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How many animals?



Animal detection in natural scenes: Critical
features revisited

Modelling of Cognitive Processes, Berlin Institute of Technology &
Bernstein Center for Computational Neuroscience Berlin,

Berlin, GermanyFelix A. Wichmann

Abteilung Allgemeine Psychologie, Universität Giessen,
Giessen, GermanyJan Drewes

Centro de Neurociencias Integradas, Facultad de Medicina,
Universidad de Chile, Santiago, ChilePedro Rosas

Abteilung Allgemeine Psychologie, Universität Giessen,
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S. J. Thorpe, D. Fize, and C. Marlot (1996) showed how rapidly observers can detect animals in images of natural scenes,
but it is still unclear which image features support this rapid detection. A. B. Torralba and A. Oliva (2003) suggested that a
simple image statistic based on the power spectrum allows the absence or presence of objects in natural scenes to be
predicted. We tested whether human observers make use of power spectral differences between image categories when
detecting animals in natural scenes. In Experiments 1 and 2 we found performance to be essentially independent of the
power spectrum. Computational analysis revealed that the ease of classification correlates with the proposed spectral cue
without being caused by it. This result is consistent with the hypothesis that in commercial stock photo databases a majority
of animal images are pre-segmented from the background by the photographers and this pre-segmentation causes the
power spectral differences between image categories and may, furthermore, help rapid animal detection. Data from a third
experiment are consistent with this hypothesis. Together, our results make it exceedingly unlikely that human observers
make use of power spectral differences between animal- and no-animal images during rapid animal detection. In addition,
our results point to potential confounds in the commercially available “natural image” databases whose statistics may be
less natural than commonly presumed.

Keywords: rapid animal detection, natural scenes, power spectrum, amplitude spectrum, scene gist, local features,
natural image statistics
Citation: Wichmann, F. A., Drewes, J., Rosas, P., & Gegenfurtner, K. R. (2010). Animal detection in natural scenes: Critical
features revisited. Journal of Vision, 10(4):6, 1–27, http://journalofvision.org/10/4/6/, doi:10.1167/10.4.6.

Introduction

The classification of objects in complex, natural scenes
is considered a difficult taskVcertainly from a computa-
tional point of view as no computer vision algorithm as
yet exists that is able to reliably signal the presence or
absence of arbitrary object classes in images of natural
scenes. Work by Thorpe, Fize, and Marlot (1996) demon-
strated, however, that humans are capable of detecting
animals within novel natural scenes with remarkable
speed and accuracy: In a go/no-go animal categorization
task images were only briefly presented (20 msec) and
already 150 msec after stimulus onset the no-go trials
showed a distinct frontal negativity in the event related
potentials (ERPs). Median reaction times (RTs) showed a
speed-accuracy trade-off but for RTs as short as 390 msec
observers were already approx. 92% correct (increasing to
97% correct for 570 msec).

This basic resultVultra rapid and accurate animal
detection in natural scenesVhas been replicated reliably
many times: in non-human primates (Fabre-Thorpe,
Richard, & Thorpe, 1998; Vogels, 1999a, 1999b), using
gray-scale instead of color images (Delorme, Richard, &
Fabre-Thorpe, 2000), using different response paradigms
and modalities (yes-no or go-no-go versus forced-choice;
eye movements versus button presses; e.g. Kirchner &
Thorpe, 2006), and while measuring neurophysiological
correlates (ERPs; Rousselet, Fabre-Thorpe, & Thorpe,
2002; Thorpe et al., 1996; MEG, Rieger, Braun, Bülthoff,
& Gegenfurtner, 2005). Ultra rapid animal detection is
even robust to inversion (180 deg rotation) and nearly
orientation invariant (Kirchner & Thorpe, 2006; Rieger,
Köchy, Schalk, Grüschow, & Heinze, 2008; Rousselet,
Macé, & Fabre-Thorpe; 2003; but note that Rieger
et al., 2008 found a slight performance decrement for inter-
mediate rotation angles but none for 180 deg inversions).
Finally, there are suggestions that rapid animal detection

Journal of Vision (2010) 10(4):6, 1–27 http://journalofvision.org/10/4/6/ 1

doi: 10 .1167 /10 .4 .6 Received July 30, 2008; published April 15, 2010 ISSN 1534-7362 * ARVO



Critical Features: System Identification

“Determining the features of natural stimuli that are most useful for specific natural tasks 
is critical for understanding perceptual systems” (Geisler, Najemnik & Ing, Journal of Vision, 
2009, 9(13)17: 1-16.



Critical Features: System Identification

“Determining the features of natural stimuli that are most useful for specific natural tasks 
is critical for understanding perceptual systems” (Geisler, Najemnik & Ing, Journal of Vision, 
2009, 9(13)17: 1-16.

In neurophysiology, we want to determine what features of a stimulus make a neuron 
spike.



Critical Features: System Identification

“Determining the features of natural stimuli that are most useful for specific natural tasks 
is critical for understanding perceptual systems” (Geisler, Najemnik & Ing, Journal of Vision, 
2009, 9(13)17: 1-16.

In neurophysiology, we want to determine what features of a stimulus make a neuron 
spike.

In psychophysics, we want to find the features that determine the decisions of an observer.



Critical Features: System Identification

“Determining the features of natural stimuli that are most useful for specific natural tasks 
is critical for understanding perceptual systems” (Geisler, Najemnik & Ing, Journal of Vision, 
2009, 9(13)17: 1-16.

In neurophysiology, we want to determine what features of a stimulus make a neuron 
spike.

In psychophysics, we want to find the features that determine the decisions of an observer.

Approach: Reverse engineering an algorithm mimicking human behaviour—inverse 
machine learning.



Critical Features: System Identification

“Determining the features of natural stimuli that are most useful for specific natural tasks 
is critical for understanding perceptual systems” (Geisler, Najemnik & Ing, Journal of Vision, 
2009, 9(13)17: 1-16.

In neurophysiology, we want to determine what features of a stimulus make a neuron 
spike.

In psychophysics, we want to find the features that determine the decisions of an observer.

Approach: Reverse engineering an algorithm mimicking human behaviour—inverse 
machine learning.

First: Demonstrate how regularized regression techniques can be used to extract the 
features which are predictive of the decisions of human observers in a classification task.



Critical Features: System Identification

“Determining the features of natural stimuli that are most useful for specific natural tasks 
is critical for understanding perceptual systems” (Geisler, Najemnik & Ing, Journal of Vision, 
2009, 9(13)17: 1-16.

In neurophysiology, we want to determine what features of a stimulus make a neuron 
spike.

In psychophysics, we want to find the features that determine the decisions of an observer.

Approach: Reverse engineering an algorithm mimicking human behaviour—inverse 
machine learning.

First: Demonstrate how regularized regression techniques can be used to extract the 
features which are predictive of the decisions of human observers in a classification task.

Second: Use non-linear kernel extension to find the features which are predictive of human 
fixation target selection in a free viewing task (visual saliency).
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“Determining the features of natural stimuli that are most useful for specific natural tasks 
is critical for understanding perceptual systems” (Geisler, Najemnik & Ing, Journal of Vision, 
2009, 9(13)17: 1-16.

In neurophysiology, we want to determine what features of a stimulus make a neuron 
spike.

In psychophysics, we want to find the features that determine the decisions of an observer.

Approach: Reverse engineering an algorithm mimicking human behaviour—inverse 
machine learning.

First: Demonstrate how regularized regression techniques can be used to extract the 
features which are predictive of the decisions of human observers in a classification task.

Second: Use non-linear kernel extension to find the features which are predictive of human 
fixation target selection in a free viewing task (visual saliency).

Third: Show the importance of sparse regularization in a human auditory task.
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What is Machine Learning?

Comparatively new sub-branch of computational statistics jointly developed in computer 
science and statistics.

Machine learning algorithms excel at discovering hidden structure in existing data in order 
to predict novel data—exploratory methods.

Machine learning and especially kernel methods have proven successful whenever there is 
an abundance of empirical data but a lack of explicit knowledge how the data were 
generated:

Psychophysics—really the Cognitive Neurosciences in general—seem a good application!
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Gender Categorization of Human Faces

• We eliminated “obvious” cues such as
mean and variance
size of faces
texture (i.e. facial hair)

• In what ways are (perceived) “female” faces different to 
“male” faces?

• Can we find statistical quantities that differentiate one class of 
images from the other class?

f : all images � R
f(image) > 0 if female
f(image) < 0 if male
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f(x) = ��x + b
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• ω, the normal to the decision hyperplane, is 
called the decision image.

♂

♀
• We restrict ourselves to linear functions:

f(x) = ��x + b

P (female < 0.5)

P (female > 0.5)

• By modelling decision probabilities, we get 
additional information about the location of 
the boundary:

P (female|x) = g(f(x))

• ω is found by likelihood optimization: 
regularized logistic regression

Linear Decision Rules
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The Decision Images ω

Logistic regression Prototype classifier
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i. change quickly orthogonal to boundary.

ii. do not change within boundary.

• Recipe for generating optimized stimuli!
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Interim Conclusions (1)

Machine learning techniques (CV, regularization) can be used to fit predictive models with 
minimal assumptions about the stimulus statistics.

It is possible to predict response probabilities in classification tasks from stimulus features 
using natural images.

Need to test whether extracted features go beyond rediscovering the class-structure of the 
stimulus!

The obtained decision images can be used to generated optimized stimuli for subsequent 
experiments.

While the methods used here were linear, the approach can be extended to nonlinear 
decision images using kernels. 
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Scientific Question
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Scientific Question

What is special about the local image structure at fixation points? 

Does p(fixation) depend on local image statistics? (Bottom-up visual saliency)



Previous Work (1)

Correlation coefficient of RMS and
model output: 0.69

Center pixel “more different” to surrounding pixels
 in fixation patches (Reinagel & Zador, 1998)



“The saccadic selection system avoids image regions which are dominated by a single 
oriented structure. Instead, it selects regions containing different orientations, like 
occlusions, corners, etc.” (Krieger et al., 2001)
Third order statistics, “energy distribution is more circular”:

Previous Work (2)



Previous Work (3)



Saliency Maps
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Machine Learning Approach

Previously: Top-Down modeling approach developing “biologically inspired” models built 
using “neurophysiological-hardware” like Gabor filters, …

Many more or less ad-hoc choices have to be made, e.g. exact filter types, sizes, numbers, 
combination strategies, …

Machine Learning approach: construct a model from the data, i.e. …

i. Use a very general model class that does not “know” about the problem, but can adapt 
very well to a large class of problems.

ii. Numerically optimize (= learn) its parameters such that data is explained best.



Data Representation

For each data point (i = 1...36,000), store local pixel values in a feature vector xi and 
associate a label yi = 1/-1 (fixation/background)

xi

xi+1



Background Examples

Generate background examples with same spatial distribution as fixations (Reinagel & 
Zador 1998).

      Fixations                                        Background
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Machine Learning Method (1)

Overall strategy: make the model class as general as possible

The model is a radial basis function (RBF) network with one basis function centered on each 
training example. (“Nonparametric” as its complexity grows with the number of data 
points.) 

General? Universal approximation property, no preference for any image structure, no 
knowledge about shape or size of receptive fields.
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Machine Learning Method (2)

We compute the weights (αi) using hinge loss + L2-regularizer (= SVM)—finding αi is 
convex, i.e. efficient and guaranteed to find the global optimum.

We use accuracy (0/1-loss function) — every misclassified image patch gets error “1”.

We find the design parameters λ, γ, and patch size d via exhaustive grid-search, using 
cross-validation estimates of accuracy—feasible, as problem only 3D (and we had access to 
Bernhard Schölkopf’s MPI Compute Cluster in Tübingen!).



Weights Patch size: d

Smoothness

Kernel bandwidth

>24,000 weights 

3 design parameters

2

Radial-Basis-Function Support Vector Machine (RBF-SVM)
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Randomly Selected vs. Fixated Patches: PCA Basis



Randomly Selected vs. Fixated Patches: ICA Basis  
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Critical Controls

1. Ground-Truth Test

2. Generalization to novel data set:

✓

ML-model:   0.62 ± 0.012 s.e.m.
Itti-Koch:     0.57 ± 0.020 s.e.m.

ML-model: 0.64 ± 0.010 s.e.m.
Itti-Koch:   0.62 ± 0.020 s.e.m.



Occam’s Razor?

+ s(x)

T

x x

+

+

-

-



Interim Conclusions (2)

Bottom-up saliency can be inferred from data, without prior assumptions regarding the 
computational architecture. 



Interim Conclusions (2)

Bottom-up saliency can be inferred from data, without prior assumptions regarding the 
computational architecture. 

The most relevant regularity in local image structure at fixation is a simple center-surround 
configuration. (Biologically plausible but learned from the data not assumed!)



Interim Conclusions (2)

Bottom-up saliency can be inferred from data, without prior assumptions regarding the 
computational architecture. 

The most relevant regularity in local image structure at fixation is a simple center-surround 
configuration. (Biologically plausible but learned from the data not assumed!)

Assembled into a small network with only four standard, linear receptive fields followed by 
a static nonlinearity and contrast gain-control, the prediction performance of the full RBF-
SVM is obtained—this model is very simple compared to previously suggested ones.



Interim Conclusions (2)

Bottom-up saliency can be inferred from data, without prior assumptions regarding the 
computational architecture. 

The most relevant regularity in local image structure at fixation is a simple center-surround 
configuration. (Biologically plausible but learned from the data not assumed!)

Assembled into a small network with only four standard, linear receptive fields followed by 
a static nonlinearity and contrast gain-control, the prediction performance of the full RBF-
SVM is obtained—this model is very simple compared to previously suggested ones.

System identification via reverse-engineering a non-linear kernel machine!



Interim Conclusions (2)

Bottom-up saliency can be inferred from data, without prior assumptions regarding the 
computational architecture. 

The most relevant regularity in local image structure at fixation is a simple center-surround 
configuration. (Biologically plausible but learned from the data not assumed!)

Assembled into a small network with only four standard, linear receptive fields followed by 
a static nonlinearity and contrast gain-control, the prediction performance of the full RBF-
SVM is obtained—this model is very simple compared to previously suggested ones.

System identification via reverse-engineering a non-linear kernel machine!

This analysis can be seen as an extended psychophysical receptive or perceptive field 
analysis, recovering perceptive field networks.



Interim Conclusions (2)

Bottom-up saliency can be inferred from data, without prior assumptions regarding the 
computational architecture. 

The most relevant regularity in local image structure at fixation is a simple center-surround 
configuration. (Biologically plausible but learned from the data not assumed!)

Assembled into a small network with only four standard, linear receptive fields followed by 
a static nonlinearity and contrast gain-control, the prediction performance of the full RBF-
SVM is obtained—this model is very simple compared to previously suggested ones.

System identification via reverse-engineering a non-linear kernel machine!

This analysis can be seen as an extended psychophysical receptive or perceptive field 
analysis, recovering perceptive field networks.

Unlike classification images or the bubbles technique this method can be used under 
natural viewing conditions, i.e. no image distortion is needed (noise, “bubbles”).
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