{w}_t||^2 + \tau (1 - y_t(\mathbf{w}\mathbf{x}_t))$$

• Setting the derivatives of \mathcal{L} with respect to **w** to zero:

$$0 = \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \tau) = \mathbf{w} - \mathbf{w}_t - \tau \mathbf{y}_t \mathbf{x}_t \quad \rightarrow \quad \mathbf{w} = \mathbf{w}_t + \tau \mathbf{y}_t \mathbf{x}_t$$

Plugging back to the Lagrangian equation:

$$\mathcal{L}(\tau) = -\frac{1}{2}\tau^2 \mid\mid \mathbf{x}_t \mid\mid^2 + \tau(1 - y_t(\mathbf{w}_t \mathbf{x}_t))$$

Setting the derivatives w.r.t τ to zero:

$$\mathbf{0} = \frac{\partial \mathcal{L}(\tau)}{\partial \tau} = -\tau \mid \mid \mathbf{x}_t \mid \mid^2 + (1 - y_t \mathbf{w}_t \mathbf{x}_t) \rightarrow \overline{\tau = \frac{1 - y_t(\mathbf{w}_t \mathbf{x}_t)}{||\mathbf{x}_t||^2}}$$

Exercise: Check these expressions

PRHLT-UPV, Roberto Paredes

Solution:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \tau y_t \mathbf{x}_t \qquad \tau = \frac{\ell(\mathbf{w}_t; (\mathbf{x}_t, y_t))}{||\mathbf{x}_t||^2}$$

Geometrical interpretation

- Advantage:
 - The model modification: w_{t+1} w_t = τ_ty_tx_t is as much as needed to get ℓ_t = 0
 - Certainly such modification leads to the minimum of $\frac{1}{2} || \mathbf{w} \mathbf{w}_t ||^2$
- Problem:
 - But this minimum could be too much in case of outliers or problems that are not linearly separable
 - In some iteration *t* the model could *forget* what has learned before, $|| \mathbf{w}_{t+1} \mathbf{w}t ||^2 \uparrow \uparrow$
- Solution: Introduce a parameter that controls the *Aggressiveness* of the algorithm

- Applying the same ideas introduced previously (Vapnik, 1998) to derive soft-margin classifiers
- New minimization:

$$\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{w \in \Re^d} \frac{1}{2} \mid \mid \mathbf{w} - \mathbf{w}_t \mid \mid^2 + C\xi \quad s.t. \ \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \le \xi \ and \ \xi \ge 0$$

• Larger values of C imply a more aggressive update strategy

• Two models:

• PA-I $\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{\mathbf{w}\in\Re^d} \frac{1}{2} || \mathbf{w} - \mathbf{w}_t ||^2 + C\xi \quad s.t. \ \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \le \xi \text{ and } \xi \ge 0$

PA-II

$$\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{\mathbf{w}\in\Re^d} \frac{1}{2} \mid \mid \mathbf{w} - \mathbf{w}_t \mid \mid^2 + C\xi^2 \quad s.t. \ \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \leq \xi$$

Exercise: Obtain the PA-I and PA-II updating rules

• Solutions to the two proposed models:

• PA-I
$$\tau_t = \min\left\{ C, \frac{\ell_t}{||\mathbf{x}_t||^2} \right\}$$

$$\tau_t = \frac{\ell_t}{||\mathbf{x}_t||^2 + \frac{1}{2C}}$$

• In both cases: $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

PA-II

- PA Algorithm:
 - Initialize $\boldsymbol{w}_1=(0,\ldots,0)$
 - For *t* = 1, 2, . . .
 - Receive sample x_t
 - Compute $y = \operatorname{sgn}(\mathbf{w}_t \mathbf{x}_t)$
 - Receive correct label yt
 - Compute loss, $\ell_t = max\{0, 1 y_t(\mathbf{w}_t \mathbf{x}_t)\}$
 - Compute $au_t = min\left\{C, rac{\ell_t}{||\mathbf{x}_t||^2}\right\}$ (PA-I)
 - Update $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

Some demos

• The linear model is compact, all the model is stored in w

$$\mathbf{w}_t = \sum_{i=1}^{t-1} \tau_i \mathbf{y}_i \mathbf{x}_i$$

$$\mathbf{w}_t \mathbf{x}_t = \sum_{i=1}^{t-1} \tau_i y_i(\mathbf{x}_t \mathbf{x}_i)$$

 The inner product can be replaced with a general Mercel kernel K(x_i, x_t)

$$\mathbf{w}_t \mathbf{x}_t = \sum_{i=1}^{t-1} \tau_i \mathbf{y}_i \mathcal{K}(\mathbf{x}_t, \mathbf{x}_i)$$

• How is the algorithm affected ?

- PA Algorithm:
 - Initialize $\boldsymbol{w}_1=(0,\ldots,0)$
 - For *t* = 1, 2, . . .
 - Receive sample x_t
 - Compute $y = \operatorname{sgn}(\mathbf{w}_t \mathbf{x}_t)$
 - Receive correct label yt
 - Compute loss, $\ell_t = max\{0, 1 y_t(\mathbf{w}_t \mathbf{x}_t)\}$
 - Compute $au_t = min\left\{C, rac{\ell_t}{||\mathbf{x}_t||^2}\right\}$ (PA-I)
 - Update $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

- PA Algorithm:
 - Initialize $\boldsymbol{w}_1 = (0,\ldots,0)$
 - For *t* = 1, 2, . . .
 - Receive sample **x**_t
 - Compute $y = \operatorname{sgn}(\sum_{i=1}^{t} \tau_i y_i K(\mathbf{x}_t, \mathbf{x}_i))$
 - Receive correct label yt
 - Compute loss, $\ell_t = max\{0, 1 y_t(\sum_{i=1}^t \tau_i y_i K(\mathbf{x}_t, \mathbf{x}_i))\}$
 - Compute $au_t = min\left\{C, rac{\ell_t}{||\mathbf{x}_t||^2}\right\}$ (PA-I)
 - Update $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t \mathbf{y}_t \mathbf{x}_t$

PA with kernels

- Some important issues:
 - The weight vector **w** is not used anymore
 - If $\tau_i = 0$ we can avoid the kernel $K(\mathbf{x}_t, \mathbf{x}_i)$
 - Those vectors x_t that produce some loss τ_t > 0 become support vectors
- Some disadvantages:
 - This model is more *expensive*
 - The value τ_i associated to previous sample \mathbf{x}_i is no reconsidered
 - The number of support vectors used to be higher than the necessary

Some demos

PA for Regression

PA for Regression

- Modify the PA for regression problems
- A different loss is required:

$$\ell_{\epsilon} = \max(0, | \mathbf{wx} - \mathbf{y} | -\epsilon)$$

• Similar optimization problem:

$$\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{\mathbf{w}\in\Re^d} \frac{1}{2} ||\mathbf{w} - \mathbf{w}_t||^2 \quad s.t. \ \ell_{\epsilon}(\mathbf{w}; (\mathbf{x}_t, y_t)) = 0$$

• Solution:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + sign(y_t - \hat{y}_t)\tau_t \mathbf{x}_t$$
 where $\tau_t = \frac{\ell_t}{||\mathbf{x}||^2}$

PA-I and PA-II can also be obtained for the regression model

- **w** ∈ ℜ^d
- For each class *m*, the sample **x** is mapped $\Phi(\mathbf{x}, m) \in \Re^d$
- Given a pair (\mathbf{x}_t, y_t) compute the *M* mappings: $\Phi(\mathbf{x}, 1) \dots \Phi(\mathbf{x}, M)$
- Simplified constrained optimization:

$$\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{\mathbf{w}} rac{1}{2} \mid \mid \mathbf{w} - \mathbf{w}_t \mid \mid^2 \quad s.t. \; \mathbf{w}(\Phi(\mathbf{x}_t, y_t) - \Phi(\mathbf{x}_t, s_t)) \geq 1$$

where $s_t = argmax_{i \in \{1...M\}}, i \neq y_t \quad \mathbf{w}_t \Phi(\mathbf{x}_t, i)$

• The solution to this multiclass optimization problem is:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t(\Phi(\mathbf{x}_t, \mathbf{y}_t) - \Phi(\mathbf{x}_t, \mathbf{s}_t))$$

where
$$au_t = rac{\ell_t}{||\Phi(\mathbf{x}_t, \mathbf{y}_t) - \Phi(\mathbf{x}_t, \mathbf{s}_t)||^2}$$

- Another approximation $\mathbf{w}_t \Phi(\mathbf{x}_t, r) = \mathbf{W}_t^r \mathbf{x}_t$
- Then $\mathbf{W} \in \Re^{M \times d}$
- For each class *m*, the sample **x** is mapped $\Phi(\mathbf{x}, m) \in \Re^d$
- Simplified constrained optimization:

$$\mathbf{W}_{t+1} = \operatorname*{arg\,min}_{\mathbf{W}} \frac{1}{2} || \mathbf{W} - \mathbf{W}_t ||^2 \quad s.t. \ (\mathbf{W}^{y_t} \mathbf{x}_t - \mathbf{W}^{s_t} \mathbf{x}_t) \ge 1$$

where $s_t = argmax_{i \in \{1...M\}, i \neq y_t} \mathbf{W}^i \mathbf{x}_t$

• The solution to this multiclass optimization problem is:

$$\mathbf{W}_{t+1}^{y_t} = \mathbf{W}_t^{y_t} + au_t \mathbf{x}_t$$

$$\mathbf{W}_{t+1}^{s_t} = \mathbf{W}_t^{s_t} - \tau_t \mathbf{x}_t$$

where
$$\tau_t = \frac{\ell_t}{2||\mathbf{x}_t||^2}$$

Online Learning on a Budget

Online Classification on a Budget

- Every time a sample produces l_t > 0 this sample is added to the support vector set
- Under certain circumstances the set of support vectors grows considerably
- The computational efficiency decreases, for the following samples and for the test phase
- In real applications usually the memory resources could be very limited
- Solution → limit the number of support vectors to B
- Moreover in changing tasks budget algorithms uses to outperform non-budget algorithms

Online Classification on a Budget: Budget Perceptron

- Budget Perceptron (BP) Crammer, Kandola and Singer (2004)
- Linear version:

For $t = 1 \dots$ DC(S,w)Get new sample \mathbf{x}_t For all $i \in S$ Compute $y = \mathbf{w}_t \mathbf{x}_t$ If $\beta \leq y_i (\mathbf{w} - y_i \alpha_i \mathbf{x}_i)$ thenIf $y_t y < \beta$ then $\mathbf{w} = \mathbf{w} - y_i \alpha_i \mathbf{x}_i$ $S = S \cup \{t\}$ $S = S/\{i\}$ $\alpha_t = 1$ $\mathbf{w}_{t+1} = \mathbf{w}_t + y_t \alpha_t \mathbf{x}_t$ DC(S, $\mathbf{w}_{t+1})$ DC(S, $\mathbf{w}_{t+1})$

Online Classification on a Budget: Budget Perceptron

• Budget Perceptron (BP) Crammer, Kandola and Singer (2004)

For $t = 1 \dots$ DC(S)Get new sample \mathbf{x}_t For all $i \in S$ Computeif $\beta \leq y_i(\sum_{j \in S, j \neq i} y_j \alpha_j K(\mathbf{x}_i, \mathbf{x}_j))$ $y = \sum_{i \in S} y_i \alpha_i K(\mathbf{x}_t, \mathbf{x}_i)$ then $S = S \cup \{t\}$ $S = S/\{i\}$ $\alpha_t = 1$ DC(S)

Online Classification on a Budget: Budget Perceptron

Budget Perceptron (BP) with fixed-size S

```
For t = 1 \dots
Get new sample \mathbf{x}_t
Compute y = \sum_{i \in S} y_i \alpha_i K(\mathbf{x}_t, \mathbf{x}_i)
If y_t y < \beta then
if |S| = B then Remove(S)
S = S \cup \{t\}
\alpha_t = 1
```

```
Remove(S)

Find s = \arg \max_{i \in S} \{y_i(\sum_{j \in S, j \neq i} y_j \alpha_j K(\mathbf{x}_i, \mathbf{x}_j))\}

S = S/\{s\}

return S
```

Online Classification on a Budget: Forgetron

- Forgetron: Dekel, Shalev-Shwartz and Singer (2006)
- First, consider the *Remove-Oldest* Perceptron
- Can be seen as a simple modification of the kernel Perceptron
- Algorithm:
 - if $\ell_t < 0$ do nothing
 - 2 if $\ell_t > 0$ and nsv < B then add sample \mathbf{x}_t , nsv = nsv + 1
 - if l_t > 0 and nsv >= B then add sample x_t but remove oldest sample in sv set
- Dekel et al. discussed the *damage* caused by removing the oldest sample
- The key for controlling this damage is to ensure that the sample being removed has small influence

Online Classification on a Budget: Forgetron

• Second, *Shrinking* Perceptron:

$$\mathbf{w}_t \mathbf{x}_t = \sum_{i=1}^{t-1} \sigma_i \mathbf{y}_i \mathcal{K}(\mathbf{x}_t, \mathbf{x}_i)$$

where $\sigma_i \in [0, 1]$

• When a new **x**_t is added to the sv set:

- Its associated weight $\sigma_t = 1$
- The weights of previous sample in sv are decreased $\sigma_i = \phi \sigma_i$ for 0 < i < t
- where $0 < \phi < 1$
- If the weights decrease rapidly enough the contribution of older samples becomes negligible
- But again, a damage is produced on the accuracy of the online algorithm

Online Classification on a Budget: Forgetron

- Forgetron combines two approaches, *Remove-Oldest* Perceptron and *Shrinking* Perceptron
- Very important to define the value of φ, more concretely φ_t
- Self-tuned Forgetron:

$$\phi_t = \begin{cases} \min\{1, \frac{-b+\sqrt{d}}{2a}\} & \text{if } a > 0 \lor (a < 0 \land d > 0 \land \frac{-b-\sqrt{d}}{2a} > 1) \\ \min\{1, -c/b\} & \text{if } a = 0 \\ 1 & \text{otherwise} \end{cases}$$

Online Classification on a Budget: LBP

- Least recent Budget Perceptron (LBP) (Cavallanti, Cesa-Bianchi and Gentile (2007))
- An aggressive variant of Forgetron

```
For t = 1 \dots
Get new sample \mathbf{x}_t
Compute y = \sum_{i \in S} y_i \alpha_i K(\mathbf{x}_t, \mathbf{x}_i)
If y_t y < \beta then
if |S| < B then \{S = S \cup \{t\}; \alpha_t = 1\}
else S = S/min\{S\}
```

Online Classification on a Budget: Stoptron

• Stop learning when budget is exceeded (*Orabona, Keshet and Caputo (2008)*)

For $t = 1 \dots$ Get new sample \mathbf{x}_t Compute $y = \sum_{i \in S} y_i \alpha_i K(\mathbf{x}_t, \mathbf{x}_i)$ If $y_t y < \beta$ then if |S| < B then $\{S = S \cup \{t\}; \alpha_t = 1\}$ else S = S

Online Classification on a Budget: Randomized Budget Perceptron

 Randomized Budget Perceptron (RBP) (Cavallanti, Cesa-Bianchi and Gentile (2007))

For $t = 1 \dots$ Remarkance Get new sample \mathbf{x}_t Second the sample \mathbf{x}_t Second the sample $\mathbf{x}_t = 1$ if |S| = B then Remove(S)

 $\begin{array}{l} \mathsf{Remove}(\mathsf{S}) \\ \mathsf{Select} \ \textit{randomly} \ \mathsf{s} \in \mathsf{S} \\ \mathsf{S} = \mathsf{S} / \{\mathsf{s}\} \\ \mathsf{return} \ \mathsf{S} \end{array}$

- Budget Passive Aggressive (BPA) (Wang and Vucetic (2010))
- The key idea is to add a new constrain to the PA optimization problem:

$$\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{w \in \Re^d} \frac{1}{2} \mid \mid \mathbf{w} - \mathbf{w}_t \mid \mid^2 + C\xi \quad s.t. \ \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \le \xi \ and \ \xi \ge 0$$

• The new constrain is:

$$\mathbf{w} = \mathbf{w}_t - \alpha_r \phi(\mathbf{x}_r) + \sum_{i \in V} \beta_i \phi(\mathbf{x}_i)$$

where $\phi(\mathbf{x})$ denotes a mapping from original input space to the feature space: $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})\phi(\mathbf{x}')$

1

• The new constraint:

$$\mathbf{w} = \mathbf{w}_t - \alpha_r \phi(\mathbf{x}_r) + \sum_{i \in V} \beta_i \phi(\mathbf{x}_i)$$

- Intuitively BPA is removing support vector x_r but add new support vector as a linear combination of the support vectors that belongs to V
- This set $V \subseteq S \cup \{t\} \{r\}$ to be defined
- Then no new support vector are added at all if {t} is not included in V:

$$\mathbf{w}_t = \sum_{i \in S} \alpha_i \phi(\mathbf{x}_i)$$

$$\mathbf{w} = \sum_{i \in V} (\alpha_i + \beta_i) \phi(\mathbf{x}_i) + \sum_{i \in S - V} \alpha_i \phi(\mathbf{x}_i) - \alpha_r \phi(\mathbf{x}_r)$$

- Denote w^r_{t+1} the solution of the new optimization problem when x_r is removed
- Find the *r** that minimizes the PA objective function:

$$Q(\mathbf{w}) = \frac{1}{2} || \mathbf{w} - \mathbf{w}_t ||^2 + C \cdot H(\mathbf{w}; (\mathbf{x}_t, y_t))$$
$$r^* = \operatorname*{arg\,min}_{r \in S \cup \{t\}} Q(\mathbf{w}_{t+1}^r)$$

• Assuming *r* is known w_{t+1}^r is:

$$\mathbf{w}_{t+1}^r = \mathbf{w}_t - \alpha_r \phi(\mathbf{x}_r) + \sum_{i \in V} \beta_i \phi(\mathbf{x}_i)$$

where

$$\beta = \alpha_r \mathbf{K}^{-1} \mathbf{k}_r + \tau \mathbf{y}_t \mathbf{K}^{-1} \mathbf{k}_t$$
$$\tau = \min\left(\mathbf{C}, \max\left(\frac{1 - y_t(f_t(\mathbf{x}_t) - \alpha_r \mathbf{k}_{tr} + \alpha_r(\mathbf{K}^{-1} \mathbf{k}_r)^T \mathbf{k}_t)}{(\mathbf{K}^{-1} \mathbf{k}_t)^T \mathbf{k}_t}\right)\right)$$

• Several choices to define the set V

• BPA-Simple (BPA-S) $\rightarrow V = \{t\} \rightarrow O(B)$

$$\beta_{t} = \frac{\alpha_{r} k_{rt}}{k_{tt}} + \tau y_{t}$$
$$\tau = \min\left(C, \frac{H(\mathbf{w}_{t}; (\mathbf{x}_{t}, y_{t}))}{k_{tt}}\right)$$

- BPA-Projection (BPA-P) \rightarrow V = S + {t} {r} \rightarrow O(B \cdot B²) \rightarrow O(B³)
- BPA-Nearest-Neighbor (BPA-NN) $\rightarrow V = \{t\} + NN(r) \rightarrow O(B^2)$

					benchmark				
Time	Algs	Adult	Banana	Checkerb	NCheckerb	Cover	Phoneme	USPS	Avg
		$21\mathrm{K}\!\times\!123$	$4.3K \times 2$	$10 \text{K} \times 2$	$10K \times 2$	$10K \times 54$	$10 \mathrm{K} \times 41$	$7.3\mathrm{K}\!\times\!256$	
		75%	55%	50%	50%	51%	50%	52%	
Memory-unbounded online algorithms									
O(N)	Pcptrn	80.2 ± 0.2	87.4 ± 1.5	96.3 ± 0.6	83.4 ± 0.7	76.0 ± 0.4	78.9 ± 0.6	94.6 ± 0.1	85.3
	(#SV)	(4.5K)	(0.6K)	(0.5K)	(2.8K)	(2.8K)	(2.4K)	(0.4K)	
	PA	83.6 ± 0.2	89.1 ± 0.7	97.2 ± 0.1	95.8 ± 1.0	81.6 ± 0.2	82.6 ± 0.9	96.7 ± 0.1	89.5
	(#SV)	(15K)	(2K)	(2.6K)	(5.9K)	(9.9K)	(7.2K)	(4.5K)	
	PA^R	84.1 ± 0.1	89.3 ± 0.7	97.5 ± 0.1	96.2±0.8	82.7 ± 0.3	83.7 ± 0.7	96.7 ± 0.1	90.0
	(#SV)	(4.4K)	(1.5K)	(2.6K)	(3.3K)	(9.8K)	(6.5K)	(4.5K)	
Budgeted online algorithms (B=100)									
O(B)	Stptrn	76.5 ± 2.0	86.7 ± 2.1	87.3 ± 0.9	75.4±4.3	64.2 ± 1.7	67.6 ± 2.7	89.1 ± 1.2	78.1
	Rand	76.2 ± 3.6	84.1 ± 2.6	85.6 ± 1.2	69.4 ± 2.9	61.3 ± 3.2	65.0 ± 4.4	87.1 ± 0.9	75.5
	Fogtrn	72.8 ± 6.1	82.8 ± 2.4	86.1 ± 1.0	68.2 ± 3.5	60.8 ± 2.7	65.6 ± 1.2	86.2 ± 2.1	74.6
	PA+Rnd	78.4 ± 1.9	84.9 ± 2.1	83.3 ± 1.4	75.1 ± 3.6	63.1 ± 1.5	64.0 ± 3.9	86.2 ± 1.1	76.4
	BPA-S	82.4 ± 0.1	89.4 ± 1.3	90.0 ± 0.8	87.4 ± 0.7	68.6 ± 1.9	67.4 ± 3.0	89.6 ± 1.3	82.1
	$BPA^{R}-S$	82.4 ± 0.1	89.5 ± 1.7	90.0 ± 1.0	88.2 ± 1.2	69.3 ± 1.8	67.0 ± 3.2	89.3 ± 1.2	82.2
	BPA-NN	82.8 ± 0.4	89.6 ± 1.4	94.0 ± 1.2	90.2 ± 1.3	69.1 ± 1.8	74.3 ± 0.7	90.8 ± 0.9	84.4
	$BPA^{R}-NN$	83.1 ± 0.0	89.8 ± 1.1	94.2 ± 0.9	92.3 ± 0.5	70.3 ± 0.8	74.6 ± 0.8	90.8 ± 0.6	85.0
$O(B^2)$	Pjtrn++	80.1 ± 0.1	89.5 ± 1.1	95.4 ± 0.7	88.1 ± 0.7	68.7 ± 1.0	74.6 ± 0.7	89.2 ± 0.7	83.7
$O(B^3)$	BPA-P	83.0 ± 0.2	89.6±1.1	95.4±0.7	91.7 ± 0.8	74.3±1.4	75.2 ± 1.0	92.8 ± 0.7	86.0
	$BPA-P^R$	84.0 ± 0.0	89.6 ± 0.8	95.2 ± 0.8	94.1 ± 0.9	75.0±1.0	74.9 ± 0.6	92.6 ± 0.7	86.5
Budgeted online algorithms (B=200)									
O(B)	Stptrn	78.7±1.8	85.6 ± 1.5	92.8 ± 1.1	76.0±3.1	65.5 ± 2.3	70.5 ± 2.6	92.3 ± 0.7	80.2
	Rand	76.4 ± 2.8	83.6 ± 2.0	90.3 ± 1.3	74.5 ± 2.1	62.4 ± 2.4	67.3 ± 2.5	89.8 ± 1.1	77.8
	Fogtrn	72.9 ± 6.8	85.0 ± 1.3	90.9 ± 1.7	72.2 ± 4.4	62.1 ± 2.8	68.0 ± 2.3	90.3 ± 0.9	77.3
	PA+Rnd	80.1 ± 2.4	86.7 ± 1.9	87.0 ± 1.3	78.3 ± 1.8	64.2 ± 2.7	68.7 ± 4.3	88.8 ± 0.8	79.1
	BPA-S	82.7 ± 0.2	89.5 ± 0.7	93.4 ± 0.5	89.7 ± 0.9	71.7 ± 1.7	71.3 ± 2.3	92.6 ± 0.9	84.4
	$BPA^{R}-S$	83.1 ± 0.1	89.5 ± 0.9	93.9 ± 0.6	90.8 ± 0.8	71.7 ± 1.2	71.6 ± 2.2	92.1 ± 0.6	84.7
	BPA-NN	83.1 ± 0.4	89.6 ± 1.1	95.5 ± 0.4	91.7 ± 1.3	72.7 ± 1.0	75.8 ± 1.0	92.8 ± 0.6	85.9
	BPA ^R -NN	83.3 ± 0.4	89.5 ± 1.4	95.2 ± 0.5	93.3 ± 0.6	72.7 ± 1.4	77.2 ± 1.7	94.0 ± 0.4	86.5
$O(B^2)$	Pjtrn++	82.9 ± 0.1	89.5 ± 1.2	95.8 ± 0.5	92.5 ± 1.0	75.1 ± 2.0	75.2 ± 0.6	93.2 ± 0.6	86.3
$O(B^3)$	BPA-P	83.8 ± 0.0	89.7±0.7	95.9 ± 0.6	92.8 ± 0.7	76.0±1.3	78.0±0.3	94.8 ± 0.3	87.3
	$BPA^{R}-P$	84.6 ± 0.0	90.3 ± 1.5	95.6 ± 1.2	94.5 ± 1.1	76.3 ± 1.0	77.6 ± 0.6	94.8 ± 0.3	87.7

Online Learning Applications

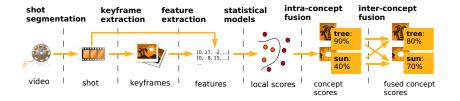
Online Learning for Video Tagging

- Video Tagging (concept detection) is a key block of video retrieval systems
- Generally solved by means of casting the concept detection as a binary classification problem
- SVM's can be considered state-of-the-art to solve such binary problems
- Video Tagging must cover a wide range of potential users to gain attraction
- SVM's scales poorly in such scenario

- Each concept is treated as a binary problem
- The video is processed and shots are detected
- For each shot one (or more) key-frames are extracted
- Each key-frame (image) is usually represented by bag of words (visual terms)
- For each key-frame the concept presence is evaluated
- Final decision for the whole video is evaluated by means of the fusion of the key-frame scores

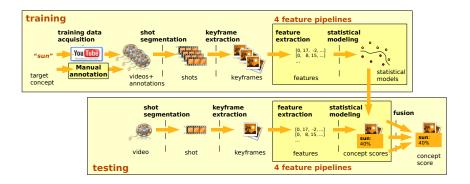
Video Tagging

Tagging process:



Video Tagging

• Training and Testing:



- A video \mathcal{X} is represented by a set of key-frames $x_1, ..., x_n$
- A score sc(c, x_i) is assigned to each pair key-frame x_i and concept c
- The score at video level can be computed by fusing the scores of the different key frames:

$$sc(c, \mathcal{X}) = Fusion(sc(c, x_1), \cdots, sc(c, x_n))$$

In the present work we propose the following avg+max fusion:

$$sc(c,\mathcal{X}) = \frac{1}{n} \sum_{i=1}^{n} sc(c,x_i) + \max_{1 < i < n} sc(c,x_i)$$

• Assuming a vectorial representation of the key-frames x_i , $\mathbf{x}_i \in \Re^d$

• Computing the key-frame score as follows:

 $sc(c, x_i) = \mathbf{w}_c \mathbf{x}_i$

 \mathbf{w}_c is a weight vector associated to concept c

- This *linear* approach has the following properties:
 - is very compact, few bytes per concept
 - is very fast and simple to compute
 - can take profit of the sparsity of the vectorial representation **x**_i

We propose to maximize the following discriminative index¹:

$$J(\mathbf{w}_{c}) = \sum_{orall \mathbf{x}_{
ho} \in X_{
ho}} \sum_{orall \mathbf{x}_{n} \in X_{n}} (\mathbf{w}_{c} \mathbf{x}_{
ho} - \mathbf{w}_{c} \mathbf{x}_{n})$$

 $\mathbf{x}_p \in X_p$ is a key-frame of a *positive* video $\mathbf{x}_n \in X_n$ is a key-frame of a *negative* video

• very costly optimization problem, $O(|X_p| | X_n|)$

¹D. Grangier and S. Bengio. "A discriminative kernel-based model to rank images from text queries". IEEE Transactions on PAMI, 30(8):1371–1384, 2008.

PRHLT-UPV, Roberto Paredes

• The weight vector **w**_c is estimated using an online iterative procedure solving:

$$\mathbf{w}_c^i = \arg\min \frac{1}{2} || \mathbf{w}_c - \mathbf{w}_c^{i-1} ||^2 + \mathcal{C} I(\mathbf{w}_c; \mathbf{x}_p, \mathbf{x}_n)$$

where *i* is the iteration and C is the *aggressiveness* parameter

• The cost function $I(\cdot)$ is the hinge loss function:

$$I(\mathbf{w}_c; \mathbf{x}_p, \mathbf{x}_n) = \begin{cases} 0 & \mathbf{w}_c(\mathbf{x}_p - \mathbf{x}_n) > 1 \\ 1 - \mathbf{w}_c(\mathbf{x}_p - \mathbf{x}_n) & otherwise \end{cases}$$

• The solution to this minimization is:

$$\mathbf{w}_c^i = \mathbf{w}_c^{i-1} + \Gamma^i (\mathbf{x}_p - \mathbf{x}_n)$$

where the Lagrange multiplier Γ^i is:

$$\Gamma^{i} = \min\left\{\mathcal{C}, \frac{I(\mathbf{w}_{c}; \mathbf{x}_{p}, \mathbf{x}_{n})}{||\mathbf{x}_{p} - \mathbf{x}_{n}||^{2}}\right\}$$

• When the loss $I(\mathbf{w}_c; \mathbf{x}_p, \mathbf{x}_n)$ is zero no model update is performed

Stochastic Gradient Descent: MROC

• We proposed to maximize the AROC for the binary problem defined by the positive and negative key-frames ²:

$$J(\mathbf{w}_{c}) = \frac{1}{\mid X_{\rho} \mid \mid X_{n} \mid} \sum_{\forall \mathbf{x}_{\rho} \in X_{\rho}} \sum_{\forall \mathbf{x}_{n} \in X_{n}} step(\mathbf{w}_{c}\mathbf{x}_{\rho} - \mathbf{w}_{c}\mathbf{x}_{n})$$

where $step(\cdot)$ is the step function centered at 0.

This index is optimized following a gradient descent approach
Sigmoid function instead of step:

$$\mathcal{S}_eta(z) = rac{1}{1+\exp(-eta z)} \; .$$

²M. Villegas and R. Paredes. "Score Fusion by Maximizing the Area Under the ROC Curve". IbPria'09, volume 5524 of LNCS, pages 473–480,June 2009

PRHLT-UPV, Roberto Paredes

Pascal 2 - BootCamp (July, 2010) 81 / 94

Stochastic Gradient Descent: MROC

• The index gradient is:

$$\frac{\partial J(\mathbf{w}_c)}{\partial \mathbf{w}_c} = \frac{1}{\mid X_p \mid \mid X_n \mid} \sum_{\forall \mathbf{x}_p \in X_p} \sum_{\forall \mathbf{x}_n \in X_n} sigm'(\mathbf{w}_c \mathbf{x}_p - \mathbf{w}_c \mathbf{x}_n)(\mathbf{x}_p - \mathbf{x}_n)$$

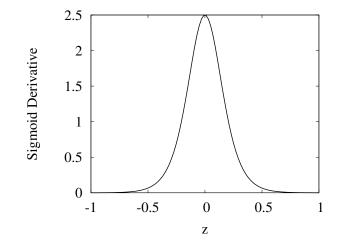
• The weight vector **w**_c update is:

$$\mathbf{w}_{c}' = \mathbf{w}_{c} + \mu \frac{\partial J(\mathbf{w}_{c})}{\partial \mathbf{w}_{c}}$$

 Pairs (x_p, x_n) are randomly selected from the pool of all the possible pairs, stochastic gradient descent.

Stochastic Gradient Descent: MROC

• Plot of sigmoid derivative using $\beta = 10$:



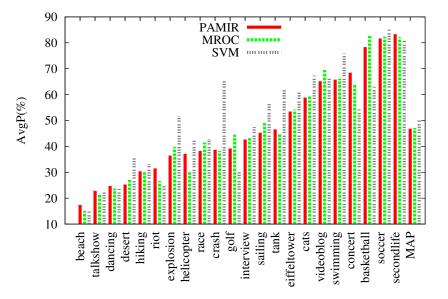
• Saving \mathbf{w}_c updates discarding pairs with low values of $sigm'(\cdot)$

- Dataset: Youtube-22Concepts
- The overall length of the dataset is about 194 hrs
- 2,200 real-world online video clips for 22 concepts
- 75% training and 25% testing was used
- SIFT descriptors clustered to a vocabulary of 2,000 visual words
- Performance: Average Precision averaged for all concepts, mean average precision (MAP)
- Comparing SVM(libsvm), linearSVM(liblinear), PAMIR and MROC (C-implementation)

• MAP results and time (secs) required for training one concept:

Method / #samples		MAP	Time (secs)	
$SVM(\chi^2)$	200	25.5%	94	
$SVM(\chi^2)$	1500	42.5%	525	
SVM(lin.)	1500	36.2%	117	
SVM(liblinear)	1500	34.5%	17	
$SVM(\chi^2)$	9000	52.3%	16540	
SVM(liblinear)	9000	42.6%	91	
PAMIR	9000	46.8%	37	
MROC	9000	47.0%	24	

Results per concept



• Test time (secs) required for all the test key-frames:

Method / training samples		Time (secs)	
SVM(χ^2)	200	89	
$SVM(\chi^2)$	1500	456	
$SVM(\chi^2)$	9000	2040	
linear	9000	0.2	

- Linear approaches can be applied to Video Tagging with *relatively* good results
- We obtain a fast and compact classifier
- The linear model is easy to update, new pairs
- Better (high dimensional) representations of the images could provide a linear separation of the concept space

Online Learning for Relevance Feedback on Image Retrieval

- Relevance Feedback on Image Retrieval can be considered an online learning problem
- For a given set of images retrieved the users judge the relevance of each image to the query introduced
- The set of relevant and non-relevant images forms an online set of samples
- Then, a linear classifier must be found in order to discriminate between relevant and non-relevant images
- This linear classifier is applied to the complete set of images available
- Notation and methodology similar to the Video Tagging problem
- An example: RISE demo

- Two different datasets, Corel and MSRC
 - Corel has 1,000 images and 10 different classes
 MSRC has 4,325 images and 33 different classes
- MSRC is a more challenging task
- Evaluation measure: Average Precision (AvgP%)

Table: Average Precision for Corel dataset along 5 iterations of RF

Method	lt 1	lt 2	It 3	lt 4	lt 5
Relevance Score	50.0	57.6	61.2	62.62	62.96
PA - Linear	50.0	46.6	57.9	60.8	61.6
PA - RBF	50.0	47.4	50.5	52.0	52.3
PA - HI	50.0	59.5	62.1	63.6	64.5

Table: Average Precision for MSRC dataset along 5 iterations of RF

Method	lt 1	lt 2	It 3	lt 4	lt 5
Relevance Score	21.3	22.8	23.9	24.4	24.7
PA - Linear	21.3	18.4	21.2	22.0	22.4
PA - RBF	21.3	20.4	21.2	21.5	21.6
PA - HI	21.3	24.9	25.7	26.9	26.3

- F. Rosenblatt. "The perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review, 65:386-407, 1958
- B. Novikoff. "On convergence proofs on perceptrons". In Proceedings of the Symposium on the Mathematical Theory of Automata, 1962
- V. N. Vapnik. "Statistical Learning Theory". Wiley, 1998.
- R. O. Duda, P. E. Hart and D. G. Stork. "Pattern Classification (2nd ed.)". John Wiley and Sons, 2001.
- Claudio Gentile. "A New Approximate Maximal Margin Classification Algorithm". JMLR, 2(Dec):213-242, 2001.
- Koby Crammer and Yoram Singer. "Ultraconservative Online Algorithms for Multiclass Problems". JMLR, 3:951-991, 2003.
- Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer. "Online Passive-Aggressive Algorithms". JMLR, 7(Mar):551–585, 2006.
- Giovanni Cavallanti, Nicolò Cesa-Bianchi and Claudio Gentile. "Tracking the best hyperplane with a simple budget Perceptron". Machine Learning, 69:143 - 167, 2007
- Ofer Dekel, Shai Shalev-Shwartz and Yoram Singer. "The Forgetron: A Kernel-Based Perceptron on a Budget". SIAM J. Comput, 37: 1342-1372, 2008
- Zhuang Wang and Slobodan Vucetic. "Online Passive-Aggressive Algorithms on a Budget". Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) 2010.