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• Outline :

– Introduction
– What is Speech ?

–  Speech as a part of the Artificial intelligence project

– An historical view of speech processing

– Generalities about statistical speech processing

– Speech recognition Systems : state of the art

– Speaker identification

– Practical work : structuring video database by  
analysing spoken contents
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• What is Speech ?
– Verbal mean of communication
– Speech is not writen language
– Technically : 

• Sounds produced by the vocal folds, the 
breathing, the articulatory system :

– Source : vocal folds (pitch)
– Modulation due to articulators



What is Speech ?
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Articulators :

Phonological point of view : Speech is a production of the human vocal system



What is Speech ?
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Sociological point of view : 
Speech is the main communication mean of human communities



Speech Processing : 
the engineer point of view
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• Speech is a mean to exchange information

• Speech records contain information related to :
– The semantic contents

– The speaker identity, emotional state, intents, ...

– The context

• Speech is useful to :
– Driving machines by voice commands

– Extract informations 



Speech Processing : 
the engineer point of view
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Analogic speech signal (acquisition)

Digitalization, quantification

2D representation : 
● Feature extraction
● Analysis in a slidding window

Representation of speech signal



What is Speech ?
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Speech is a complex communication mean :
● Human languages are complex (acoustic/linguistic structure)
● Human thinking is complex
● A spoken message resuts from :

● the context of the discurse
● acoustic environments
● Who are the speakers and the listeners

● Speech understanding relies on :
● Various level of knowledge (lexical, linguistic, pragmatic, 

semantic, ...)
● High variability of speech (knowledge sources, media,  contents)



Speech processing and A.I.
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A.I. project : an intelligent machine :
– android?

– a thinking machine ?

– a machine able to perform complex tasks ?

– Simulation of human capacities :
• Perception (recognition), problem solving, 

decision making

– Industrial applications

– Building system tractable by computers



History of Speech processing
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• Human-inspired approaches (1970-)

– Knowledge-based approaches
• But humans are still mysterious for the science

– Neuromimetic approaches 
• Artificial brains seem easy to build (not so clear...)
• machine learning versus machine knowing

• Nowadays  (1990-): 

– Machine Learning but statistical modeling
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• 4 key issues :
– Features extraction
– Spectral/cepstral models

•  pattern recognition problems

– Modeling temporal structures
– Modeling high level information 

• linguistic, semantic, pragmatic...

Statistical Speech modeling



Statistical Speech modeling : 
feature extraction
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Speech parametrization
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• Speech parametrization :
• LPC : Linear Predictive Coding

– Principle : 
• to code the prediction errors
• Auto-regressive models
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Statistical Speech modeling : 
feature extraction
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• Speech parametrization :
– PLP : perceptually-based linear 

prediction
– MFCC : Mel Frequency Cepstrum 

coeffcients
Log()

FFT

Statistical Speech modeling : 
feature extraction

DCT (FFT-1)
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• Speech parametrization : open issues

– Robustness

– Dimensionality reduction

– Discriminative/generative approaches
• LDA : Linear discriminant analysis
• PCA : principal component analysis
• ICA : independant componenent analysis

– Combination of audio features
• Complementarity of features

Statistical Speech modeling : 
feature extraction
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• Modeling cepstral features 

– Consensual approach : Gaussian Mixture Models

– Principle : approximation of probability density 
function of cepstral patterns
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Statistical Speech modeling : 
modeling cepstral patterns



Georges Linarès – CERI-LIA – University of Avignon 

• Gaussian Mixture Models
– Allow us to estimate probabilities (likelihood) of 

observations knowing a model
– Problems : 

• Estimation (training)
• Integration to client systems
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Statistical Speech modeling : 
modeling cepstral patterns
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• Training Gaussian Mixture Models

– Principle
• Criterion: Maximun Likelihood
• Optimization algorithm : 

● Estimate of the model parameters maximizing 
the Likelihood

● Training strategy : Expectation-Maximisation
● E : estimate of the likelihood
● M : updating de parameters to maximize 

Likelihood. 
¿
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Statistical Speech modeling : 
modeling cepstral patterns
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• EM :

– Iterative process (until convergence)

– Updating functions (N-component Gmm) :
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Statistical Speech modeling : 
modeling cepstral patterns
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• Updating rules :
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Statistical Speech modeling : 
modeling cepstral patterns
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EM - Example 

3 Gaussian 
components

A.W. Moore

Statistical Speech modeling : 
modeling cepstral patterns



A.W. Moore

Iteration 1

Statistical Speech modeling : 
modeling cepstral patterns



A.W. Moore

Iteration 2

Statistical Speech modeling : 
modeling cepstral patterns
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Iteration 3

Statistical Speech modeling : 
modeling cepstral patterns
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Iteration 4

Statistical Speech modeling : 
modeling cepstral patterns



A.W. Moore

Iteration 5

Statistical Speech modeling : 
modeling cepstral patterns



A.W. Moore

Iteration 6

Statistical Speech modeling : 
modeling cepstral patterns



A.W. Moore

Iteration 20

Statistical Speech modeling : 
modeling cepstral patterns



Statistical Speech modeling : 
modeling temporal patterns
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Statistical Speech modeling : 
modeling temporal patterns

●Model topology:
● State number
● Links (transitions)

●Transition probabilities
●States : 

● density probability functions
● GMM
● Neural networks
● others....



Statistical Speech modeling : 
modeling temporal patterns

HMM is well defined tool to :
● estimate P(O|λ), for an observation sequence O and  

a HMM  λ,  
● search of the state sequence Q maximazing 

P(Q|O,   λ) (decoding stage, Viterbi Algorithm)
●Training stage : find the optimal λ ( Baum-Welsh/EM 
algorithms)



• Automatic Speech Recognition :
– Extracting the linguistic content of 

audio/audiovisual documents
– Many applications
– Research since 1970

Speech Processing systems



ASR : some applications

You are listening BBC news...

Large vocabulary
➔Continuous speech
➔Dealing with speaking styles
➔Extracting meta-data 

➔Speaker, topics, etc..

Georges Linarès - LIA-UAPV – Speech Group

Rich transcription



Voice command :
➔small/medium vocabulary
➔isolated words
➔Embedded systems

● Hardware constraints

Voice command

Georges Linarès - LIA-UAPV – Speech Group

ASR : some applications



➔ROBUSTNESS MAY BE CRITICAL!
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Voice command

ASR : some applications



●Audio search
➔Spoken term detection
➔Topic detection
➔Entities search ?

Audio search

ASR : some applications
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By-content structuring for efficient 
archiving  and access
➔LVCSR
➔Extra-linguistic contents
➔Unexpected conditions

Structuring audiovisual databases

ASR : some applications
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Need of extra-linguistic features
➔Spontaneity
➔Interactivity
➔Emotional load ?

Sports

News

Musics

Commercials ?

Genre

Topics

Environnement

Example : video genre identification

ASR : some applications
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Fundamentals of statistical ASR

P W /X =
P X /W .P W 

P X 

W=argmax
W

P W / X 

Acoustic modelling Linguisitic modelling

Search
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Acoustic models

Language model

Hello the word

Feature extraction

Georges Linarès - LIA-UAPV – Speech Group

Fundamentals of statistical ASR

Decoding



Acoustic models Language model

Hello the word

Feature extraction Cepstral analysis
(PLP, MFCC)
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Fundamentals of statistical ASR



Acoustic models Language model

Hello the word

Feature extraction Cepstral analysis
(PLP, MFCC)

HMM/GMM
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Fundamentals of statistical ASR



Acoustic models Language model

Hello the word

Feature extraction Cepstral analysis
(PLP, MFCC)

HMM/GMM N-grams

Georges Linarès - LIA-UAPV – Speech Group

Fundamentals of statistical ASR



• Acoustic modeling :
– Features in cepstral domain
– Hiden Markov Models (HMM) for phoneme 

modeling
– Gaussian Mixture Models (GMM)
– Training on large annotated corpora
– Generative models / discriminative learning : 

MLE+MMIE/MPE

Georges Linarès - LIA-UAPV – Speech Group

Fundamentals of statistical ASR



• Main issues in acoustic modelling :
– Models estimate

• Cost of the training corpora
• Tunning the training algorithms
• Feature/models combination

– Robustness
• to acoustic conditions
• to speaker, speaking styles 

(read/spontenous/conversational speech)

Georges Linarès - LIA-UAPV – Speech Group

Fundamentals of statistical ASR



• Language models
– N-grams statistics :

P W =P W i /W i−1 , ... ,W i−n...P W i−k /W i−2 , ... ,W i−n−k 

● N=3,4,5
● Require very large corpora (several million words)
● Modelling the unseen events ?

●  interpolation or back-off to (n-1)grams

Fundamentals of statistical ASR
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• Main issues in language models :
– Exhaustive coverage of topics and speaking 

styles
– Dealing with unseen events

• OOV discovering and integration to LMs

– Lack of semantics
• Long-term dependencies
• Semantic relationships

Fundamentals of statistical ASR
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• Search algorithm
– 2 main approaches :

• Beam search (Viterbi)
• Depth-first search (A*)

– Issues :
• Dealing with hardware constraints

– Embedded systems/Large scale ASR

• Fast decoding

Fundamentals of statistical ASR
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• Recent advances in Search
– System combination :

• A postriori combination (ROVER)
• Integrated approaches (Lecouteux & al, 2008)
• Requires system complementarity, but similar 

accuracy (Bresdin & Gales, 2007)

Fundamentals of statistical ASR
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Where we are in LVCSR ?
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What about the cost ?
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From n-Guyen & al, 2004



ASR: conclusion

• Is it a success story?
– Tradeoff beetwen the expected gains and 

the costs is not so good
– Are we on the limits of  the HMM/N-gram 

framework ?
– Is it the good/best paradigm ?
– Can we do a better usage of ASR ?
– What is the goal ?
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Speech Analytics

• Analyzing speech to extract high level 
information :
– Topics
– Opinions
– Roles...
– speech understanding/interpretation.
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Speech Analytics

• Methods : 
– 2 steps :

• (1) automatic transcription
• (2) ASR outputs processing

– Critical points :
• Feature extraction from rich transcription
• Classification tasks

– Tools : SVM, Neural Nets, Boosting,...
– Application-oriented speech processing
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Speaker Recognition

• Motivation : 

– speech used to determine the true identity of the speaker

• Speaker identification

– Who is speaking?

• Speaker verification

– is the claimed identity true? 

• Speaker segmentation : speaker turn detection, speaker 
tracking

• Constraints : 

– Open/close speaker set

– Text dependent/independent



Speaker Recognition

• General approach : 
– Pattern recognition problem
– Training phase : speaker-dependent models 

are enrolled on some speech samples
– GMM-based approaches
– Temporal structure of speech is not used



GMM based speaker identification

Universal Background
 model

Speaker dependent 
speech materials (EM/ML)

Adaptation of gaussian means



Performance of state-of-the art 
speaker identification systems

• NIST evaluation campaigns (speaker id)
– American speakers, conversational speech  

•  5% error rate for the best system (2m30s)

• Identification on closed set
– < 1% on studio data, 630 speakers (6s enrol., 3s test)

• Error rates increase strongly on sponteneous speech 
and adverse conditions

• New advances : 

– factor analysis for variability reduction

– System combination



Statistical speech processing  : 
conclusions

• Statistics is well defined framework to formulate 
speech processing problems

• ...and to build efficients systems
• Speech processing systems frequently rely on 

machine learning methods
• Research efforts mainly focused on the best way to 

apply mathematical tools to SP problems
• Many SP systems require other kind of 

information/other modeling paradigms to obtain 
significant improvments
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