

UMR CNRS 6241 Université de Nantes Ecole des Mines de Nantes

Grammatical inference

Colin de la Higuera University of Nantes

amp, Marseille

1

Acknowledgements

 Laurent Miclet, Jose Oncina, Tim Oates, Anne-Muriel Arigon, Leo Becerra-Bonache, Rafael Carrasco, Paco Casacuberta, Pierre Dupont, Rémi Eyraud, Philippe Ezequel, Henning Fernau, Jean-Christophe Janodet, Satoshi Kobayachi, Thierry Murgue, Frédéric Tantini, Franck Thollard, Enrique Vidal, Menno van Zaanen,...

http://pages-perso.univ-nantes.fr/~cdlh/ http://videolectures.net/colin_de_la_higuera/

Outline

- 1. What is learning automata about?
- 2. A (detailed) introductory example
- 3. Validation issues
- 4. Some criteria
- 5. Learning from an informant
- 6. Learning from text
- 7. Learning by observing
- 8. Learning actively
- 9. Extensions (PFA, transducers, tree automata)
- 10. Conclusions

1 Grammatical inference

- is about learning a grammar given information about a language
- Information is strings, trees or graphs
- Information can be
 - Text: only positive information
 - Informant: labelled data
 - Actively sought (query learning, teaching)

Above lists are not exclusive

The functions/goals

- Languages and grammars from the Chomsky hierarchy
- Probabilistic automata and context-free grammars
- Hidden Markov Models
- Patterns
- Transducers

The data: examples of strings

A string in Gaelic and its translation to English:

- Tha thu cho duaichnidh ri èarr àirde de a' coisich deas damh
- You are as ugly as the north end of a southward traveling ox

Callh 2010

Pascal Bootcamp, Marseille

7

Callh 2010

>A BAC=41M14 LIBRARY=CITB 978 SKB AAGCTTATTCAATAGTTTATTAAACAGCTTCTTAAATAGGATATAAGGCAGTGCC GGCACTTTACATGCACGGTCCCTTTAATCCTGAAAAATGCTATTGCCATCTTTATTCA GAGACCAGGGTGCTAAGGCTTGAGAGTGAAGCCACTTTCCCCAAGCTCACACAGCAAAGA CACGGGGACACCAGGACTCCATCTACTGCAGGTTGTCTGACTGGGAACCCCCATGCACCT GGCAGGTGACAGAAATAGGAGGCATGTGCTGGGTTTGGAAGAGACACCTGGTGGGAGAGG GCCCTGTGGAGCCAGATGGGGGCTGAAAACAAATGTTGAATGCAAGAAAAGTCGAGTTCCA GGGGCATTACATGCAGCAGGATATGCTTTTTAGAAAAAGTCCAAAAACACTAAACTTCAA CAATATGTTCTTTTGGCTTGCATTTGTGTGTATAACCGTAATTAAAAAGCAAGGGGGACAACA CACAGTAGATTCAGGATAGGGGTCCCCTCTAGAAAGAAGGAGAAGGGGGCAGGAGACAGGA TGGGGAGGAGCACATAAGTAGATGTAAATTGCTGCTAATTTTTCTAGTCCTTGGTTTGAA TGATAGGTTCATCAAGGGTCCATTACAAAAACATGTGTTAAGTTTTTTAAAAAATATAATA AAGGAGCCAGGTGTAGTTTGTCTTGAACCACAGTTATGAAAAAAATTCCAACTTTGTGCA TCCAAGGACCAGATTTTTTTTAAAATAAAGGATAAAAGGAATAAGAAATGAACAGCCAAG TATTCACTATCAAATTTGAGGAATAATAGCCTGGCCAACATGGTGAAACTCCATCTCTAC TAAAAATACAAAAATTAGCCAGGTGTGGTGGCTCATGCCTGTAGTCCCAGCTACTTGCGA GGCTGAGGCAGGCTGAGAATCTCTTGAACCCAGGAAGTAGAGGTTGCAGTAGGCCAAGAT AAAAAAGGAAAAGAAAAGAAAGAAAGAAAACAGTGTATATAGTATATAGCTGAAGCTCCC TGTGTACCCATCCCCAATTCCATTTCCCTTTTTTGTCCCAGAGAACACCCCATTCCTGAC TAGTGTTTTATGTTCCTTTGCTTCTCTTTTTAAAAACTTCAATGCACACATATGCATCCA

Callh 2070

Laphroaig Highland Park Glenmorangie Glenfarclas Glenfiddich Deanston Balvenie Edradour Macallan

Callh 2010

<book> <part> <chapter> <sect1/> <sect1> <orderedlist numeration="arabic"> listitem/> <f:fragbody/> </orderedlist> </sect1> </chapter> </part> </book>

<?xml version="1.0"?> <?xml-stylesheet href="carmen.xsl" type="text/xsl"?> <?cocoon-process type="xslt"?> <!DOCTYPE pagina [<!ELEMENT pagina (titulus?, poema)> <!ELEMENT titulus (#PCDATA)> <!ELEMENT auctor (praenomen, cognomen, nomen)> <!ELEMENT praenomen (#PCDATA)> <!ELEMENT nomen (#PCDATA)> <!ELEMENT cognomen (#PCDATA)> <!ELEMENT poema (versus+)> <!ELEMENT versus (#PCDATA)>]> <pagina> <titulus>Catullus II</titulus> <auctor> <praenomen>Gaius</praenomen> <nomen>Valerius</nomen> <cognomen>Catullus</cognomen> </auctor> Pascal Bootcamp, Marseille

[NP {subs 0} [Det [{bold the}]] [Adj {sups 8 +}] [{norm12 N}{subs 0} [N [{bold computer}]] [N [{sans program}]]]]

And also

- Business processes
- Bird songs
- Images (contours and shapes)
- Robot moves
- Web services
- Malware

Callh 201r

2 An introductory example

- D. Carmel and S. Markovitch. Model-based learning of interaction strategies in multi-agent systems. *Journal of Experimental and Theoretical Artificial Intelligence*, 10(3):309-332,1998
- D. Carmel and S. Markovitch. Exploration strategies for model-based learning in multiagent systems. *Autonomous Agents and Multi-agent Systems*, 2(2):141-172, 1999

The problem:

- An agent must take cooperative decisions in a multi-agent world
- His decisions will depend:
 - on what he hopes to win or lose
 - on the actions of other agents

Hypothesis: the opponent follows a rational strategy (given by a *DFA*/Moore machine):

Example: (the prisoner's dilemma)

- Each prisoner can admit (*a*) or stay silent (*s*)
- If both admit: 3 years each
- If A admits but not B: A=0 years, B=5 years
- If B admits but not A: B=0 years, A=5 years
- If neither admits: 1 year each

- Here an iterated version against an opponent that follows a rational strategy
- Gain Function: limit of means
- A game is a string in (His_moves × My_moves)*!

Example [*as*] [*as*] [*ss*] [*aa*]

The general problem

- We suppose that the strategy of the opponent is given by a deterministic finite automaton
- Can we imagine an optimal strategy?

Suppose we know the opponent's strategy:

- Then (game theory):
- Consider the opponent's graph in which we value the edges by our own gain

- 1 Find the cycle of maximum mean weight
- 2 Find the best path leading to this cycle of maximum mean weight
- 3 Follow the path and stay in the cycle

 Can we play a game against this opponent and...

• can we reconstruct his strategy?

Data (him, me): {aa as sa aa as ss ss ss sa}

а

HIM	ME	
a	a	his move is
a	S	
S	a	
a	a	$\lambda \rightarrow a$
a	S	a→a
S	S	$as \rightarrow s$
S	S	$asa \rightarrow a$
S	a	$a s a a \rightarrow a$
S	U	asaa + a asaa + s
CO11h 2070	Pascal Bootcamp, Marseille	$asaass \rightarrow s$

28

First move: I play a, he plays a Have to deal with: Sure: $\lambda \rightarrow a$ $a \rightarrow ?$ а a Try: a а

Fifth move: I play *s*, he plays *a*

Consistent:

Sixth move: I play s, he plays s

Sixth move: I play s, he plays s

Seventh move: I play s, he plays s

Eighth move: I play a, he plays s

Pascal Bootcamp, Marseille

$\lambda \rightarrow a$	$asaasss \rightarrow s$
$a \rightarrow a$	$asaasssa \rightarrow s$
as ightarrow s	
asa $ ightarrow$ a	
asaa $ ightarrow$ a	
asaas $ ightarrow$ s	
asaass → s	$\begin{array}{c} \bullet \\ \bullet \\ a \\ c \\ c$

Callh 2010

- $\lambda \rightarrow a$ $a \rightarrow a$ $as \rightarrow s$ $asa \rightarrow a$ $asaa \rightarrow a$
 - $asaas \rightarrow s$
 - $\textit{asaass} \rightarrow \textit{s}$

$\textit{asaasssa} \rightarrow \textit{s}$

Result

Callh 2070

How do we get hold of the learning data?

a) through observationb) through exploration (like here)

Collh 2070

An open problem

The strategy is probabilistic:

Collh 2070

Tit for Tat

Callh 2070

3 What does learning mean?

- Suppose we write a program that can learn FSM... are we done?
- The first question is: « why bother? »
- If my programme works, why do something more about it?
- Why should we do something when other researchers in Machine Learning are not?

Motivating question #1

- Is 17 a random number?
- Is 01101101101010101000111101 a random sequence?

(Is FSM A the correct FSM for sample 5?)

Motivating question #2

- Statement "I have learnt" does not make sense
- Statement "I am learning" makes sense

Motivating question #3

- In the case of languages, learning is an ongoing process.
- Is there a moment where we can say we have learnt a language?

What usually is called "having learnt"

- That the FSM is the smallest, best (re a score) → Combinatorial characterisation
- That some optimisation problem has been solved
- That the "learning" algorithm has converged (EM)

What we would like to say

- That having solved some complex combinatorial question we have an Occam, Compression, MDL, Kolmogorov complexity like argument which gives us some guarantee with respect to the future
- Computational learning theory is full of such results

Why should we bother and those working in statistical machine *learning* not?

- Whether with numerical functions or with symbolic functions, we are all trying to do some sort of optimisation
- The difference is (perhaps) that numerical optimisation works much better than combinatorial optimisation!
- [they actually do bother, only differently]
- mbinatorics are harder (in this case) that optimisation Callh 2071

4 Some convergence criteria

- What would we like to say?
- That in the near future, given some string, we can predict if this string belongs to the language or not
- It would be nice to be able to bet €1000 on this

(if not) What would we like to say?

- That if the solution we have returned is not good, then that is because the initial data was bad (insufficient, biased)
- Idea: blame the data, not the algorithm

Suppose we cannot say anything of the sort?

- Then that means that we may be terribly wrong even in a favourable setting
- Thus there is a hidden bias

Callh 2010

4.1 Non probabilistic setting

- Identification in the limit
- Resource bounded identification in the limit
- Active learning (query learning)

Example

Callh 2010

Identification in the limit

- E. M. Gold. Language identification in the limit. *Information and Control*, 10(5):447-474, 1967
- E. M. Gold. Complexity of automaton identification from given data. *Information and Control*, 37:302–320, 1978

The general idea

- Information is presented to the learner who updates its hypothesis after each piece of data
- At some point, always, the learner will have found the correct concept and not move from it

A presentation is

- a function $\varphi : \mathbb{N} \rightarrow X$
- where X is some set,
- and such that φ is associated to a language *L* through a function *yields*: *yields*(φ) = *L*.
- If $\varphi(\mathbb{N}) = \psi(\mathbb{N})$ then yields $(\varphi) = yields (\psi)$

Some types of presentations (1)

- A *text* presentation of a language $L \subseteq \Sigma^*$ is a function $\varphi : \mathbb{N} \to \Sigma^*$ such that $f(\mathbb{N})=L$
- φ is an infinite succession of all the elements of $\mathcal L$

• (note : small technical difficulty with \varnothing)

Some types of presentations (2)

- An *informed* presentation (or an informant) of $L \subseteq \Sigma^*$ is a function $\varphi : \mathbb{N} \to \Sigma^* \times \{-,+\}$ such that $\varphi(\mathbb{N})=(L,+)\cup(L,-)$
- φ is an infinite succession of all the elements of Σ^* labelled to indicate if they belong or not to L

Presentation for $\{a^nb^n: n \in \mathbb{N}\}$

- Legal presentation from text: λ , a^2b^2 , a^7b^7 ...
- Illegal presentation from text: *ab*, *ab*, *ab*,...
- Legal presentation from informant : $(\lambda,+)$, $(abab,-), (a^2b^2,+), (a^7b^7,...,+), (aab,-),...$

Learning function

- Given a presentation φ , φ_n is the set of the first *n* elements in *f*
- A learning algorithm **a** is a function that takes as input a set φ_n and returns a representation of a language
- Given a grammar G, L(G) is the language generated/recognised/ represented by G

Convergence to a hypothesis

- Let \mathcal{L} be a language from a class \mathcal{L} , let φ be a presentation of \mathcal{L} and let φ_n be the first *n* elements in *f*,
- a converges to G with φ if:
 - $\forall n \in \mathbb{N}$: $\mathbf{a}(\varphi_n)$ halts and gives an answer
 - $\exists n_0 \in \mathbb{N}: n \ge n_0 \Rightarrow \mathbf{a}(\varphi_n) = \mathcal{G}$

Identification in the limit

Consistency

• We say that the learning function **a** is consistent if φ_n is consistent with $\mathbf{a}(\varphi_n) \forall n$

A consistent learner is always consistent with the past

Conservatism

- We say that the learning function **a** is conservative if whenever $\varphi(n+1)$ is consistent with $\mathbf{a}(\varphi_n)$, we have $\mathbf{a}(\varphi_n) = \mathbf{a}(\varphi_{n+1})$
- A conservative learner doesn't change his mind needlessly

What about efficiency?

- We can try to bound
 - global time
 - update time
 - errors before converging (IPE)
 - mind changes (MC)
 - queries
 - good examples needed
More precise definition of convergence

 $\exists n \in \mathbb{N}$ such that $\forall k \ge n$ $L(a(\varphi_k))=L(a(\varphi_n))=$ yields(φ)

φ_k is the sequence of the first k elements of presentation φ

Resource bounded identification in the limit

- Definitions of IPE, CS, MC, update time, etc...
- What should we try to measure?
 - The size of M?
 - The size of L?
 - The size of *f*?
 - The size of φ_n ?

4.2 Probabilistic settings

- PAC learning
- Identification with probability 1
- PAC learning distributions

Callh 2010

Learning a language from sampling

- We have a distribution over $\Sigma^{\boldsymbol{\star}}$
- We sample twice:
 - Once to learn
 - Once to see how well we have learned
- The PAC setting

PAC-learning (Valiant 84, Pitt 89)

- \bullet $\ensuremath{\mathcal{L}}$ a class of languages
- ullet \mathcal{M} a class of machines
- $\epsilon > 0$ and $\delta > 0$
- *m* a maximal length over the strings
- *n* a maximal size of machines

His ε - AC (approximately correct)*

if

 $\Pr_{\Box}[H(x)\neq G(x)] < \varepsilon$

Pascal Bootcamp, Marseille

Errors: we want $L_1(D(G), D(H)) < \varepsilon$ Callh 2010

Pascal Bootcamp, Marseille

(French radio)

- Unless there is a surprise there should be no surprise
- (after the last primary elections, on 3rd of June 2008)

Results

- Using cryptographic assumptions, we cannot PAC-learn DFA
- Cannot PAC-learn NFA, CFGs with membership queries either

Alternatively

- Instead of learning classifiers in a probabilistic world, learn directly the distributions!
- Learn probabilistic finite automata (deterministic or not)

No error

- This calls for identification in the limit with probability 1
- Means that the probability of not converging is 0

Results

- If probabilities are computable, we can learn with probability 1 finite state automata
- But not with bounded (polynomial) resources
- Or it becomes very tricky (with added information)

With error

- PAC definition
- But error should be measured by a distance between the target distribution and the hypothesis

•
$$L_1, L_2, L_\infty$$
?

Callh 201r

Results

- \bullet Too easy with $\ensuremath{L_{\infty}}$
- Too hard with L₁
- Nice algorithms for biased classes of distributions

Callh 201r

Conclusion

- A number of paradigms to study identification of learning algorithms
- Some to learn classifiers
- Some to learn distributions

\bigcup

5 Learning from an informant

- Algorithm RPNI
- Regular Positive and Negative Grammatical Inference

Inferring regular languages in polynomial time. Jose Oncina & Pedro García. Pattern recognition and image analysis, 1992

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Chapter 12

Motivation

- We are given a set of strings S₁ and a set of strings S₁
- Goal is to build a classifier
- This is a traditional (or typical) machine learning question
- How should we solve it?

Ideas

- Use a distance between strings and try k-NN
- Embed strings into vectors and use some off-the-shelf technique (decision trees, SVMs, other kernel methods)

Alternative

- Suppose the classifier is some grammatical formalism
- Thus we have L and $\Sigma^* \setminus L$

Obviously many possible candidates

- Any Grammar G such that
 - $S_{+} \subseteq L(G)$
 - S₋ ∩ L(*G*) =∅

Collh 2070

Two types of final states

 $S_{+}=\{\lambda, aaa\}$ $S_{=} \{aa, aaaaaa\}$

1 is accepting 3 is rejecting What about state 2?

What is determinism about?

The prefix tree acceptor

- The smallest tree-like DFA consistent with the data
- Is a solution to the learning problem
- Corresponds to a rote learner

From the sample to the PTA

 $S_{+}=\{\lambda, aaa, aaba, ababa, bb, bbaaa\}$ $S_{-}=\{aa, ab, aaaa, ba\}$ Collh 2070

Red, **Blue** and White states

-Red states are confirmed states
-Blue states are the (non Red)
successors of the Red states
-White states are the others

Suppose we want to merge state 3 with state 2

First disconnect 3 and reconnect to 2

Then fold subtree rooted in 3 into the DFA starting in 2

Callh 2010

Then fold subtree rooted in 3 into the DFA starting in 2

Callh 2070

- RPNI is a state merging algorithm
- RPNI identifies any regular language in the limit
- RPNI works in polynomial time
- RPNI admits polynomial characteristic sets

- $A=PTA(S+); Blue = \{\delta(q_I, a): a \in \Sigma \};$ Red = $\{q_I\}$
- While *Blue*≠∅ do
 - choose q from Blue
 - if $\exists p \in Red$: L(merge_and_fold(A, p, q)) $\cap S = \emptyset$ then $A = merge_and_fold(A, p, q)$ else $Red = Red \cup \{q\}$ Blue = { $\delta(q, a)$: $q \in Red$ } - {Red}

$S_{+}=\{\lambda, aaa, aaba, ababa, bb, bbaaa\}$

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2070

Try to merge 2 and 1

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2010

First merge, then fold

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2010

But now string aaaa is accepted, so the merge must be rejected, and state 2 is promoted

 $S_{=} \{aa, ab, aaaa, ba\}$

Collh 2070

Try to merge 3 and 1

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2010

First merge, then fold

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2010

No counter example is accepted so the merge is kept

 $S_{=}$ {aa, ab, aaaa, ba}

Callh 2070

Next possible merge to be checked is {4, 13} with {1, 3, 6}

 $S_{=}$ {aa, ab, aaaa, ba}

Collh 2070

Merged. Needs folding subtree in {4,13} with {1,3,6}

 $S_{=}$ {aa, ab, aaaa, ba}

Callh 2070

But now aa is accepted

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2010

So we try {4, 13} with {2, 10}

 $S_{=}$ {aa, ab, aaaa, ba}

Callh 2010

Negative string aa is again accepted. Since we have tried all Red for merging, state 4 is promoted.

Callh 2010

 $S_{=}$ { aa, ab, aaaa, ba}

So we try 5 with {1, 3, 6}

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2070

But again we accept ab

Callh 2070

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

So we try 5 with {2, 10}

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Callh 2010

Which is OK. So next possible merge is {7,15} with {1,3,6}

 $S_{=}$ {aa, ab, aaaa, ba}

Collh 2070

Which is OK. Now try to merge {<mark>8</mark>,12} with {1,3,6,7,15}

Collh 2070

And ab is accepted

Callh 2070

 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}

Now try to merge {8,12} with {4,9,13}

Callh 2010

 $S_{=}$ {aa, ab, aaaa, ba}

This is OK and no more merge is possible so the algorithm halts

Callh 2070

 $S_{=}$ {aa, ab, aaaa, ba}

A characteristic sample

- A sample is characteristic (for RPNI) whenever, when included in the learning sample, the algorithm returns the correct DFA
- Particularity: the characteristic sample is of polynomial size
- There is an algorithm which given a DFA builds a characteristic sample

About characteristic samples

- If you add more strings to a characteristic sample it still is characteristic
- There can be many different characteristic samples (EDSM, tree version,...)
- Change the ordering (or the exploring function in RPNI) and the characteristic sample will change

Exercices

- Run RPNI on
 - *S*₊={*a*,*bba*,*bab*,*aabb*}
 - *S_*={*b*,*ab*,*baa*,*baabb*}
- Find a characteristic sample for:

Open problems

- RPNI's complexity is not a tight upper bound. Find the correct complexity
- The definition of the characteristic sample is not tight either. Find a better definition

Conclusion

- RPNI identifies any regular language in the limit
- RPNI works in polynomial time
- There are many significant variants of RPNI
- Parallel version can be efficient
- RPNI can be extended to other classes of grammars

6 Learning from text

- Only positive examples are available
- Danger of over-generalization: why not return $\Sigma^{*}?$
- The problem is "basic":
 - Negative examples might not be available
 - Or they might be heavily biased: nearmisses, absurd examples...
- Base line: all the rest is learning with help

GI as a search problem

The theory

- Gold 67: No super-finite class can be identified from positive examples (or text) only
- Necessary and sufficient conditions for learning
- Literature:
 - inductive inference,
 - ALT series, ...

Limit point

- A class \mathcal{L} of languages has a limit point *iff* there exists an infinite sequence $\mathcal{L}_{n \ n \in \mathbb{N}}$ of languages in \mathcal{L} such that $\mathcal{L}_0 \subset \mathcal{L}_1 \subset \dots \mathcal{L}_n \subset$..., and there exists another language $\mathcal{L} \in \mathcal{L}$ such that $\mathcal{L} = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n$
- \bullet L is called a limit point of $\mathcal L$

L is a limit point

Theorem

- If ${\mathcal L}$ admits a limit point, then ${\mathcal L}$ is not learnable from text
- <u>Proof:</u> Let s^i be a presentation in length-lex order for L_i , and s be a presentation in length-lex order for L. Then $\forall n \in \mathbb{N} \exists i \mid \forall k \leq n$ $s^i_k = s_k$

<u>Note:</u> having a limit point is a sufficient condition for non learnability; not a necessary condition Pascal Bootcamp, Marseille

Mincons classes

• A class is mincons if there is an algorithm which, given a sample S, builds a $G \in G$ such that $S \subseteq L \subseteq L(G) \Rightarrow L = L(G)$

Existence of an accumulation point (Kapur 91)

A class \mathcal{L} of languages has an accumulation point iff there exists an infinite sequence $S_{n n \in \mathbb{N}}$ of sets such that $S_0 \subseteq S_1 \subseteq ... S_n \subseteq ...$, and $\mathcal{L} = \bigcup_{n \in \mathbb{N}} S_n \in \mathcal{L}$

...and for any $n \in \mathbb{N}$ there exists a language L_n' in \mathcal{L} such that $S_n \subseteq L_n' \subset L$. The language L is called an accumulation point of \mathcal{L}

L is an accumulation point

Collh 2010

Theorem (for Mincons classes)

L admits an accumulation point *iff L* is not learnable from text

Infinite Elasticity

- If a class of languages has a limit point there exists an infinite ascending chain of languages $L_0 \subset L_1 \subset ... \subset L_n \subset ...$
- This property is called infinite elasticity

Infinite Elasticity $|X_{i+1}| X_{i+2} X_{i+3}|$ *X*₁ X_i *X*₀ *X*_{i+4} X_{2} *X*₃

Finite elasticity

\mathcal{L} has *finite elasticity* if it does not have infinite elasticity

Callh 2070

Theorem (Wright)

If $\mathcal{L}(G)$ has finite elasticity and is mincons, then G is learnable.

Theorem (Angluin)

- G is learnable *iff* there is a computable partial function ψ : $G \times \mathbb{N} \rightarrow \Sigma^*$ such that:
- 1) $\forall n \in \mathbb{N}, \psi(G, n) \text{ is defined } iff G \in G \text{ and } L(G) \neq \emptyset;$
- 2) ∀G∈G, T_G={ψ(G,n): n∈IN} is a finite subset of L(G) called a *tell-tale* subset;
- 3) $\forall G,G' \in G$, if $T_{G} \subseteq L(G')$ then $L(G') \not\subset L(G)$.

Proposition (Kapur 91)

A language L in L has a *tell-tale subset iff* L is not an accumulation point.

(for mincons)

7 Learning by observing

Inference of k-Testable Languages in the Strict Sense and Application to Syntactic Pattern Recognition. Garcí a & Vidal et al. 1990

Definition

Let $k \ge 0$, a k-testable language in the strict sense (k-TSS) is a 5-tuple $Z_k = (\Sigma, I, F, T, C)$ with:

- Σ a finite alphabet
- *I*, *F* ⊆ Σ^{k-1} (allowed prefixes of length k-1 and suffixes of length k-1)
- $T \subseteq \Sigma^k$ (allowed segments)
- $C \subseteq \Sigma^{k}$ contains all strings of length less than k
- Note that $I \cap F = C \cap \Sigma^{k-1}$

- The k-testable language is $L(Z_k)=I\Sigma^* \cap \Sigma^*F - \Sigma^*(\Sigma^k - T)\Sigma^* \cup C$
- Strings (of length at least k) have to use a good prefix and a good suffix of length k-1, and all sub-strings have to belong to T. Strings of length less than k should be in C
- Or: Σ^{k} -T defines the prohibited segments
- Key idea: use a window of size k

An example (2-testable)

Window language

- By sliding a window of size 2 over a string we can parse
- ababaaababababaaaab OK
- aaabbaaaababab not OK

Callh 2010

The hierarchy of *k-TSS* languages

- k-TSS(Σ)={ $L \subseteq \Sigma^*$: L is k-TSS}
- All finite languages are in k-TSS(Σ) if k is large enough!
- k-TSS(Σ) \subset [k+1]-TSS(Σ)
- $(ba^k)^* \in [k+1] TSS(\Sigma)$
- $(ba^k)^* \notin k TSS(\Sigma)$

Collh 2010

A language that is not *k*-testable

Callh 2010

K-TSS inference

Given a sample S, $\mathbf{a}_{k-TSS}(S) = L(Z_k)$ where $Z_{k}=(\Sigma(S), I(S), F(S), T(S), C(S))$ and

- $\Sigma(S)$ is the alphabet used in S
- $\mathcal{C}(S)=\Sigma(S)^{k}\cap S$
- $I(S) = \Sigma(S)^{k-1} \cap \operatorname{Pref}(S)$
- $F(S) = \Sigma(S)^{k-1} \cap Suff(S)$
- $T(S) = \Sigma(S)^k \cap \{ v. uvw \in S \}$ Callh 201r

Example

- *S*={*a*, *aa*, *abba*, *abbbba*}
- Let *k*=3
 - Σ(S)={a, b}
 - *I*(*S*)= {*aa*, *ab*}
 - *F*(*S*)= {*aa*, *ba*}
 - C(S)= {a , aa}
 - *T*(*S*)={*abb*, *bbb*, *bba*}
- Hence $\mathbf{a}_{k-TSS}(S) = ab^*a + a$

Building the corresponding automaton

- Each string in $I \cup C$ and $PREF(I \cup C)$ is a state
- Each substring of length k-1 of strings in T is a state
- λ is the initial state
- Add a transition labeled b from u to ub for each state ub
- Add a transition labeled b from au to ub for each aub in T
- Each state/substring that is in F is a final state
- Callh 2 Each state/substring that is in C is a final state

Running the algorithm

Callh 2010

Properties (1)

- $S \subseteq a_{k-TSS}(S)$
- a_{k-TSS}(S) is the smallest k-TSS language that contains S
 - If there is a smaller one, some prefix, suffix or substring has to be absent

Properties (2)

- \mathbf{a}_{k-TSS} identifies any *k*-TSS language in the limit from polynomial data
 - Once all the prefixes, suffixes and substrings have been seen, the correct automaton is returned

• If
$$Y \subseteq S$$
, $a_{k-TSS}(Y) \subseteq a_{k-TSS}(S)$

Properties (3)

- $\mathbf{a}_{k+1-TSS}(S) \subseteq \mathbf{a}_{k-TSS}(S)$
 - In I_{k+1} (resp. F_{k+1} and T_{k+1}) there are less allowed prefixes (resp. suffixes or substrings) than in I_k (resp. F_k and T_k)
- $\forall k \max_{x \in S} |x|, \mathbf{a}_{k-TSS}(S) = S$
 - Because for a large k, $T_k(S) = \emptyset$

Extensions

- These languages have been studied and adapted to:
 - Local languages
 - N-grams
 - Tree languages

Callh 2070

8 Learning actively

- Learning regular sets from queries and counter-examples, D. Angluin, Information and computation, 75, 87-106, 1987
- Queries and Concept learning, D. Angluin, Machine Learning, 2, 319-342, 1988
- Negative results for Equivalence Queries, D. Angluin, Machine Learning, 5, 121-150, 1990

8.1 About learning with *queries*

• Ideas:

- define a credible learning model
- make use of additional information that can be measured
- explain thus the difficulty of learning certain classes

The Oracle

- knows the language and has to answer correctly
- no probabilities
- worse case policy: the Oracle does not want to help

Some queries

- membership *queries*
- equivalence *queries* (weak)
- equivalence *queries* (strong)
- inclusion *queries*

Callh 2070

Membership queries.

Collh 2070

Pascal Bootcamp, Marseille

Equivalence (weak) queries.

Yes if $\mathcal{L} \equiv \mathbf{L}(h)$ No if $\exists x \in \Sigma^* \colon x \in \mathbf{L}(h) \oplus \mathcal{L}$

A⊕B is the symmetric difference

Pascal Bootcamp, Marseille

Equivalence (strong) queries.

Yes if $\mathcal{L} = h$ $\mathbf{x} \in \Sigma^*$: $\mathbf{x} \in \mathbf{L}(h) \oplus \mathcal{L}$ if not

Callh 2010

Subset queries.

Yes if $\mathbf{L}(h) \subseteq \mathcal{L}$ $\mathbf{X} \in \Sigma^*$: $\mathbf{X} \in \mathbf{L}(h) \land \mathbf{X} \notin \mathcal{L}$ if not

Callh 2070

Correct learning

A class C is identifiable with a polynomial number of *queries* of type T if there exists an algorithm **a** that:

- 1) $\forall L \in C$ identifies L with a polynomial number of *queries* of type T
- 2) does each update in time polynomial in |f| and in $\Sigma |x_j|$, $\{x_j\}$ counter-examples seen so far

8.2 The Minimal Adequate Teacher

- You are allowed:
 - strong equivalence queries
 - membership queries

Callh 2070

General idea of L*

- find a consistent table (representing a DFA)
- submit it as an *equivalence query*
- use counterexample to update the table
- submit *membership queries* to make the table complete
- iterate

8.3 An observation table

Callh 2010

Callh 2070

Meaning

Callh 2010

Callh 2010

Equivalent prefixes

Callh 2010

Building a DFA from a table

Callh 2010

Callh 2070

Some rules

An incomplete table

Callh 2070

Good idea

We can complete the table by submitting membership queries...

Membership query:

 $uv \in L$?

A table is

closed if any row of *Blue* corresponds to some row in *Red*

Callh 2070

Pascal Bootcamp, Marseille

And a table that is not closed

Callh 2010

What do we do when we have a table that is not closed?

- Let s be the row (of *Blue*) that does not appear in *Red*
- Add s to *Red*, and $\forall a \in \Sigma$ sa to *Blue*

An inconsistent table

Callh 2010

Pascal Bootcamp, Marseille

A table is consistent if

Every equivalent pair of rows in Red remains equivalent in Red \cup Blue after appending any symbol

$$row(s_1)=row(s_2)$$

$$\Rightarrow$$
$$\forall a \in \Sigma, row(s_1a)=row(s_2a)$$

What do we do when we have an inconsistent table?

- Let $a \in \Sigma$ be such that $row(s_1) = row(s_2)$ but $row(s_1a) \neq row(s_2a)$
- If $row(s_1a) \neq row(s_2a)$, it is so for experiment e
- Then add experiment *ae* to the table

What do we do when we have a closed and consistent table ?

- We build the corresponding DFA
- We make an equivalence query!!!

What do we do if we get a counter-example?

- Let u be this counter-example
- ∀*W*∈Pref(*U*) do
 - add w to Red
 - $\forall a \in \Sigma$, such that $wa \notin Red$ add wa to *Blue*

8.4 Run of the algorithm

Pascal Bootcamp, Marseille

An equivalence query is made!

Counter example baa is returned

Pascal Bootcamp, Marseille

Callh 2010

Polynomial

- $|E| \leq n$
- at most *n*-1 equivalence queries
- $|membership queries| \le n(n-1)m$ where m is the length of the longest counter-example returned by the oracle

Conclusion (1)

- With an MATyou can learn DFA
 - but also a variety of other classes of grammars
 - it is difficult to see how powerful is really an MAT
 - probably as much as *PAC* learning
 - Easy to find a class, a set of queries and provide and algorithm that learns with them
 - more difficult for it to be meaningful
- Discussion: why are these queries meaningful?

Conclusion (2)

- Active learning is an exciting topic, and good strategies for choosing the queries are still largely unexplored
- Zulu competition can be a great opportunity to start research in this area
- http://cian.univ-st-etienne.fr/zulu/

9 Extensions (PFA, transducers, tree automata)

- Theory, algorithms and applications have extended to:
 - Transducers
 - Probabilistic finite automata
 - Context free grammars (with special interest in linear grammars)
 - String kernels
 - Regular expressions
 - patterns

Main results for learning PFA

- There are now several DPFA learning algorithms
- ALERGIA (Carrasco & Oncina 94)
- DSAI (Ron el al. 94)
- MDI (Thollard et al. 99)
- DEES (Denis et al. 05) [also PFA]

Main results for learning transducers

- One basic algorithm : OSTIA (Oncina et al. 93)
- State merging algorithm, based on a normal form for subsequencial transducers

10 Conclusions

Why should one pick up grammatical inference as a research topic?

- Nice community
- Broad field
- Can use ideas from algorithmics, formal language theory, combinatorics, statistics, machine learning, natural language processing, bioinformatics, pattern recognition...
- Theory and applications

Open problems

- C. de la Higuera. A bibliographical study of grammatical inference. *Pattern Recognition*, 38:1332–1348, 2005
- C. de la Higuera. Ten open problems in grammatical inference. In proceedings of ICGI 2006, pages 32-44

Some addresses to start working

<u>http://pages-perso.univ-nantes.fr/~cdlh/</u> <u>http://videolectures.net/colin_de_la_higuera/</u> <u>http://cian.univ-st-etienne.fr/zulu/</u>

Grammatical Inference: Learning Automata and Grammars, Colin de la Higuera, Cambridge University Press

Callh 2070