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1 Grammatical inference

is about learning a grammar
 

given 
information about a language
Information is strings, trees or graphs
Information can be

Text: only positive information
Informant: labelled data
Actively sought (query learning, teaching)

Above lists are not exclusive
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The functions/goals

Languages and grammars from the 
Chomsky hierarchy
Probabilistic automata and context-free 
grammars
Hidden Markov Models
Patterns
Transducers
…
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The data: examples of strings

A string in Gaelic and its translation to English:

Tha thu cho duaichnidh ri èarr àirde de a’ coisich
deas damh
You are as ugly as the north end of a southward 
traveling ox
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>A BAC=41M14 LIBRARY=CITB_978_SKB
AAGCTTATTCAATAGTTTATTAAACAGCTTCTTAAATAGGATATAAGGCAGTGCCATGTA
GTGGATAAAAGTAATAATCATTATAATATTAAGAACTAATACATACTGAACACTTTCAAT
GGCACTTTACATGCACGGTCCCTTTAATCCTGAAAAAATGCTATTGCCATCTTTATTTCA
GAGACCAGGGTGCTAAGGCTTGAGAGTGAAGCCACTTTCCCCAAGCTCACACAGCAAAGA
CACGGGGACACCAGGACTCCATCTACTGCAGGTTGTCTGACTGGGAACCCCCATGCACCT
GGCAGGTGACAGAAATAGGAGGCATGTGCTGGGTTTGGAAGAGACACCTGGTGGGAGAGG
GCCCTGTGGAGCCAGATGGGGCTGAAAACAAATGTTGAATGCAAGAAAAGTCGAGTTCCA
GGGGCATTACATGCAGCAGGATATGCTTTTTAGAAAAAGTCCAAAAACACTAAACTTCAA
CAATATGTTCTTTTGGCTTGCATTTGTGTATAACCGTAATTAAAAAGCAAGGGGACAACA
CACAGTAGATTCAGGATAGGGGTCCCCTCTAGAAAGAAGGAGAAGGGGCAGGAGACAGGA
TGGGGAGGAGCACATAAGTAGATGTAAATTGCTGCTAATTTTTCTAGTCCTTGGTTTGAA
TGATAGGTTCATCAAGGGTCCATTACAAAAACATGTGTTAAGTTTTTTAAAAATATAATA
AAGGAGCCAGGTGTAGTTTGTCTTGAACCACAGTTATGAAAAAAATTCCAACTTTGTGCA
TCCAAGGACCAGATTTTTTTTAAAATAAAGGATAAAAGGAATAAGAAATGAACAGCCAAG
TATTCACTATCAAATTTGAGGAATAATAGCCTGGCCAACATGGTGAAACTCCATCTCTAC
TAAAAATACAAAAATTAGCCAGGTGTGGTGGCTCATGCCTGTAGTCCCAGCTACTTGCGA
GGCTGAGGCAGGCTGAGAATCTCTTGAACCCAGGAAGTAGAGGTTGCAGTAGGCCAAGAT
GGCGCCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTATGTCCAAAAAAAAAAAAA
AAAAAAAGGAAAAGAAAAAGAAAGAAAACAGTGTATATATAGTATATAGCTGAAGCTCCC
TGTGTACCCATCCCCAATTCCATTTCCCTTTTTTGTCCCAGAGAACACCCCATTCCTGAC
TAGTGTTTTATGTTCCTTTGCTTCTCTTTTTAAAAACTTCAATGCACACATATGCATCCA
TGAACAACAGATAGTGGTTTTTGCATGACCTGAAACATTAATGAAATTGTATGATTCTAT
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<book>
<part>
<chapter>

<sect1/>
<sect1>
<orderedlist

 
numeration="arabic">

<listitem/>
<f:fragbody/>

</orderedlist>
</sect1>

</chapter>
</part>

</book>
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<?xml version="1.0"?> 
<?xml-stylesheet href="carmen.xsl" type="text/xsl"?> 
<?cocoon-process type="xslt"?>
<!DOCTYPE pagina [ 
<!ELEMENT pagina (titulus?, poema)> 
<!ELEMENT titulus (#PCDATA)> 
<!ELEMENT auctor (praenomen, cognomen, nomen)> 
<!ELEMENT praenomen (#PCDATA)> 
<!ELEMENT nomen (#PCDATA)> 
<!ELEMENT cognomen (#PCDATA)> 
<!ELEMENT poema (versus+)> 
<!ELEMENT versus (#PCDATA)> 
]>
<pagina> 
<titulus>Catullus II</titulus> 
<auctor> 
<praenomen>Gaius</praenomen> 
<nomen>Valerius</nomen> 
<cognomen>Catullus</cognomen> 
</auctor>
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And also

Business processes
Bird songs
Images (contours and shapes)
Robot moves
Web services
Malware
…
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2 An introductory example
D. Carmel and S. Markovitch. Model-based 
learning of interaction strategies in multi-agent 
systems. Journal of Experimental and 
Theoretical Artificial Intelligence, 10(3):309–
332, 1998
D. Carmel and S. Markovitch. Exploration 
strategies for model-based learning in multiagent
systems. Autonomous Agents and Multi-agent 
Systems, 2(2):141–172, 1999
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The problem:

An agent must take cooperative decisions 
in a multi-agent world
His decisions will depend:

on what he hopes to win or lose
on the actions of other agents
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Hypothesis: the opponent follows a 
rational strategy (given by a DFA/Moore 
machine):

e e

pp

l l d

p e

e e p e p →
 

l
e e e →

 
d

You: listen 
or doze

Me: 
equations 
or 
pictures
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Example: (the prisoner’s dilemma)

Each prisoner can admit (a) or stay silent (s)

If both admit: 3 years each 
If A admits but not B: A=0 years, B=5 years
If B admits but not A: B=0 years, A=5 years
If neither admits: 1 year each
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a

a

s

s

-3

-3

0

-5

0

-5

-1

-1

A
B
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Here an iterated version against an 
opponent that follows a rational strategy
Gain Function: limit of means
A game is a string in 

(His_moves  ×
 

My_moves)*!

Example [as] [as] [ss] [aa]
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The general problem

We suppose that the strategy of the 
opponent is given by a deterministic finite 
automaton

Can we imagine an optimal strategy? 
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Suppose we know the 
opponent’s strategy:

Then (game theory):
Consider the opponent’s graph in which 
we value the edges by our own gain
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a s

a

s

-3 0

-5 -1

s s

aa

a s s

a s
-3

-5 -1

0

-1

0
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a s

a

s

-3 0

-5 -1

s s

aa

a s s

a s

Mean= -0.5

Best path

-3

-5 -1

0

-1

0

1
 

Find the cycle of 
maximum mean weight

2
 

Find the best path 
leading to this cycle of 
maximum mean weight 

3 Follow the path and stay 
in the cycle
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Question

Can we play a game against this opponent 
and…

can we reconstruct his strategy ?
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Data (him, me) : {aa as sa aa as ss ss ss sa}

HIM ME
a a
a s
s a
a a
a s
s s
s s
s a
s a

I play asa, 
his move is a

λ→ a
a→a
as → s
asa → a
asaa → a
asaas → s
asaass → s
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λ→ a
a→? a

First move: I play
 

a, he
 

plays
 

a

a

a

a

a

Sure: Have to deal with:

Try:
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λ → a
a → a
as →

 
?

a

Second move: I play
 

s, he
 

plays
 

a

a

sa

Confirmed: Have to deal with:

Try:
a

a

a, s



Pascal Bootcamp, Marseille 31

Cdlh 2010

λ → a
a → a
as → s 
asa →

 
?

a

Third
 

move: I play
 

a, he
 

plays
 

s

Inconsistent: Consistent:

Try:

a, s

sa

a

s

Have to deal with:

sa

a

s
a

sa

a

s

a
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Fourth
 

move: I play
 

a, he
 

plays
 

a

Consistent:

sa

a

s

a

λ → a
a → a
as → s
asa → a
asaa →

 
?
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Fifth
 

move: I play
 

s, he
 

plays
 

a

Consistent:

sa

a

s

a

λ → a
a → a
as → s
asa → a
asaa → a
asaas → ?
asaass → s
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Sixth
 

move: I play
 

s, he
 

plays
 

s

Consistent:

sa

a

s

aλ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → ?

But have to deal with:
sa

a

s

a

s
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Sixth
 

move: I play
 

s, he
 

plays
 

s

Try
 

this:

sa

a

s

a,sλ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → ?
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Seventh
 

move: I play
 

s, he
 

plays
 

s

λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s
asaasss →

 
?

Inconsistent:

sa

a

s

a,s

Consistent:

sa

a

s

a,s

s
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Eighth
 

move: I play
 

a, he
 

plays
 

s

λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s
asaasss → s 
asaasssa →

 
?

Inconsistent:

sa

a

s

a,s

Consistent:

sa

a

s

a,s

s
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Ninth
 

move: I play
 

a, he
 

plays
 

s

λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s
asaasss → s 
asaasssa → s 
asaasssas →

 
?

Inconsistent:

Consistent:

sa

a

s

a

s
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λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s

asaasss → s
asaasssa → s

ssa

a

s

a

s
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λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s

asaasss → s
asaasssa → s

ssa

a

s

a

s

s
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λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s

asaasss → s
asaasssa → s

s

ssa

a

s

a

s
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λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s

asaasss → s
asaasssa → s

s

ssa

a

s

a

s
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λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s

asaasss → s
asaasssa → s

s

ssa

a

s

a

s

a
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λ → a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s

asaasss → s
asaasssa → s

s

ssa

a

s

a

s

a
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s

ssa

a

s

a

s

a

Result
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How do we get hold of the 
learning data?

a) through observation
b) through exploration (like here)
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An open problem

The strategy is probabilistic:

s

a :70%
s :30%

a :50%
s :50%

a :20%
s :80%

a

s

a

s

a
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Tit for Tat

sa

a

s

a

s
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3 What does learning mean?

Suppose we write a program that can learn 
FSM… are we done?
The first question is: « why bother? »
If my programme works, why do something 
more about it?
Why should we do something when other 
researchers in Machine Learning are not?
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Motivating question #1

Is 17 a random number?

Is 0110110110110101011000111101 a random 
sequence?

(Is FSM A the correct FSM for sample S?)
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Motivating question #2

Statement “I have learnt” does not make 
sense

Statement “I am learning” makes sense
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Motivating question #3

In the case of languages, learning is an 
ongoing process.

Is there a moment where we can say we 
have learnt a language?
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What usually is called “having 
learnt”

That the FSM is the smallest, best (re a 
score) Combinatorial characterisation
That some optimisation problem has been 
solved
That the “learning” algorithm has 
converged (EM)
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What we would like to say

That having solved some complex 
combinatorial question we have an Occam, 
Compression, MDL, Kolmogorov complexity 
like argument which gives us some 
guarantee with respect to the future
Computational learning theory is full of 
such results
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Why should we bother and those 
working in statistical machine 
learning not?

Whether with numerical functions or with 
symbolic functions, we are all trying to do 
some sort of optimisation
The difference is (perhaps) that numerical 
optimisation works much better than 
combinatorial optimisation!
[they actually do bother, only differently]
mbinatorics are harder (in this case) that 
optimisation
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4 Some convergence criteria

What would we like to say?
That in the near future, given some string, 
we can predict if this string belongs to the 
language or not
It would be nice to be able to bet €1000 on 
this
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(if not) What would we like to 
say?

That if the solution we have returned is 
not good, then that is because the initial 
data was bad (insufficient, biased)
Idea: blame the data, not the algorithm
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Suppose we cannot say 
anything of the sort?

Then that means that we may be terribly 
wrong even in a favourable setting
Thus there is a hidden bias
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4.1 Non probabilistic setting

Identification in the limit
Resource bounded identification in the 
limit
Active learning (query learning)
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Example

2
{2}

3

7

5
{2, 3}

Fibonacci
 numbers

Prime 
numbers103

31

23

11
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Identification in the limit

E. M. Gold. Language identification in the 
limit. Information and Control, 10(5):447–
474, 1967
E. M. Gold. Complexity of automaton 
identification from given data. Information 
and Control, 37:302–320, 1978
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The general idea

Information is presented to the learner 
who updates its hypothesis after each 
piece of data
At some point, always, the learner will have 
found the correct concept and not move 
from it
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A presentation is

a function ϕ : ℕ→X
where X is some set,
and such that ϕ is associated to a language 
L through a function yields: yields(ϕ) =L.
If ϕ(ℕ)=ψ(ℕ) then yields(ϕ)= yields(ψ) 
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Some types of presentations (1)

A text presentation of a language L⊆Σ* is 
a function ϕ : ℕ → Σ* such that f(ℕ)=L

ϕ is an infinite succession of all the 
elements of L

(note : small technical difficulty with ∅)
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Some types of presentations (2)

An informed presentation (or an informant) 
of L⊆Σ* is a function ϕ : ℕ → Σ* × {-,+} such 
that ϕ(ℕ)=(L,+)∪(L,-)
ϕ is an infinite succession of all the elements 
of Σ* labelled to indicate if they belong or 
not to L
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Presentation for {anbn: n ∈ℕ}

Legal presentation from text: λ, a2b2, a7b7…
Illegal presentation from text: ab, ab, ab,…
Legal presentation from informant : (λ,+), 
(abab,-), (a2b2,+), (a7b7…,+), (aab,-),…
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Learning function

Given a presentation ϕ, ϕn is the set of the 
first n elements in f
A learning algorithm a is a function that 
takes as input a set ϕn and returns a 
representation of a language
Given a grammar G, L(G) is the language 
generated/recognised/ represented by G



Pascal Bootcamp, Marseille 68

Cdlh 2010

Convergence to a hypothesis

Let L be a language from a class L, let ϕ
be a presentation of L and let ϕn be the 
first n elements in f,
a converges to G with ϕ if:

∀n∈ℕ: a(ϕn) halts and gives an answer
∃n0∈ℕ: n≥n0 ⇒ a(ϕn) =G
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Identification in the limit

L Pres ⊆
 

ℕ→XA class of languages

A class of grammars
G

L A learner
The naming function

yields

a

ϕ(ℕ)=ψ(ℕ) ⇒yields(ϕ)=yields(ψ)L(a(ϕ))=yields(ϕ)
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Consistency

We say that the learning function a is 
consistent if ϕn is consistent with a(ϕn) ∀n

A consistent learner is always consistent 
with the past
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Conservatism

We say that the learning function
a is conservative if whenever ϕ(n+1) 
is consistent with a(ϕn), we have 
a(ϕn)= a(ϕn+1)

A conservative learner doesn’t 
change his mind needlessly
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What about efficiency?

We can try to bound
global time
update time
errors before converging (IPE)
mind changes (MC)
queries
good examples needed
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More precise definition of 
convergence

∃n∈ℕ
 

such that ∀k≥n
 

L(a(ϕk))=L(a(ϕn))= 
yields(ϕ)

ϕk
 

is the sequence of the first k elements of 
presentation

 
ϕ
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Resource bounded 
identification in the limit

Definitions of IPE, CS, MC, update time, 
etc…
What should we try to measure?

The size of M ?
The size of L ?
The size of f ?
The size of ϕn ? 
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4.2 Probabilistic settings

PAC learning
Identification with probability 1
PAC learning distributions
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Learning a language from 
sampling

We have a distribution over Σ*
We sample twice:

Once to learn
Once to see how well we have learned

The PAC setting
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PAC-learning 
(Valiant 84, Pitt 89)

L a class of languages

M a class of machines

ε >0 and δ>0
m a maximal length over the strings
n a maximal size of machines
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H is ε
 

-AC
 

(approximately 
correct)*

if

PrD [H(x)≠G(x)]< ε
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L(G) L(H)

Errors: we want L1 (D(G),D(H))<ε
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(French radio)

Unless there is a surprise there should be 
no surprise
(after the last primary elections, on 3rd of 
June 2008)
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Results

Using cryptographic assumptions, we 
cannot PAC-learn DFA
Cannot PAC-learn NFA, CFGs with 
membership queries either
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Alternatively

Instead of learning classifiers in a 
probabilistic world, learn directly the 
distributions!
Learn probabilistic finite automata 
(deterministic or not)
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No error

This calls for identification in the limit 
with probability 1
Means that the probability of not 
converging is 0
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Results

If probabilities are computable, we can 
learn with probability 1 finite state 
automata
But not with bounded (polynomial) 
resources
Or it becomes very tricky (with added 
information)
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With error

PAC definition
But error should be measured by a 
distance between the target distribution 
and the hypothesis
L1, L2, L∞ ?
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Results

Too easy with  L∞

Too hard with L1
Nice algorithms for biased classes of 
distributions
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Conclusion

A number of paradigms to study 
identification of learning algorithms
Some to learn classifiers
Some to learn distributions
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5 Learning from an informant
Algorithm RPNI
Regular Positive and Negative Grammatical 
Inference

Inferring regular languages in polynomial time. Jose 
Oncina

 
& Pedro García.

 
Pattern recognition and 

image analysis, 1992
http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Chapter 12
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Motivation
We are given a set of strings S+ and a set 
of strings S-
Goal is to build a classifier
This is a traditional (or typical) machine 
learning question
How should we solve it?

Σ*
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Ideas

Use a distance between strings and try k-
NN
Embed strings into vectors and use some 
off-the-shelf technique (decision trees, 
SVMs, other kernel methods)
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Alternative

Suppose the classifier is some grammatical 
formalism
Thus we have L and Σ*\L

Σ*

L
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Obviously many possible 
candidates

Any Grammar G such that
S+ ⊆ L(G) 
S- ∩ L(G) =∅
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Two types of final states

2

a

a

a

S+ ={λ, aaa}
S- ={aa, aaaaa}

1

3

1 is accepting
3 is rejecting
What about state 2?
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What is determinism about?

2

1

4

3

a

a

Merge
 

1 and 3?
2

1
a

2,41

a

4
a

But…
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The prefix tree acceptor

The smallest tree-like DFA consistent with 
the data
Is a solution to the learning problem
Corresponds to a rote learner
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From the sample to the PTA

a

a

a
a

b

b

b

a

a

a

b
a b

a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

S+ ={λ, aaa, aaba, ababa, bb, bbaaa}
S- ={aa, ab, aaaa, ba}

PTA(S+ )
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From the sample to the PTA 
(full PTA)

a

a

a
a

b

b

b

a

a

a

b
a b

a

1

2

3

4

5

7

8

9

10

11

13

14

15

16

17

S+ ={λ, aaa, aaba, ababa, bb, bbaaa}
S- ={aa, ab, aaaa, ba}

12a

6a

PTA(S+ ,S- )
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Red, Blue and White states

a

a

ab

b

b

a

b
a

-Red
 

states are confirmed states
-Blue

 
states are the (non Red) 

successors of the Red states
-White states are the others
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Merge and fold

1

8

2

5

3

a

a

ab

b

b

7a

6
4

b
a

9

Suppose we want to merge 
state 3 with state 2
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Merge and fold

1

8

2

5

3

a,b

a

a

b

b

7a

6
4

b
a

9

First disconnect 3 
and reconnect to 2



Pascal Bootcamp, Marseille 101

Cdlh 2010

Merge and fold

1

8

2

5

3

a,b

a

a
b

b

7a

6
4

b
a 9

Then fold subtree
 

rooted in 3 
into the DFA starting in 2
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Merge and fold

1

8

2
a,b

a

a

b

6
4

b
a

9

Then fold subtree
 

rooted in 3 
into the DFA starting in 2
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RPNI is a state merging algorithm
RPNI identifies any regular language in the 
limit
RPNI works in polynomial time
RPNI admits polynomial characteristic sets
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A=PTA(S+); Blue ={δ(qI
 

,a): a∈Σ
 

}; 
Red ={qI

 

}
While

 
Blue≠∅

 
do

choose
 

q from
 

Blue
if

 
∃p∈Red: L(merge_and_fold(A,p,q))∩S-=∅

 then
 

A = merge_and_fold(A,p,q)
else

 
Red = Red ∪

 
{q}

Blue = {δ(q,a): q∈Red} –
 

{Red}
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S+ ={λ, aaa, aaba, ababa, bb, bbaaa}

a

a

a
a

b

b

b

a

a

a

b
a b

a

S- ={aa, ab, aaaa, ba}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Try to merge 2 and 1

a

a

a
a

b

b

b

a

a

a

b
a b

a

S- ={aa, ab, aaaa, ba}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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First merge, then fold

a

a
a

b

b

b

a

a

a

b
a b

a

S- ={aa, ab, aaaa, ba}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

a
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But now string aaaa is 
accepted, so the merge must be 
rejected, and state 2 is 
promoted

a

b

b a

a

a

a
b

a

S- ={aa, ab, aaaa, ba}

1,2,4,7

3,5,8
6

9, 11

10

12

13

14

15
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Try to merge 3 and 1

a

a

a
a

b

b

b

a

a

a

b
a b

a

S- ={aa, ab, aaaa, ba}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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First merge, then fold

1

a

a

a
a

b b

b

a

a

a

b
a b

a

S- ={aa, ab, aaaa, ba}

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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No counter example is accepted 
so the merge is kept

a

a

a
a

b
b

a b
a

S- ={aa, ab, aaaa, ba}

1,3,6

2,10

4,13

5

7,15

8

9

11

12

14

b
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Next possible merge to be 
checked is {4,13} with {1,3,6}

a

a

a
a

b
b

a b
a

S- ={aa, ab, aaaa, ba}

1,3,6

2,10

4,13

5

7,15

8

9

11

12

14

b



Pascal Bootcamp, Marseille 113

Cdlh 2010

Merged. Needs folding subtree in 
{4,13} with {1,3,6}

a

a
a

b
b

a b
a

S- ={aa, ab, aaaa, ba}

1,3,6

2,10

4,13

5

7,15

8

9

11

12

14

b

a
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a
b

a b
a

S- ={aa, ab, aaaa, ba}

1,3,4,6,
8,13

2,7,10,11,15

5

9

12

14

b

a

But now aa is accepted
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So we try {4,13} with {2,10}

a

a

a
a

b
b

a b
a

S- ={aa, ab, aaaa, ba}

1,3,6

2,10

4,13

5

7,15

8

9

11

12

14

b
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Negative string aa is again accepted.
Since we have tried all Red for merging, 
state 4 is promoted.

a b
a b

a

S- ={aa, ab, aaaa, ba}

1,3,6
2,4,7,10,
13,15

5,8

9,11 12

14

b

a
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So we try 5 with {1,3,6}

a

a

a
a

b
b

a b
a

S- ={aa, ab, aaaa, ba}

1,3,6

2,10

4,13

5

7,15

8

9

11

12

14

b
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But again we accept ab

a
a

a
a

b

b

S- ={aa, ab, aaaa, ba}

1,3,5,6,12

2,9,10,14
4,13

7,15

8

11

b



Pascal Bootcamp, Marseille 119

Cdlh 2010

So we try 5 with {2,10}

a

a

a
a

b
b

a b
a

S- ={aa, ab, aaaa, ba}

1,3,6

2,10

4,13

5

7,15

8

9

11

12

14

b
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Which is OK. So next possible merge 
is {7,15} with {1,3,6}

a

a

a

ab

b

S- ={aa, ab, aaaa, ba}

1,3,6

2,5,10

4,9,13

7,15

8,12

11,14

b
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Which is OK. Now try to merge 
{8,12} with {1,3,6,7,15}

a
a

a

ab

a

S- ={aa, ab, aaaa, ba}

1,3,6,
7,15

2,5,10

4,9,13

8,12

11,14

b

b
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And ab is accepted 

a

a

b

a

S- ={aa, ab, aaaa, ba}

1,3,6,7,
8,12,15

2,5,10,11,14

4,9,13

b

b
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Now try to merge 
{8,12} with {4,9,13}

a
a

a

ab

a

S- ={aa, ab, aaaa, ba}

1,3,6,
7,15

2,5,10

4,9,13

8,12

11,14

b

b
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This is OK and no more merge 
is possible so the algorithm halts

a
a

a

b

a

S- ={aa, ab, aaaa, ba}

1,3,6,7,
11,14,15

2,5,10

4,8,9,12,13

b

b
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A characteristic sample

A sample is characteristic (for RPNI) 
whenever, when included in the learning 
sample, the algorithm returns the correct 
DFA
Particularity: the characteristic sample is 
of polynomial size
There is an algorithm which given a DFA 
builds a characteristic sample
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About characteristic samples
If you add more strings to a characteristic 
sample it still is characteristic
There can be many different characteristic 
samples (EDSM, tree version,…)
Change the ordering (or the exploring function in 
RPNI) and the characteristic sample will change
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Exercices
Run RPNI on

S+={a,bba,bab,aabb}
S-={b,ab,baa,baabb}

Find a characteristic sample for:

0

1

2

a

a

b

a

1

b b3
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Open problems

RPNI’s complexity is not a tight upper 
bound. Find the correct complexity
The definition of the characteristic 
sample is not tight either. Find a better 
definition
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Conclusion
RPNI identifies any regular language in the limit
RPNI works in polynomial time
There are many significant variants of RPNI
Parallel version can be efficient
RPNI can be extended to other classes of 
grammars
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6 Learning from text
Only positive examples are available
Danger of over-generalization: why not return 
Σ*?
The problem is “basic”:

Negative examples might not be available
Or they might be heavily biased: near-
misses, absurd examples…

Base line: all the rest is learning with help
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Σ

PTA

?

GI as a search problem
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The theory

Gold 67: No super-finite class can be 
identified from positive examples (or text) 
only

Necessary and sufficient conditions for learning
Literature:

inductive inference, 
ALT series, …
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Limit point

A class L of languages has a limit point iff
there exists an infinite sequence Ln n∈ℕ of 
languages in L such that      L0 ⊂ L1 ⊂ … Ln ⊂

…, and there exists another language L∈ L
such that L = ∪n∈ℕLn

L is called a limit point of L
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L is a limit point

L0 L1
L2
L3

Li

L
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Theorem

If L
 

admits a limit point, then L
 

is not 
learnable from text

Proof:Proof:
 

Let
 

si
 

be a presentation in length-lex
 order for

 
Li

 

, and s be a presentation in 
length-lex

 
order for

 
L. Then

 
∀n∈ℕ

 
∃i / ∀k≤n

 si
k

 

= sk

Note:
 

having a limit point is a sufficient 
condition for non learnability; not a necessary 
condition
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Mincons classes

A class is mincons if there is an algorithm 
which, given a sample S, builds a G∈G such 
that S ⊆ L ⊆ L(G) ⇒L = L(G)
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Existence of an accumulation 
point (Kapur 91)

A class L
 

of languages has an accumulation point
 iff there exists an infinite sequence Sn n∈ℕ

 

of sets 
such that S0 ⊆ S1 ⊆

 
… Sn

 

⊆
 

…, and L= ∪n∈ℕSn
 

∈
 

L
…and for any n∈ℕ

 
there exists a language Ln

 

’
 

in L
 such that Sn

 

⊆
 

Ln
 

’ ⊂
 

L. The language L is called an 
accumulation point

 
of L
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L is an accumulation point

L

Ln ’

S0 S1
S2
S3

Sn
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Theorem (for Mincons classes)

L
 

admits an accumulation point 
iff

L
 

is not learnable from text
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Infinite Elasticity

If a class of languages has a limit point 
there exists an infinite ascending chain of 
languages L0 ⊂ L1 ⊂ … ⊂ Ln ⊂ ….
This property is called infinite elasticity
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Infinite Elasticity

x0 x1
x2
x3

xi Xi+1 Xi+2 Xi+3 Xi+4
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Finite elasticity

L
 

has finite elasticity if it does not have 
infinite elasticity
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Theorem (Wright) 

If L(G) has finite elasticity and is 
mincons, then G

 
is learnable.
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Tell tale sets

L(G)

L(G’)
TG

x4

x3

x2

x1

Forbidden
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Theorem (Angluin)

G
 

is learnable iff
 

there is a computable 
partial function ψ: G

 
×ℕ→Σ*

 
such that:

1)
 

∀n∈ℕ, ψ(G,n) is defined iff G∈G
 

and L(G)≠∅;

2)
 

∀G∈G, TG
 

={ψ(G,n): n∈ℕ} is a finite subset of 
L(G) called a tell-tale subset;

3)
 

∀G,G’∈G, if TG
 

⊆
 

L(G’) then L(G’)⊄
 

L(G).
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Proposition (Kapur 91)

A language L in L
 

has a tell-tale subset iff
 L is not

 
an accumulation point.

(for mincons)
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7 Learning by observing
Inference of k-Testable Languages in the Strict 
Sense and Application to Syntactic Pattern 
Recognition. García & Vidal et al. 1990
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Definition

Let k≥0, a k-testable language in the strict 
sense (k-TSS) is a 5-tuple Zk

 

=(Σ, I, F, T, C) 
with:
Σ a finite alphabet
I, F ⊆ Σk-1 (allowed prefixes of length k-1 and 
suffixes of length k-1)
T ⊆ Σk (allowed segments)
C ⊆ Σ<k contains all strings of length less than k
Note that I∩F=C∩Σk-1
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The k-testable language is 
L(Zk

 

)=IΣ*
 

∩ Σ*F -
 

Σ*(Σk-T)Σ*∪C
Strings (of length at least k) have to 
use a good prefix and a good suffix 
of length k-1, and all sub-strings 
have to belong to T. Strings of 
length less than k should be in C
Or: Σk-T defines the prohibited 
segments
Key idea: use a window of size k
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An example (2-testable)

I={a}

F={a}

T={aa, ab, ba}
C={λ,a}

a
b

λ
a

a

ba
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Window language

By sliding  a window of size 2 over a string 
we can parse
ababaaababababaaaab OK
aaabbaaaababab not OK
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The hierarchy of k-TSS 
languages

k-TSS(Σ)={L⊆Σ*: L is k-TSS}
All finite languages are in k-TSS(Σ) if k is 
large enough!
k-TSS(Σ) ⊂ [k+1]-TSS(Σ) 
(bak)* ∈ [k+1]-TSS(Σ) 
(bak)* ∉ k-TSS(Σ) 
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A language that is not k- 
testable

b

λ
a

a

b

a

a
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K-TSS inference

Given a sample S, ak-TSS
 

(S)= L(Zk
 

) where 
Zk

 
=(Σ(S), I(S), F(S), T(S), C(S) ) and
Σ(S) is the alphabet used in S
C(S)=Σ(S)<k∩S
I(S)=Σ(S)k-1∩Pref(S)
F(S)= Σ(S)k-1∩Suff(S)
T(S)=Σ(S)k ∩ {v: uvw∈S}
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Example

S={a, aa, abba, abbbba}
Let k=3
Σ(S)={a, b} 
I(S)= {aa, ab}
F(S)= {aa, ba}
C(S)= {a , aa}
T(S)={abb, bbb, bba}

Hence ak-TSS(S)= ab*a+a
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Building the corresponding 
automaton

Each string in I∪C and PREF(I∪C) is a state
Each substring of length k-1 of strings in T is a 
state
λ is the initial state
Add a transition labeled b from u to ub for each 
state ub
Add a transition labeled b from au to ub for each 
aub in T
Each state/substring that is in F is a final state
Each state/substring that is in C is a final state
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Running the algorithm

S={a, aa, abba, abbbba}

I={aa, ab}

F={aa, ba}

T={abb, bbb, bba}
C={a, aa}

a
λ

ab

ba
bb

aaa

b

b

b

a

a

a
λ

ab

ba
bb

aa
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Properties (1)

S ⊆ ak-TSS(S)

ak-TSS(S) is the smallest k-TSS language 
that contains S

If there is a smaller one, some prefix, suffix 
or substring has to be absent
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Properties (2)

ak-TSS identifies any k-TSS language in the 
limit from polynomial data

Once all the prefixes, suffixes and substrings 
have been seen, the correct automaton is 
returned

If Y⊆S, ak-TSS(Y) ⊆ ak-TSS(S)
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Properties (3)

ak+1-TSS(S) ⊆ ak-TSS(S)
In Ik+1 (resp. Fk+1 and Tk+1) there are less 
allowed prefixes (resp. suffixes or substrings) 
than in Ik (resp. Fk and Tk) 

∀k>maxx∈S⏐x⏐, ak-TSS(S)=S
Because for a large k, Tk(S)=∅
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Extensions

These languages have been studied and 
adapted to:

Local languages
N-grams
Tree languages
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8 Learning actively

Learning regular sets from queries and 
counter-examples, D. Angluin, Information 
and computation, 75, 87-106, 1987
Queries and Concept learning, D. Angluin, 
Machine Learning, 2, 319-342, 1988
Negative results for Equivalence Queries, 
D. Angluin, Machine Learning, 5, 121-150, 
1990
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8.1 About learning with 
queries

Ideas:
define a credible learning model
make use of additional information that can be 
measured
explain thus the difficulty of learning certain 
classes
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The Oracle

knows the language and has to answer 
correctly
no probabilities
worse case policy: the Oracle does not 
want to help
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Some queries

membership queries
equivalence queries (weak)
equivalence queries (strong)
inclusion queries
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Membership queries.

x x∈L

L is the target language
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Equivalence (weak) queries.

h Yes if L≡
 

L(h)
No if ∃x∈Σ*:x∈

 
L(h)⊕L

A⊕B is the symmetric difference
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Equivalence (strong) queries.

h Yes if L≡h 
x∈Σ*: x∈

 
L(h)⊕L if not
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Subset queries.

h Yes if L(h) ⊆
 

L
x∈Σ*: x∈

 
L(h) ∧

 
x∉L

 if not
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Correct learning

A class C
 

is identifiable with a polynomial 
number of queries of type T if there exists an 
algorithm a

 
that:

1)

 

∀L∈C
 

identifies L
 

with a polynomial number of 
queries of type T

2)

 

does each update in time polynomial in ⎪f⎪
 

and in
 

 
Σ⎪xi

 

⎪, {xi
 

} counter-examples seen so far
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8.2 The Minimal Adequate 
Teacher

You are allowed:
strong equivalence queries
membership queries
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General idea of L*

find a consistent table (representing a DFA)
submit it as an equivalence query
use counterexample to update the table
submit membership queries to make the table 
complete
iterate
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8.3 An observation table

λ

λ

a

a

ab
aa
b

1 0

00

01
00
01
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The states (S)

The transitions (T)

The experiments (E)

λ

λ

a

a

ab
aa
b

1 0

00

01
00
01
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Meaning

δ(qI , λ.λ)∈F
⇔

λ ∈L

λ

λ

a

a

ab
aa
b

1 0

00

01
00
01
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δ(qI , ab.a)∉ F
⇔

aba ∉ L

λ

λ

a

a

ab
aa
b

1 0

00

01
00
01
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Equivalent prefixes

These two rows 
are equal, 

hence 

δ(qI ,λ)= δ(qI ,ab)

λ

λ

a

a

ab
aa
b

1 0

00

01
00
01
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Building a DFA from a table

λ

λ

a

a

ab
aa
b

1 0

00

01
00
01

λ

a
a
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λ

λ

a

a

ab
aa
b

1 0

00

01
00
01

λ

a

a

b

a

b
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λ

λ

a

a

ab
aa
b

1 0

00

01
00
01

λ

a

a

b

a

b

Some rules

This 
set is 
prefix-
closed

This set is suffix-closed

RedΣ\Red 
=Blue
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An incomplete table

λ

λ

a

a

ab
aa
b

1 0

0

01
0
01

λ

a

a

b

a

b
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Good idea

We can complete the table by submitting 
membership queries...

u

v

?
uv∈L ?

Membership query:
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A table is

closed if any row of Blue corresponds to 
some row in Red

λ

λ

a

a

ab
aa
b

1 0

00

01
10
01

Not closed
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And a table that is not closed

λ

λ

a

a

ab
aa
b

1 0

00

01
10
01

λ

a

a

b

a

b

?
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What do we do when we have 
a table that is not closed?

Let s be the row (of Blue) that does not 
appear in Red
Add s to Red, and ∀a∈Σ sa to Blue
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An inconsistent table

λ

λ a

ab
aa

1 0
a

b
00

00

01
01

bb
ba 01

00

Are a and b
equivalent?
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A table is consistent if
Every equivalent pair of rows in Red

 remains equivalent in Red
 

∪
 

Blue
 

after 
appending any symbol

row(s1
 

)=row(s2
 

) 
⇒

∀a∈Σ, row(s1
 

a)=row(s2
 

a)
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What do we do when we have 
an inconsistent table?

Let a∈Σ
 

be such that row(s1
 

)=row(s2
 

) but
 row(s1

 

a)≠row(s2
 

a)

If row(s1a)≠row(s2a), it is so for 
experiment e
Then add experiment ae to the table
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What do we do when we have a 
closed and consistent table ?

We build the corresponding DFA

We make an equivalence query!!!
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What do we do if we get a 
counter-example?

Let u be this counter-example

∀w∈Pref(u) do
add w to Red
∀a∈Σ, such that wa∉Red add wa to Blue
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8.4 Run of the algorithm

λ

λ

a

b

1

1

1 Table is now 
closed 

and consistent
λ

b

a
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An equivalence query is made!

λ

b

a

Counter example baa is returned
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λ

λ

a

b
1

1

0baa
ba

baaa

bb
bab

baab

1

0
1

1

1
1

Not 
consistent

Because of 
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λ

λ
 

a

a

b
1  1

1 

0  0       baa
ba

baaa

bb
bab

baab

1  1

0     
1     

1  0

1     
1

Table is now 
closed and 
consistent

λ ba

baa

a

b

a

b b

a

0 

0     
0 

1     
1
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Polynomial

|E| ≤ n
at most n-1 equivalence queries
|membership queries| ≤ n(n-1)m where m is 
the length of the longest counter-example 
returned by the oracle
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Conclusion (1)
With an MAT you can learn DFA

but also a variety of other classes of grammars
it is difficult to see how powerful is really an 
MAT
probably as much as PAC learning
Easy to find a class, a set of queries and provide 
and algorithm that learns with them
more difficult for it to be meaningful

Discussion: why are these queries meaningful?
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Conclusion (2)

Active learning is an exciting topic, and 
good strategies for choosing the queries 
are still largely unexplored
Zulu competition can be a great 
opportunity to start research in this area
http://cian.univ-st-etienne.fr/zulu/
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9 Extensions (PFA, 
transducers, tree automata)

Theory, algorithms and applications have 
extended to:

Transducers
Probabilistic finite automata
Context free grammars (with special interest 
in linear grammars)
String kernels
Regular expressions
patterns
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Main results for learning PFA

There are now several DPFA learning 
algorithms

ALERGIA (Carrasco & Oncina
 

94)
DSAI (Ron el al. 94)
MDI (Thollard

 
et al. 99)

DEES (Denis et al. 05) [also PFA]
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Main results for learning 
transducers

One basic algorithm : OSTIA (Oncina et al. 
93)
State merging algorithm, based on a 
normal form for subsequencial transducers
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10 Conclusions
Why should one pick up grammatical inference as a 

research topic?
Nice community
Broad field
Can use ideas from algorithmics, formal language 
theory, combinatorics, statistics, machine 
learning, natural language processing, bio-
informatics, pattern recognition…
Theory and applications
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Open problems

C. de la Higuera. A bibliographical study of 
grammatical inference. Pattern 
Recognition, 38:1332–1348, 2005
C. de la Higuera. Ten open problems in 
grammatical inference. In proceedings of 
ICGI 2006, pages 32–44
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Some addresses to start 
working
http://pages-perso.univ-nantes.fr/~cdlh/
http://videolectures.net/colin_de_la_higuera/
http://cian.univ-st-etienne.fr/zulu/

Grammatical Inference: Learning Automata 
and Grammars, Colin de la Higuera, Cambridge 
University Press

http://pages-perso.univ-nantes.fr/~cdlh/
http://videolectures.net/colin_de_la_higuera/
http://cian.univ-st-etienne.fr/zulu/
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