

New methods and application domains for stimulus driven BCI's

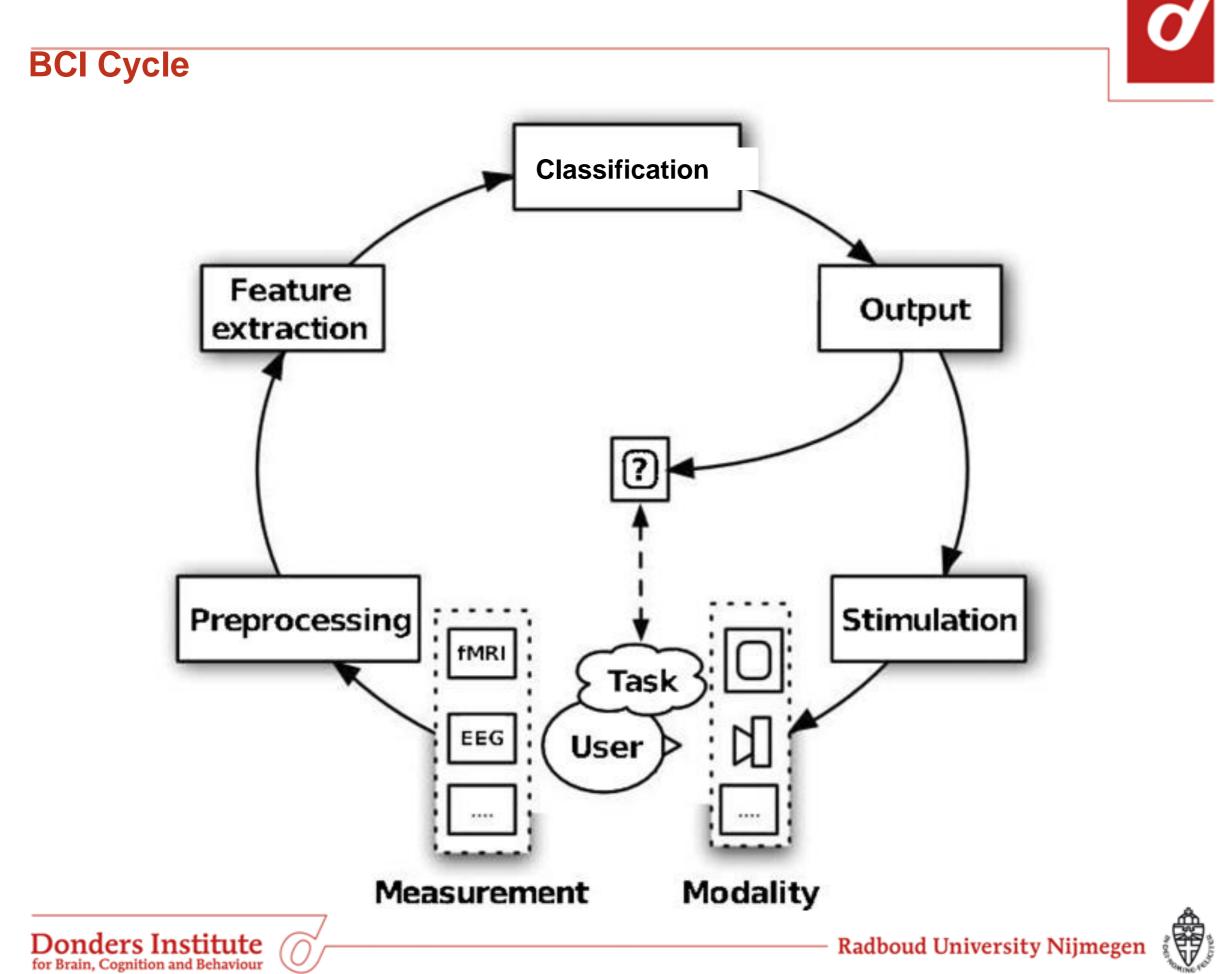
Galin Bajlekov Alex Brandmeier Jason Farquhar Marcel van Gerven Jeroen Geuze Christian Hoffman James McQueen Makiko Sadakata Loukianos Spyrou

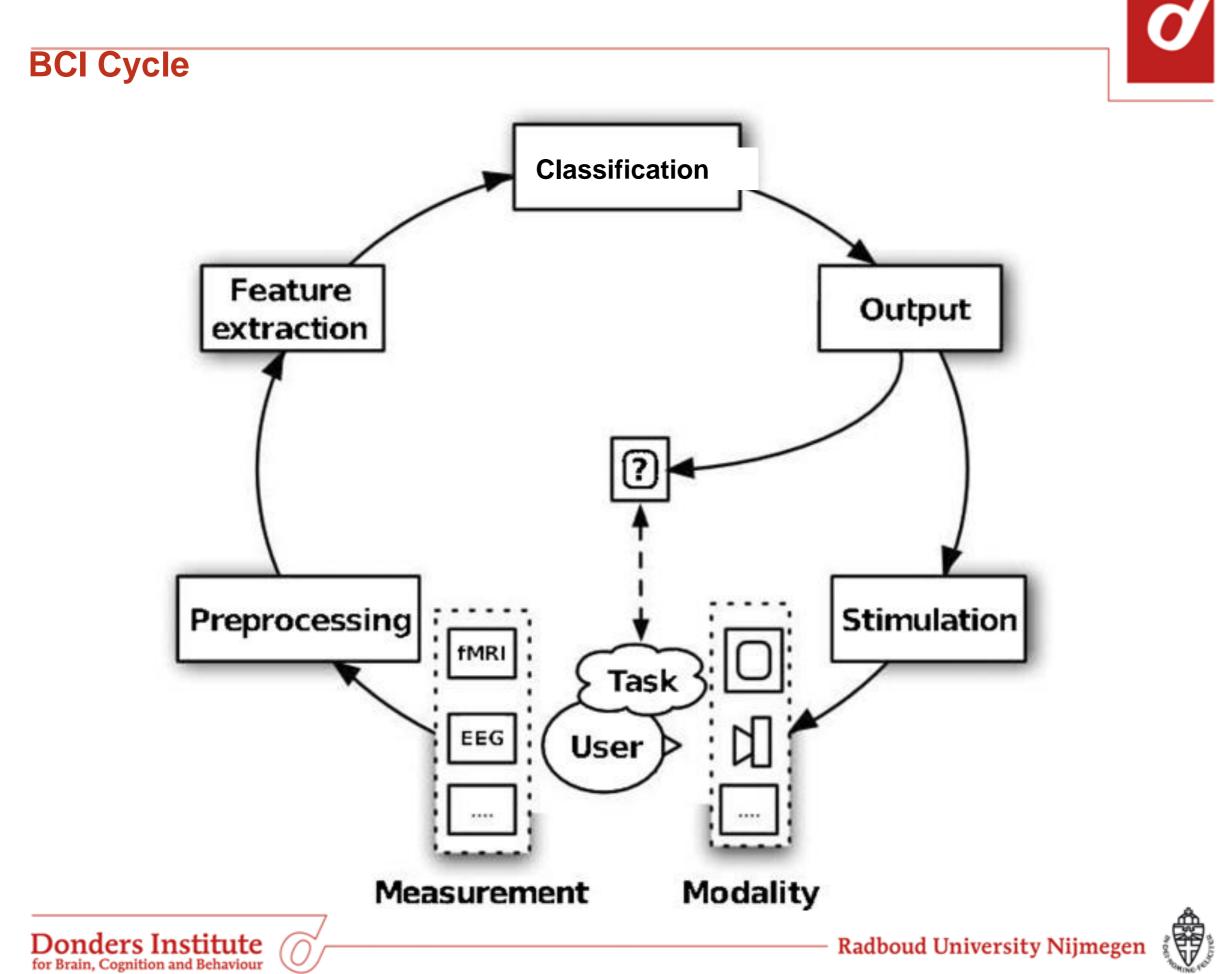
Peter Desain

Radboud University Nijmegen

Contents

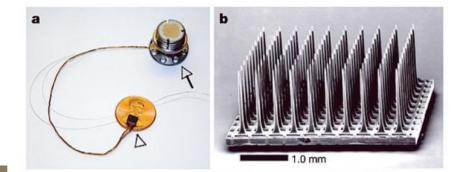
BCI cycle Adaptive Speller Flashing Adaptive Semantic Word Probing Perceptual Category Acquisition



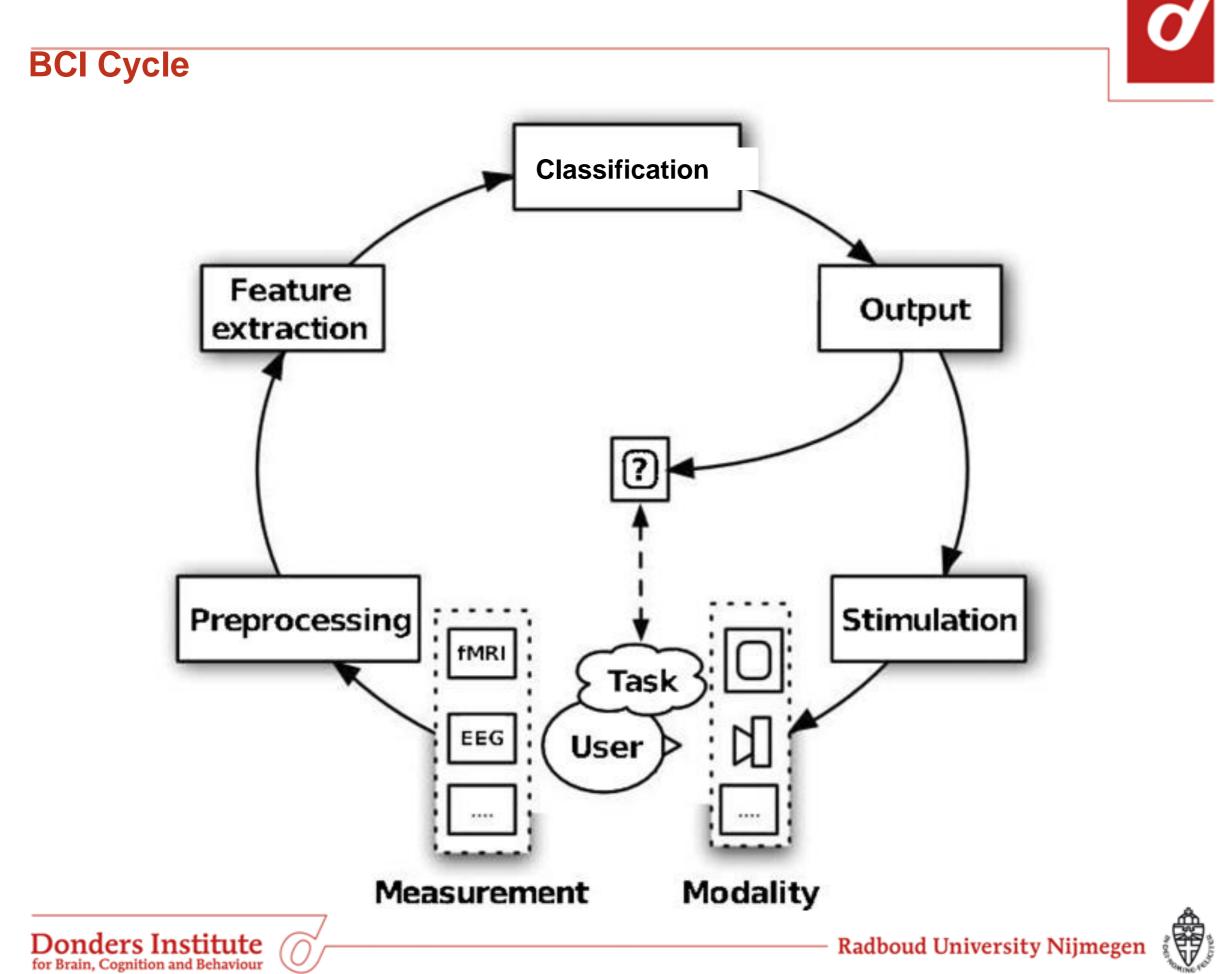


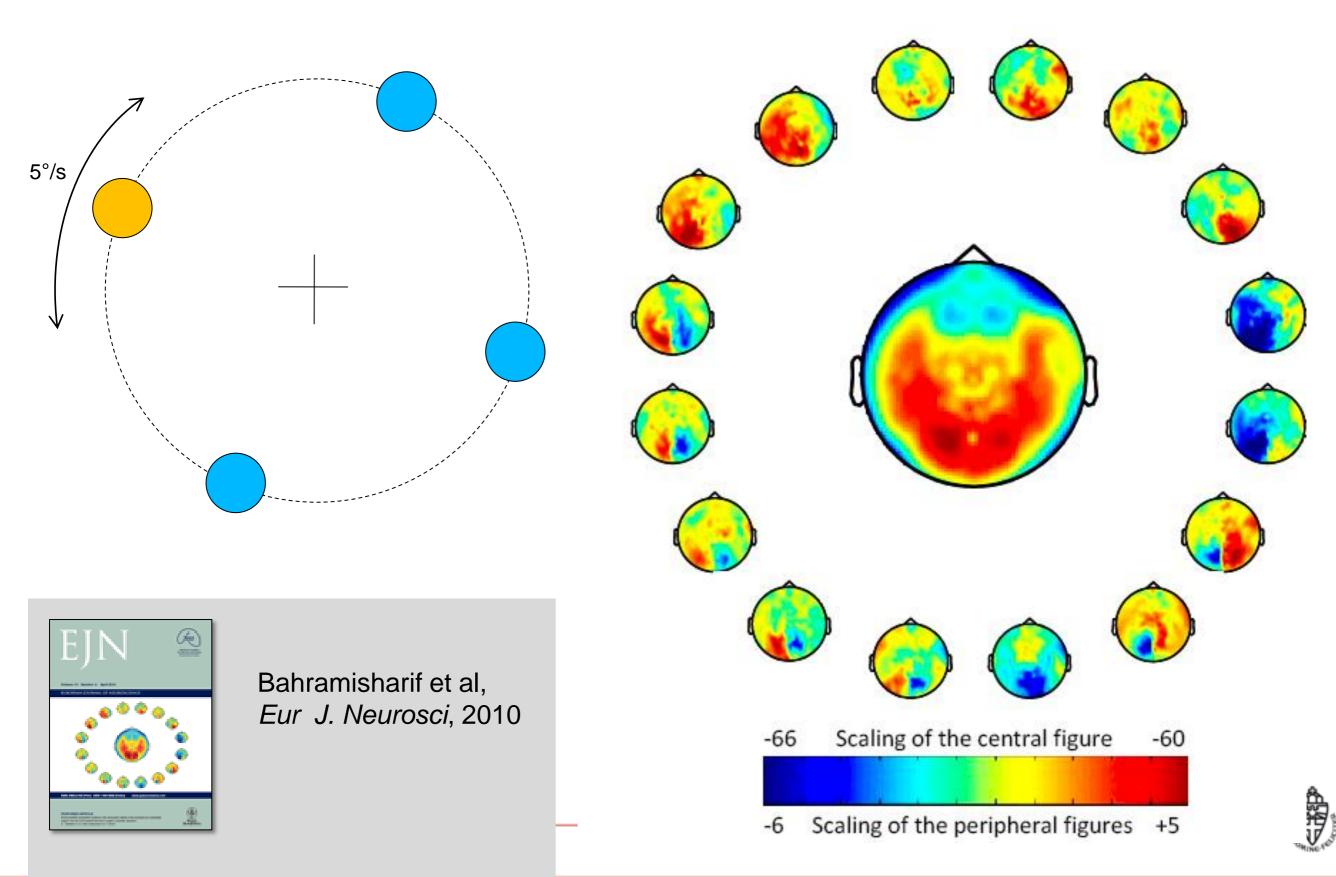
Magnetoencephalography (MEG)

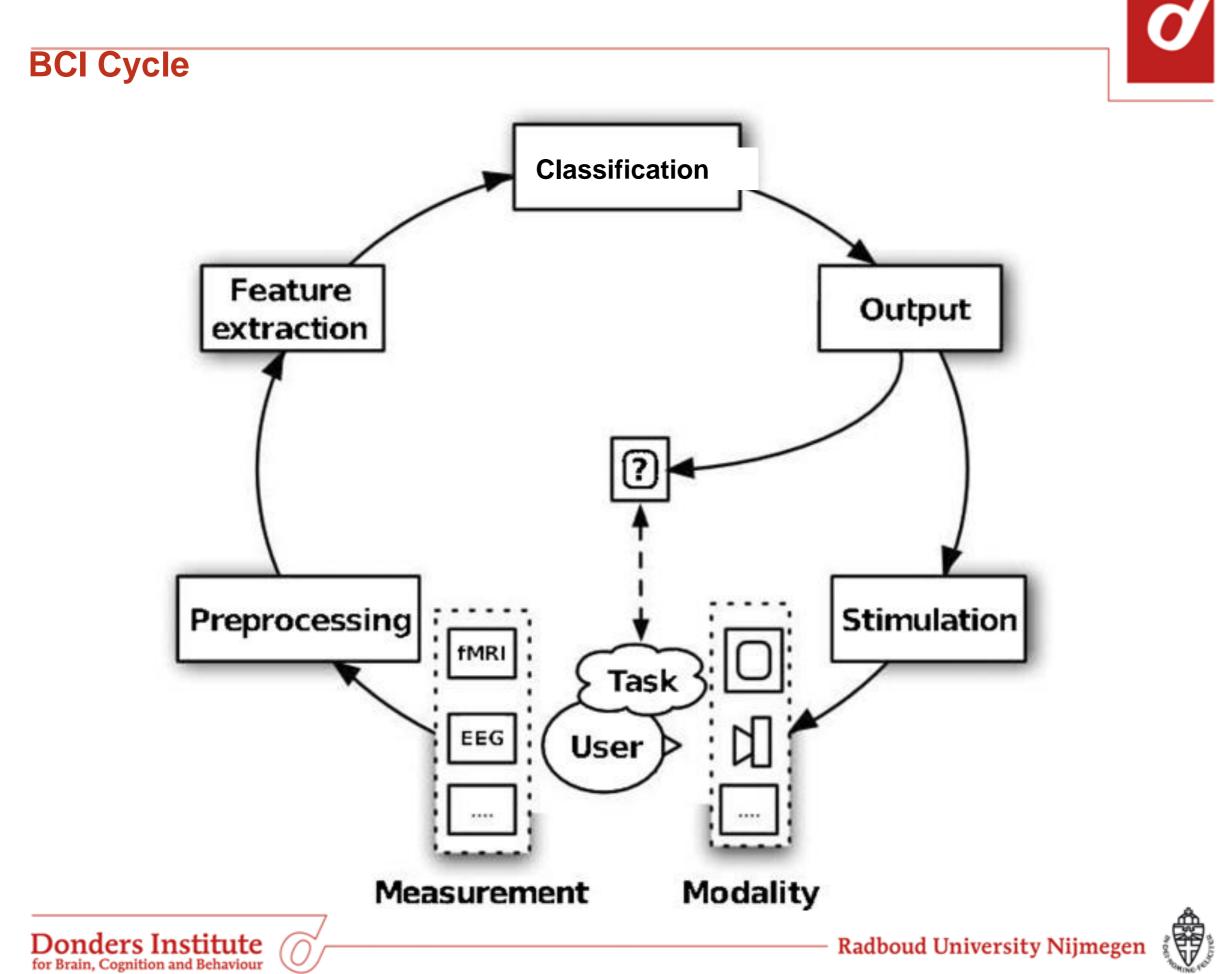
Functional Magnetic Resonance Imaging (fMRI)

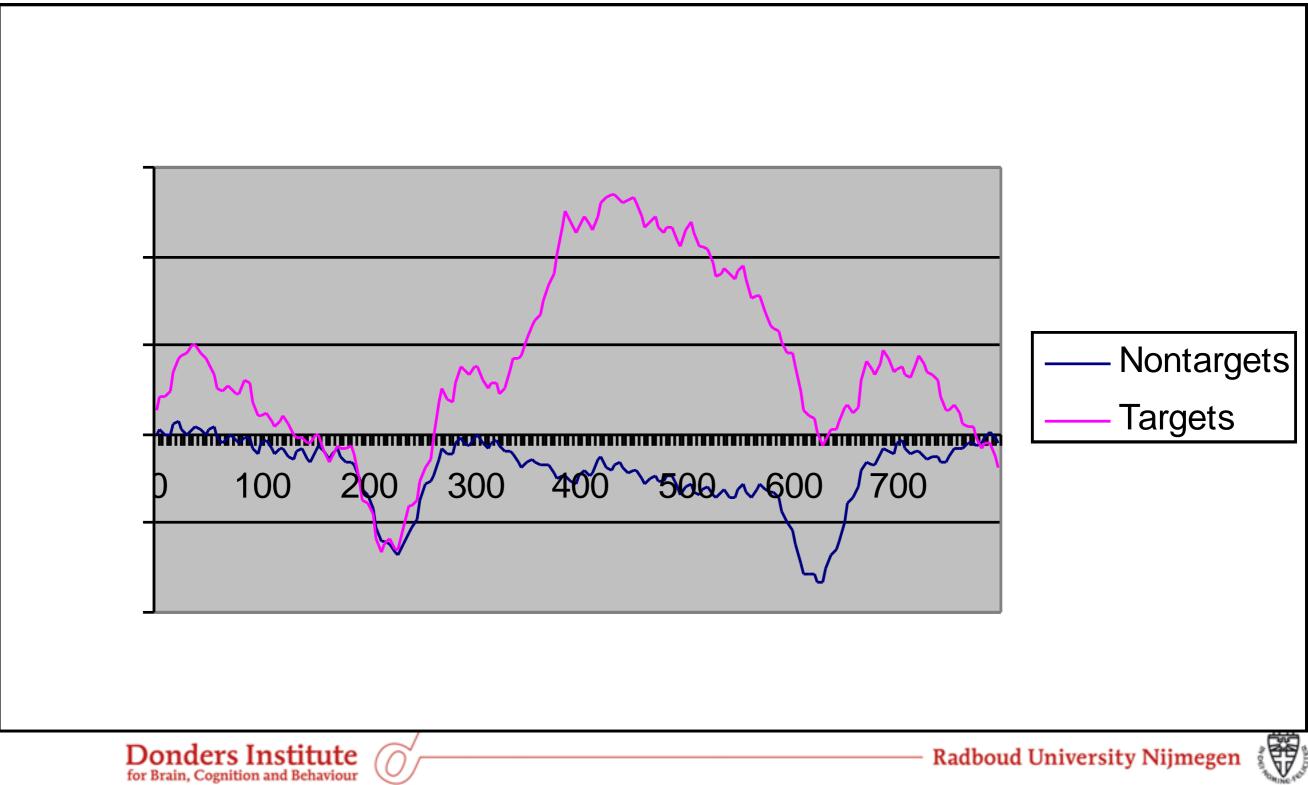


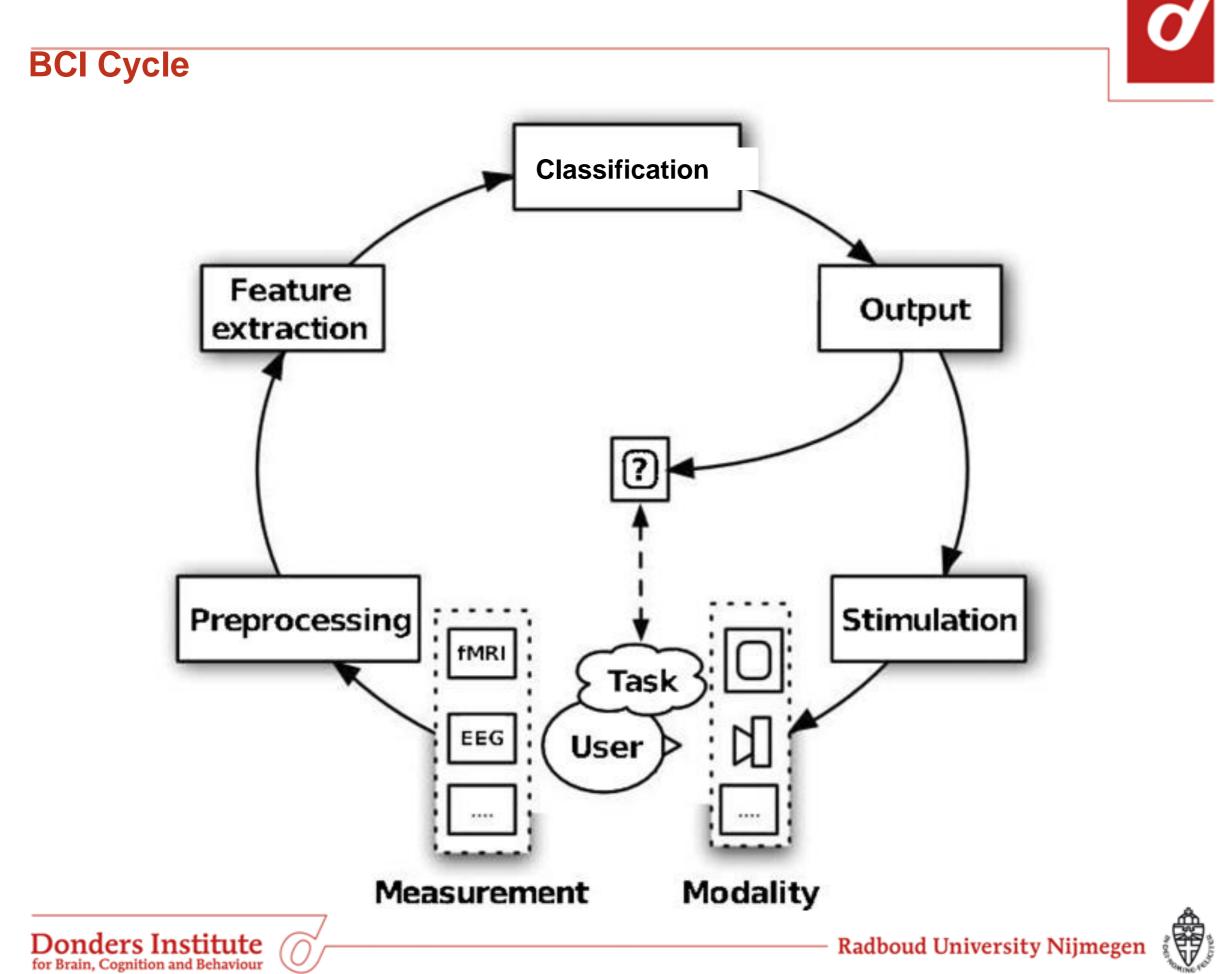
Donders Institute











aWoW: Mental Task Preference

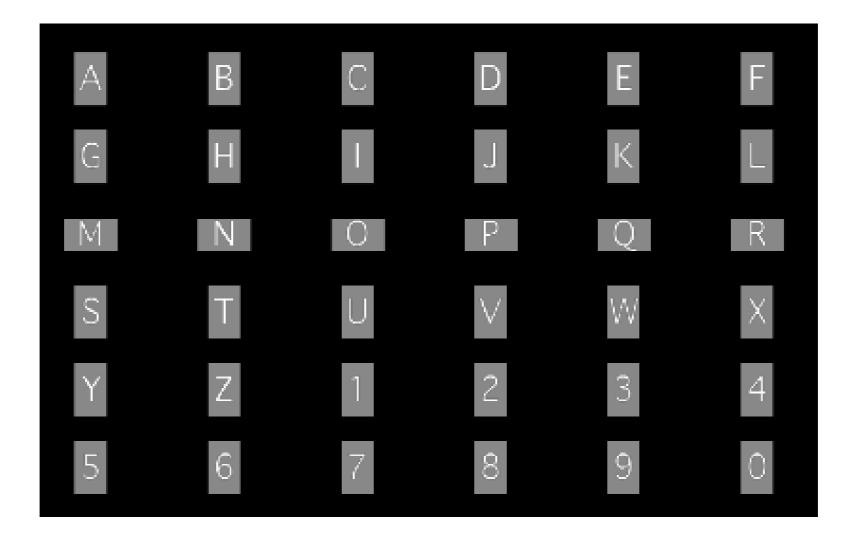
Danny Plass-Oude Bos, Mannes Poel, and Anton Nijholt (2010). A Study in User-Centered Design and Evaluation of Mental Tasks for BCI. The 17th international conference on multimedia modeling, Special session: Multimedia Understanding for Consumer Electronics

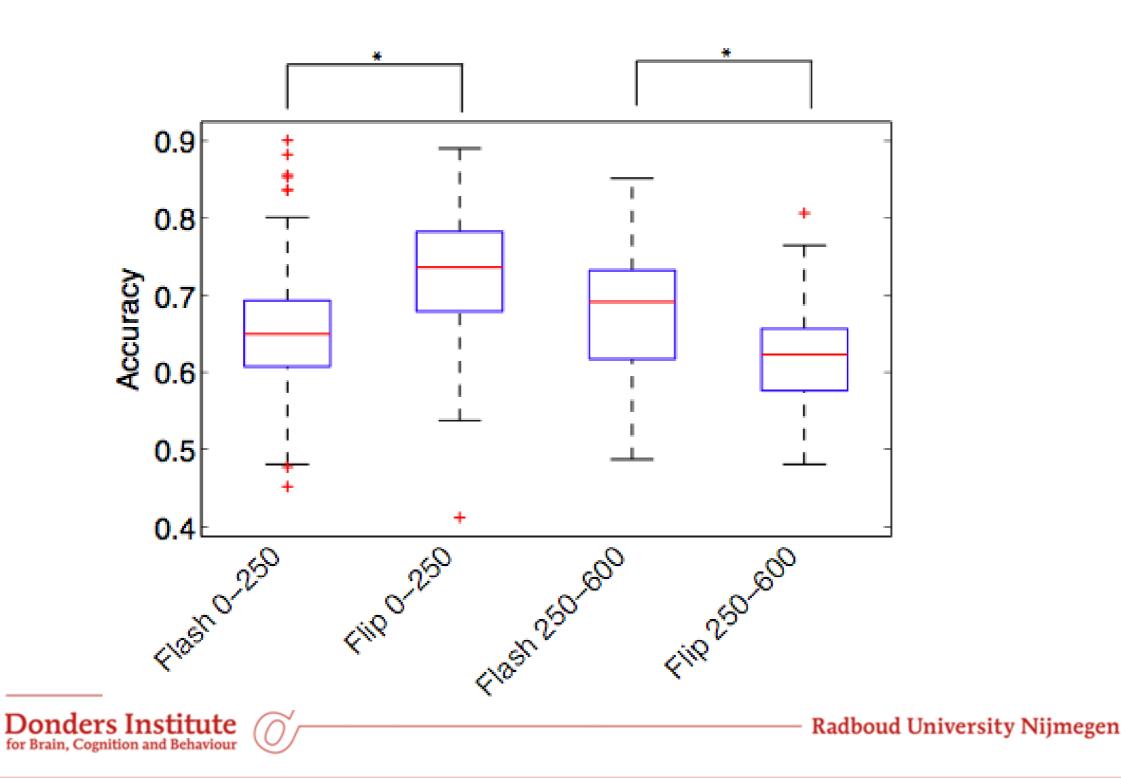
Cell Stimuli: Rate Flash vs Flip, enlarge, even faces

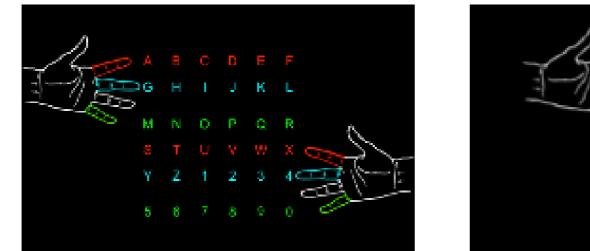
Coding: Row/Col, Scatter

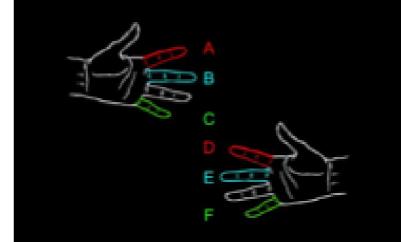
Modality: Auditory, Tactile, multimodal

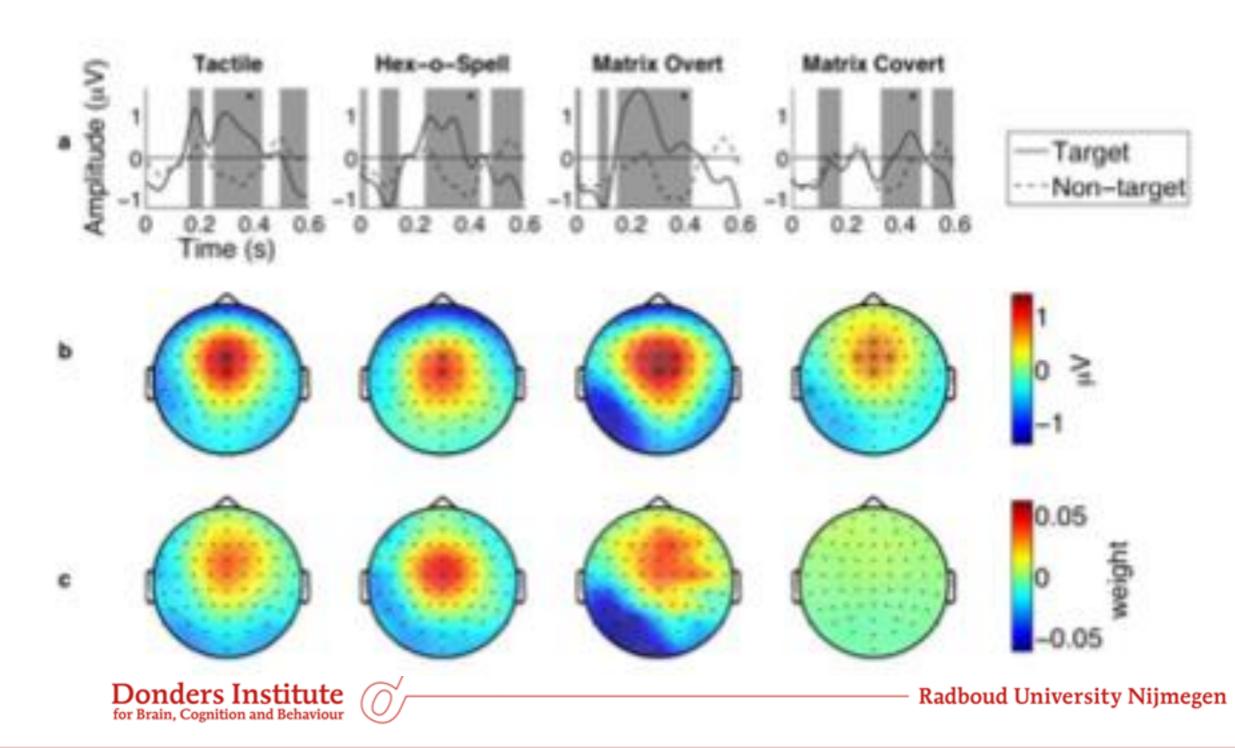
Buttons Full Sentence Chat-by-Click Locations ...



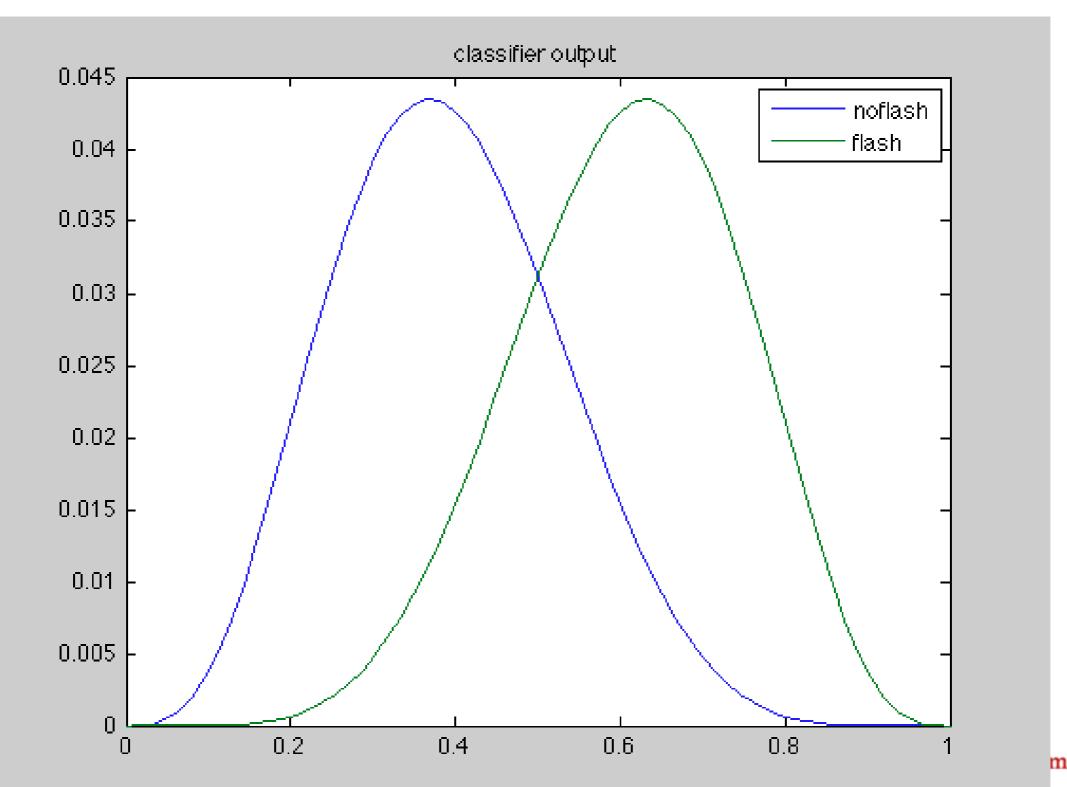








Classifier output Flash – Non flash

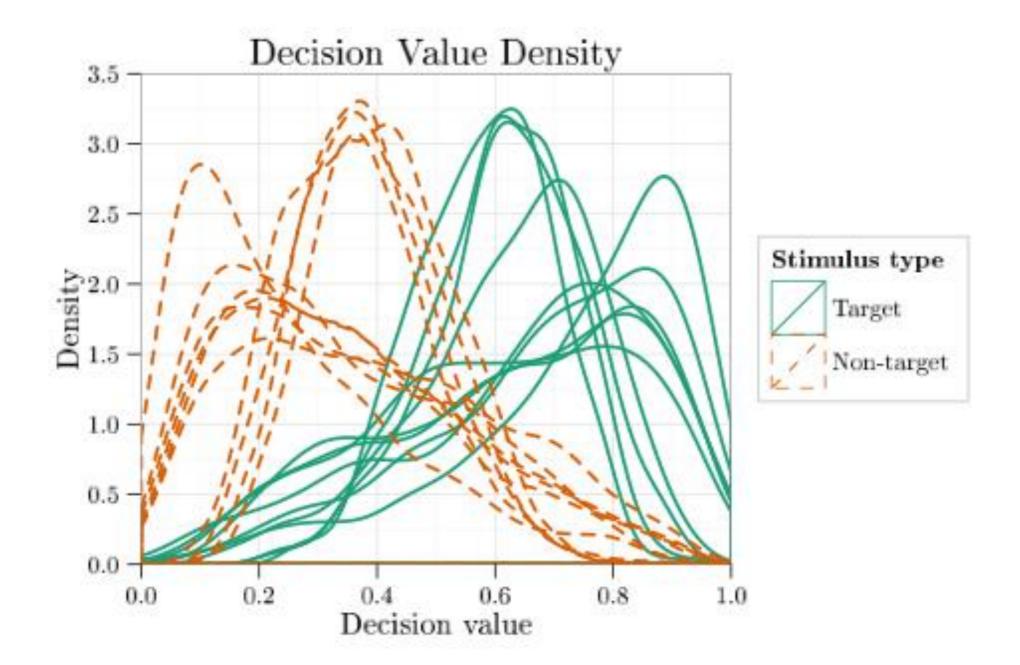


0

megen

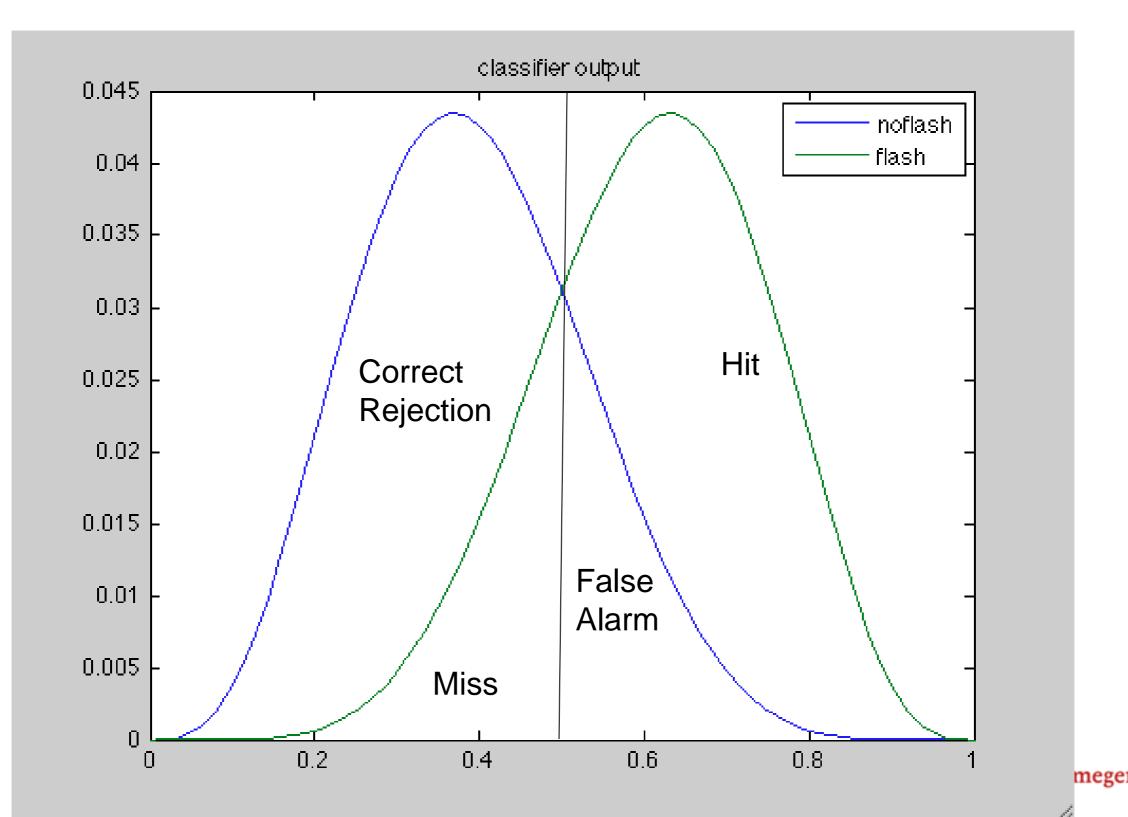
h

Classifier output Flash – Non flash





Classifier output Flash – Non flash



Confusion Matrix

Detected	Flash	No Flash		
Presented				
Flash	Hit	Miss		
No Flash	False Alarm	Correct Rejection		

-> % Correct

-> amount of information transmitted in one flash (in Bits) -> ROC (AUC)

Donders Institute for Brain, Cognition and Behaviour

Radboud University Nijmeger

Bitrate per flash (2 class) maximizes Bit rate for number of flashes (36 class)

Optimal coding characters (codebook) -> flash sequence Row/Col coding

Each flash produces evidence (classifier output) How to combine?

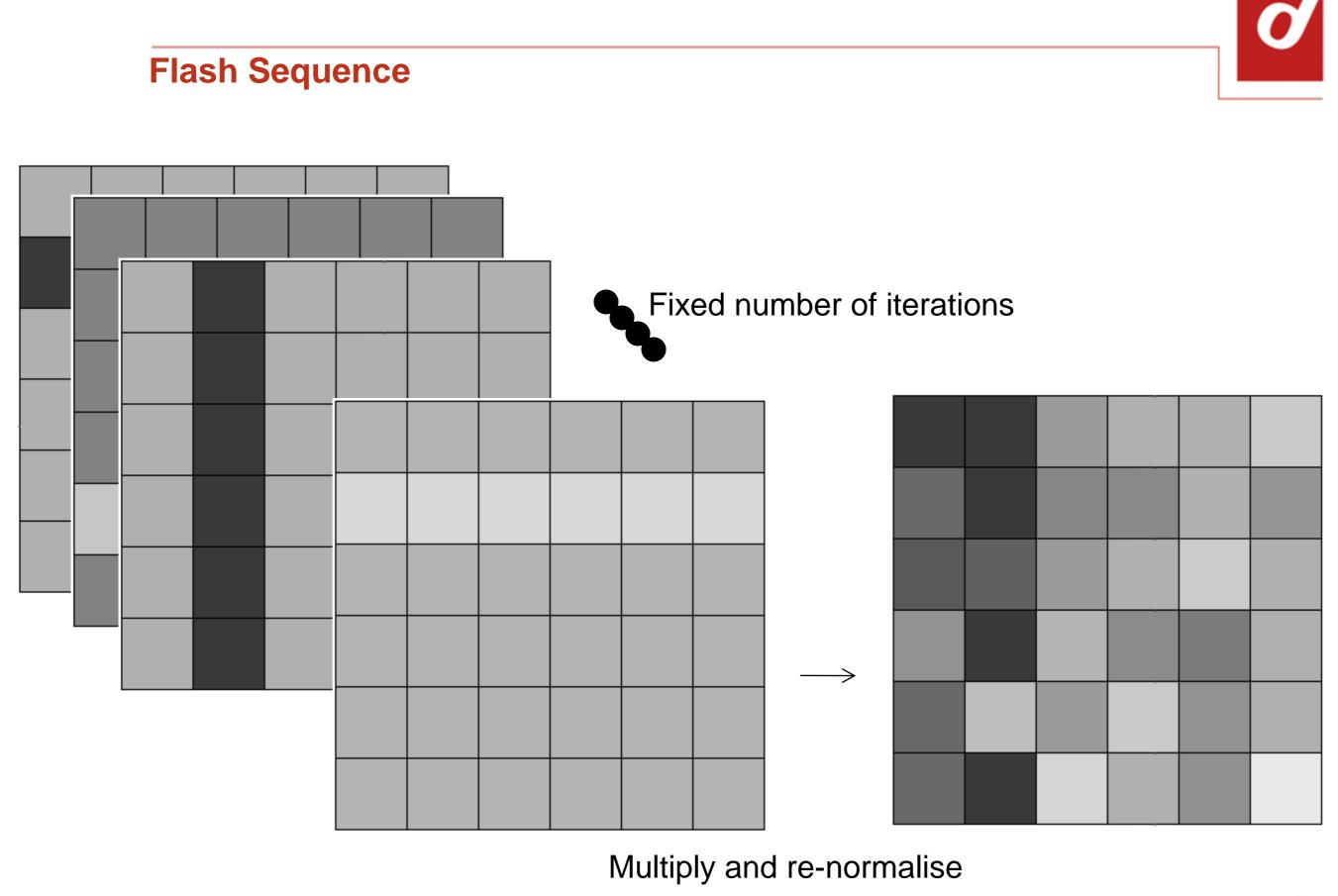
Normalize

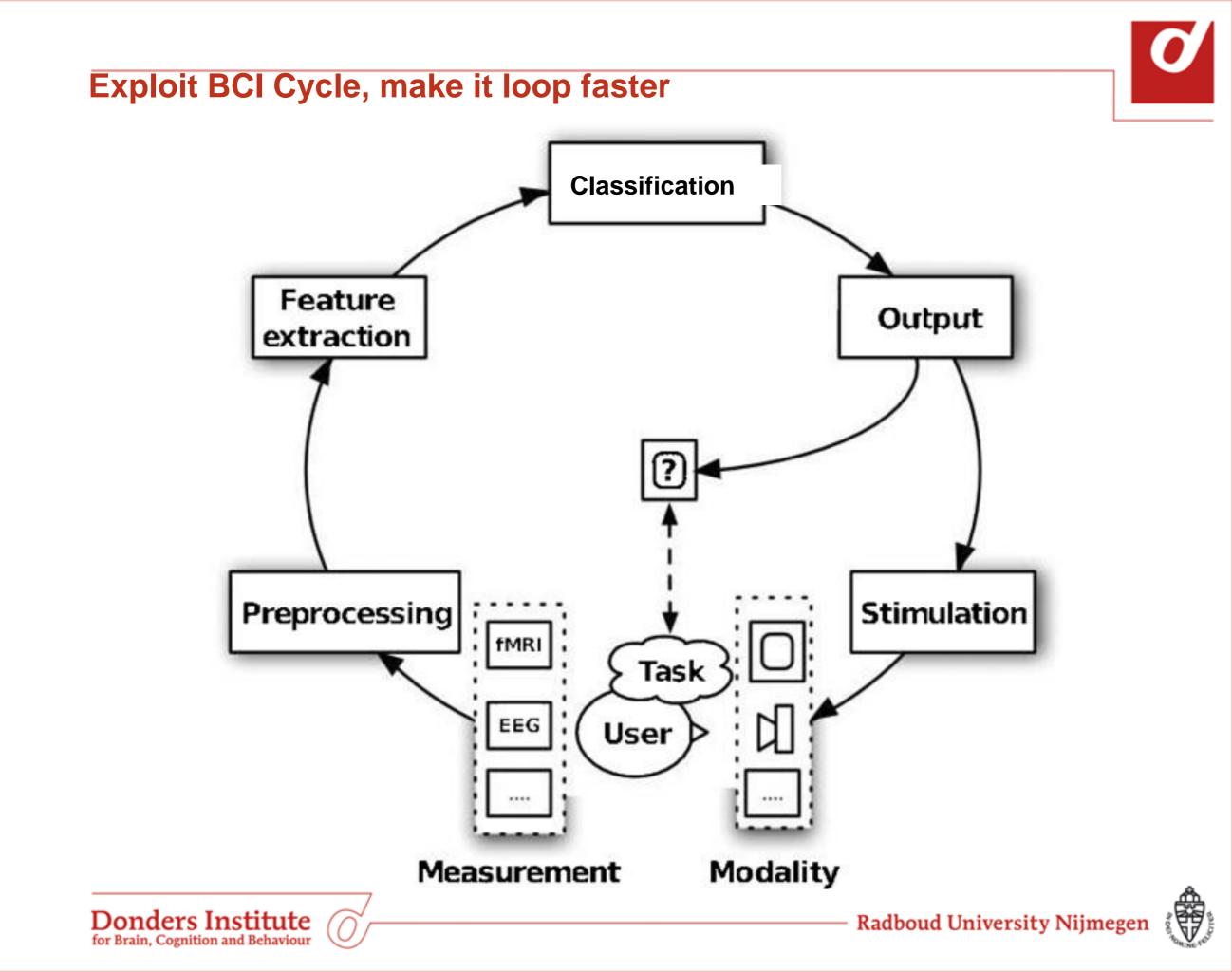
Classifier output = c, roughly reflects P(target is flashed)

Distribute as evidence for targets, based on flashed row/col

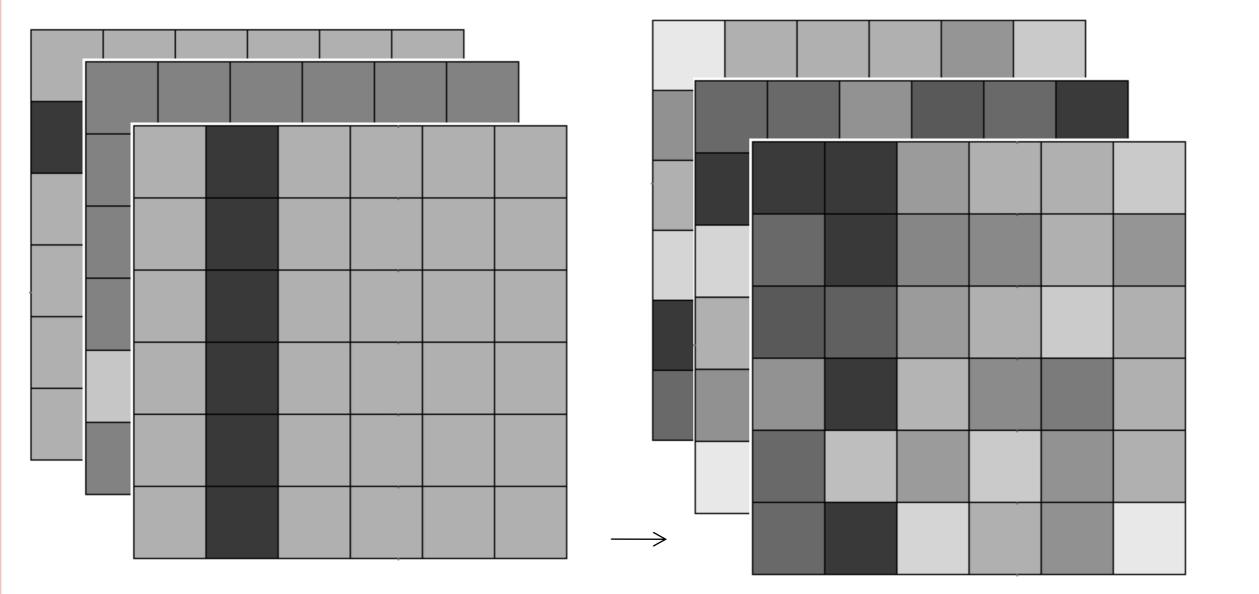
Counter evidence for non-flased row/cols

C	1-c	1-c	1-c	1-c	1-c	1-c		
	1-c	1-c	1-c	1-c	1-c	1-c		
	С	С	С	С	С	С		
	1-c	1-c	1-c	1-c	1-c	1-c		
		1-c	1-c	1-c	1-c	1-c	1-c	
No	ormalize	1-c	1-c	1-c	1-c	1-c	1-c	
Donders I for Brain, Cognition	nstitute	6-						Radboud University Nijmege





Flash Sequence, maintain current belief state



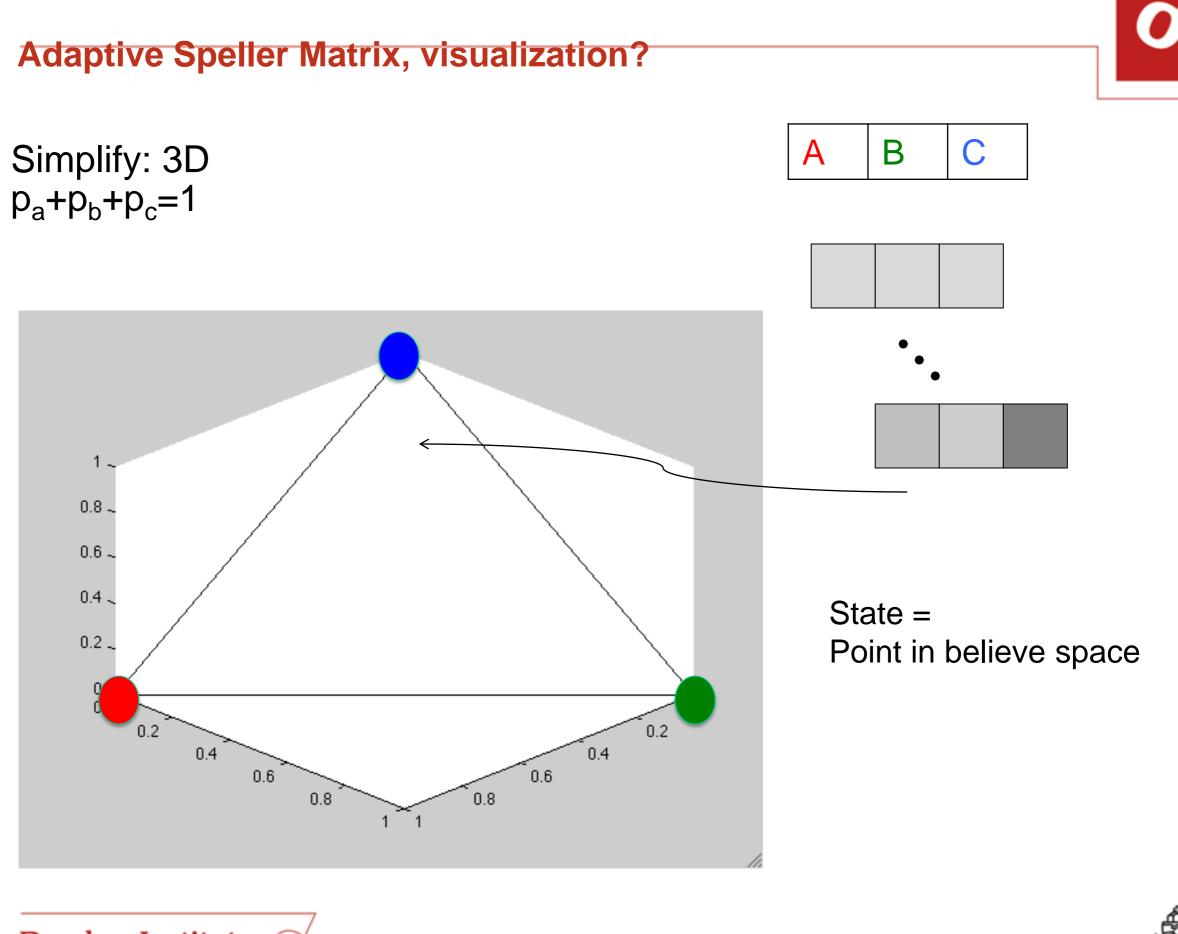
Flash Sequence, Online Incremental Detection

Early stopping, careful, not just threshold !

Next flash choice, complication: late responses

vs Random (permutation)

Local decision possible, simple rule?



Donders Institute (

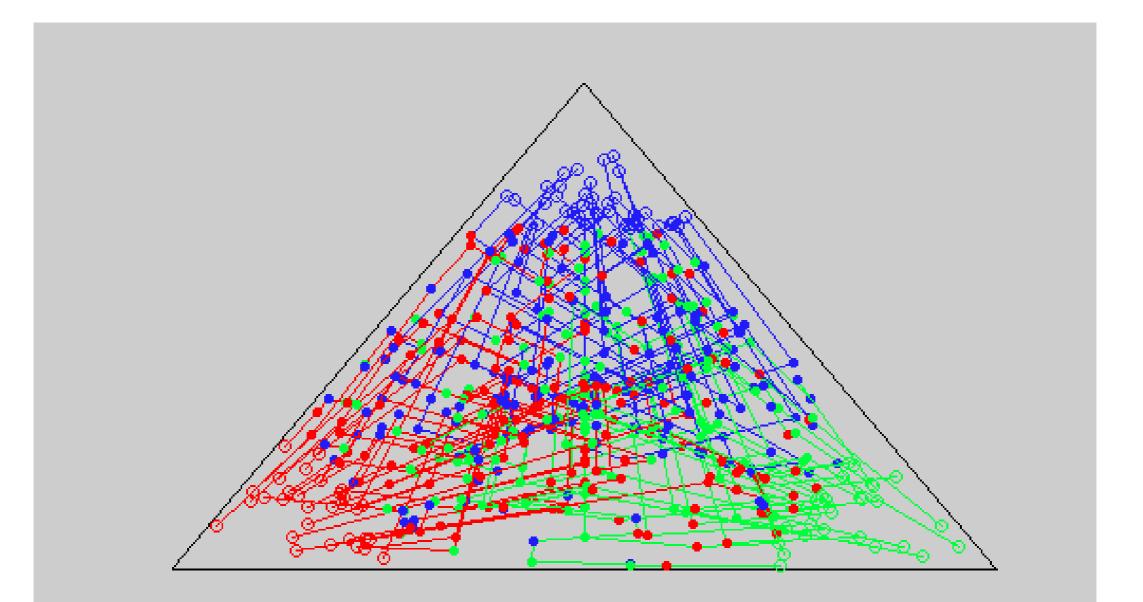
Radboud University Nijmegen

0) Flash Random

Normalize

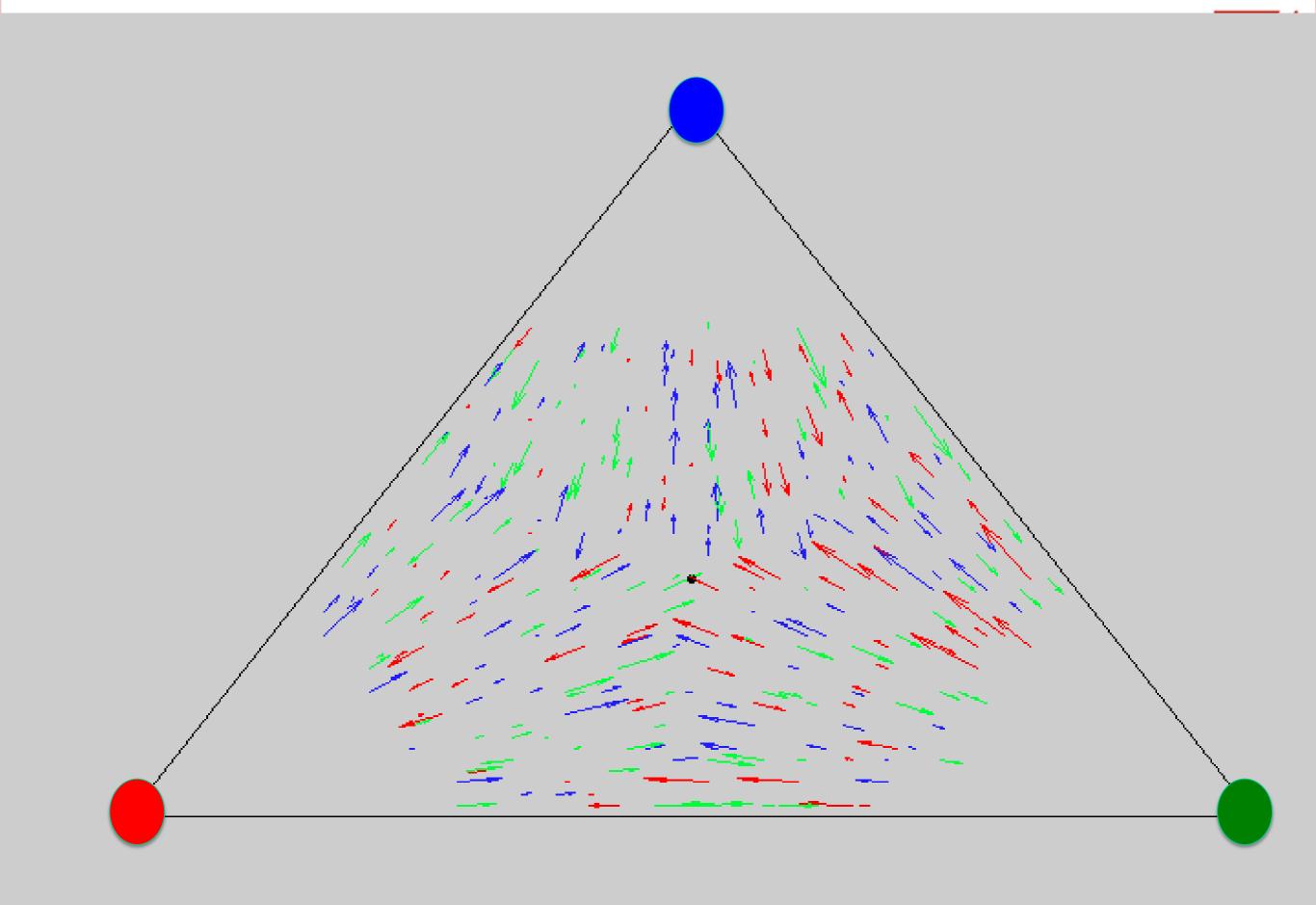
Radboud University Nijmegen

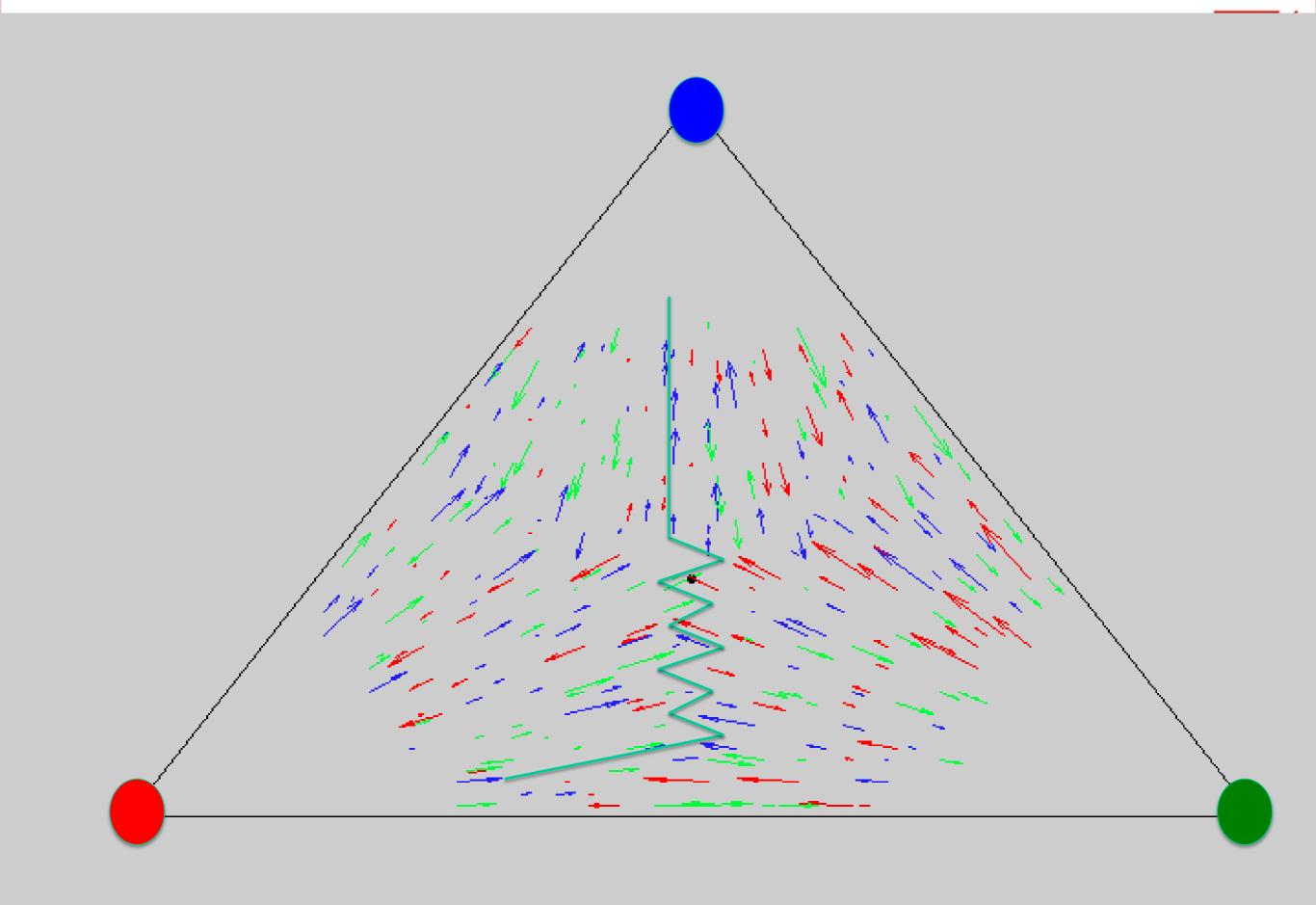
Results (flash random)



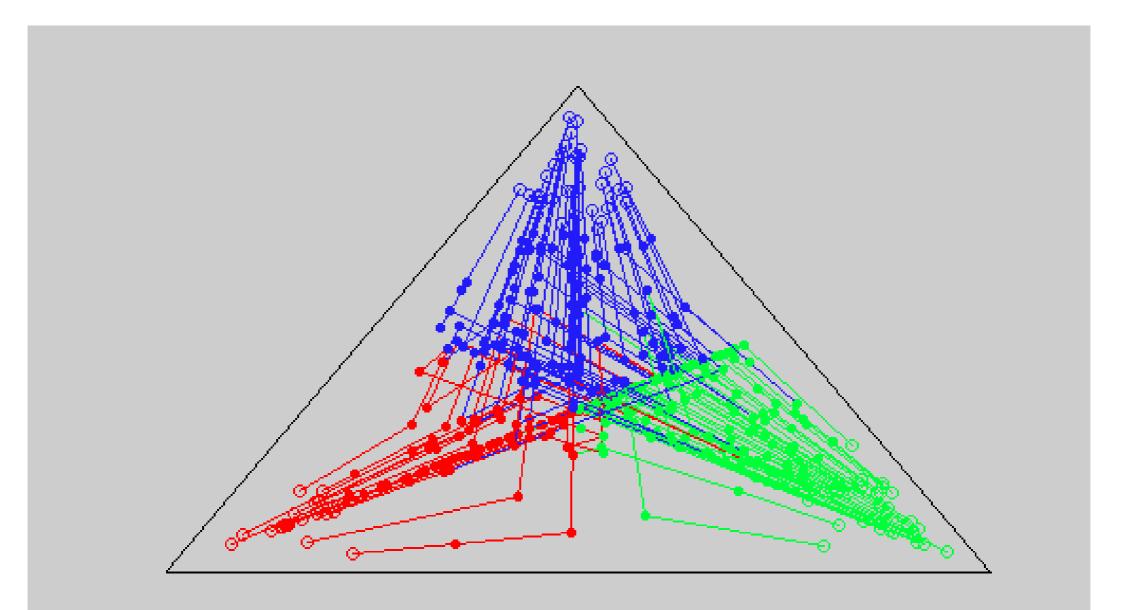
0) Flash Random1) Flash Most Promising Candidate

Normalize



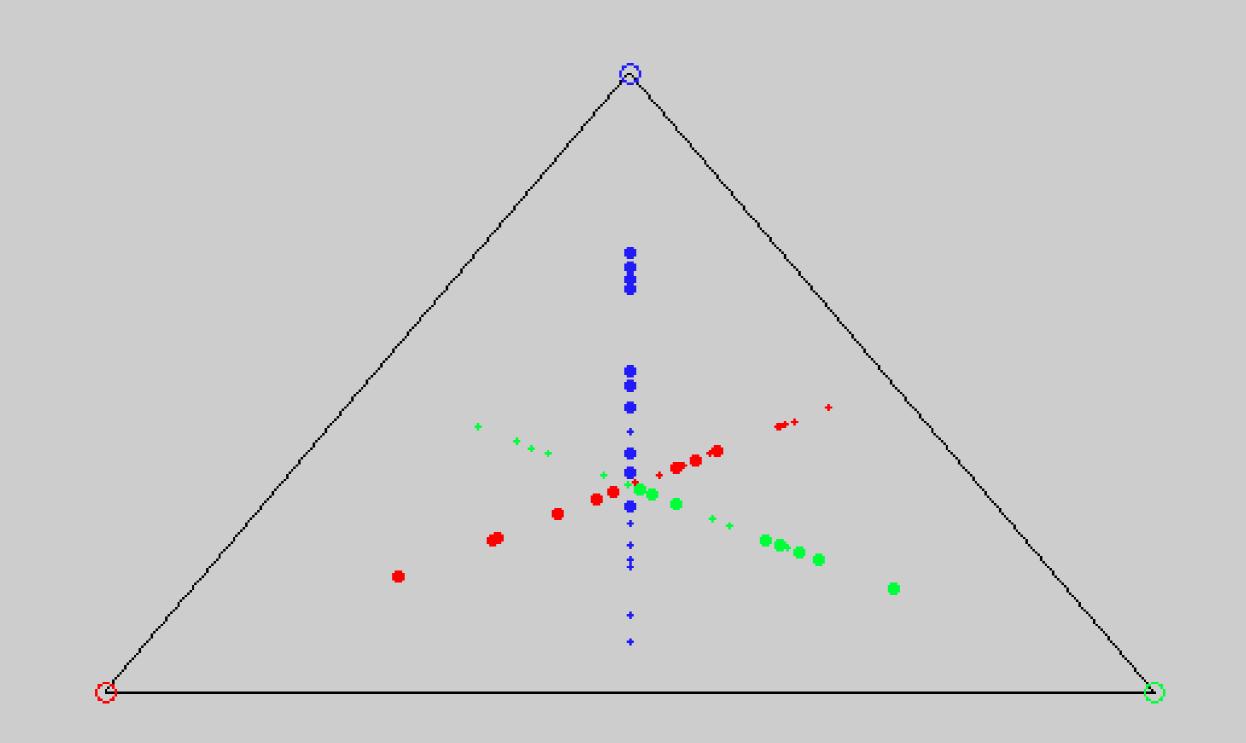


Results (flash max)



- 0) Flash Random
- 1) Flash Most Promising Candidate
- 2) Flash second best
- 3) Optimize expected criterion
 - model next belief state distribution assuming target, given flash
 - calculate expected criterion (over targets)
 - pick best flash

Normalize

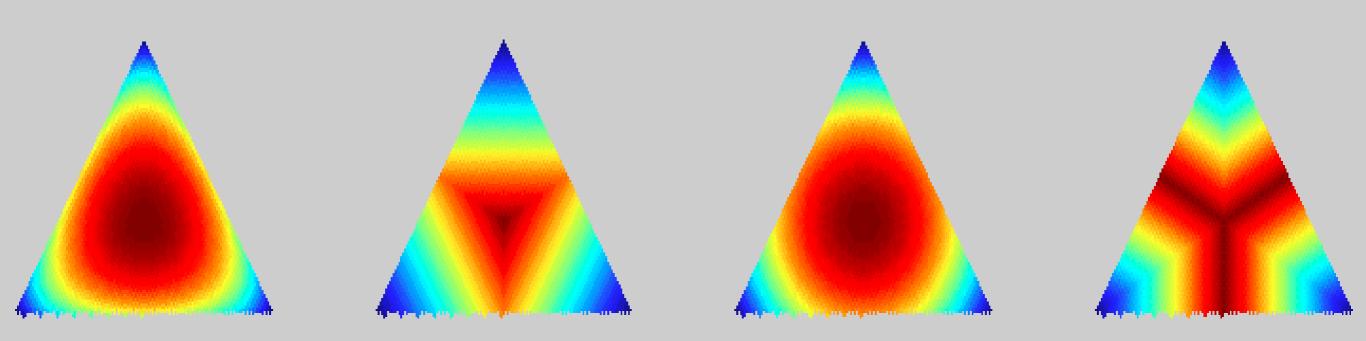


Objective to be minimized

Entropy

Error

Distance from uniform (Gini) Margin

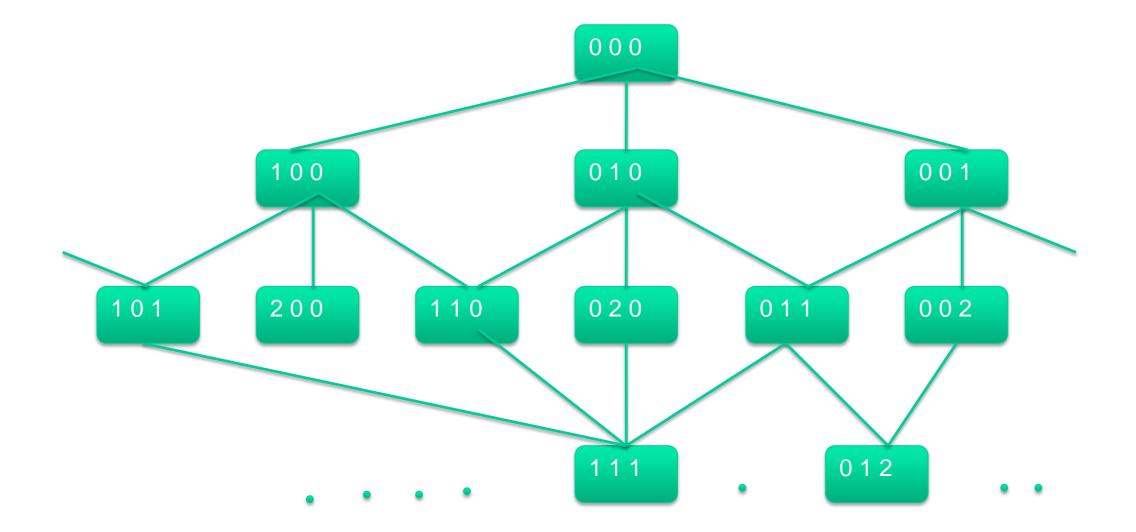


Flash Sequence

- 1) Flash best candidate -
- 2) Flash second best
- 3) Optimize expected criterion
- 4) Fully model belief state distributions, optimize outcome
 - early stopping trivial (expected % correct > ...)
 - doable
 - exploit symmetries, order independencies

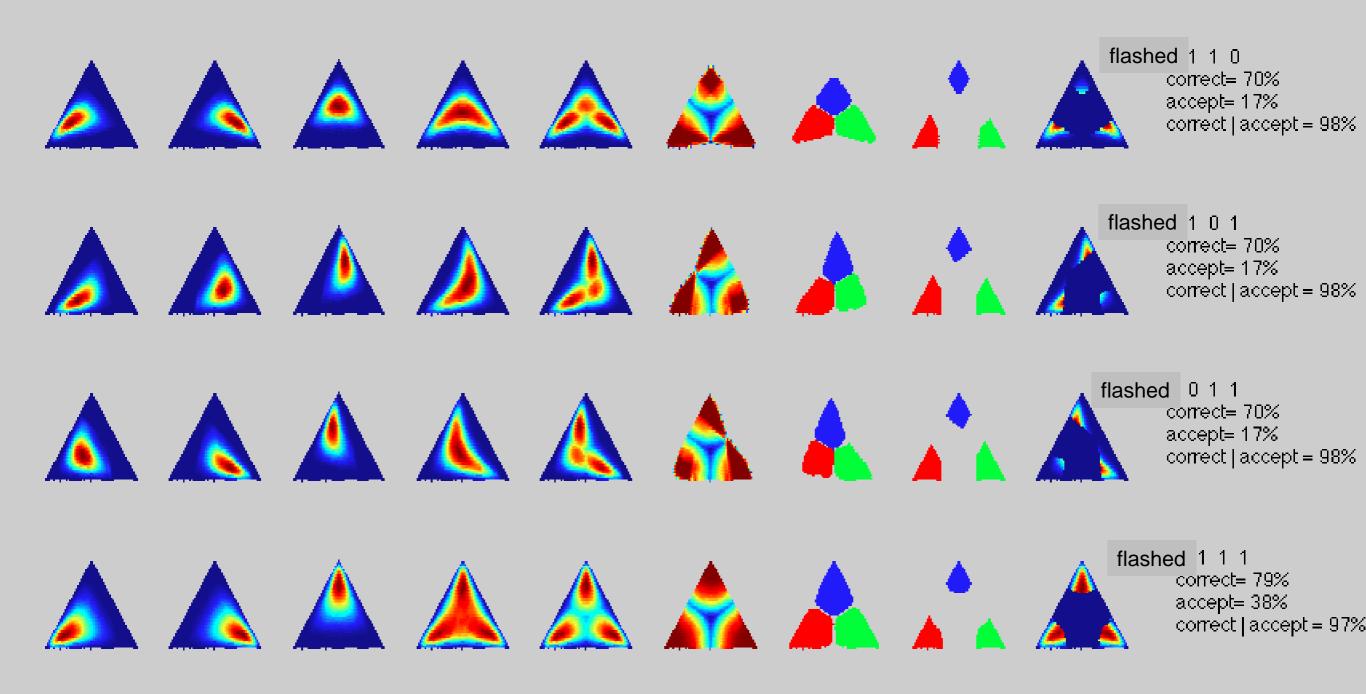
Normalize

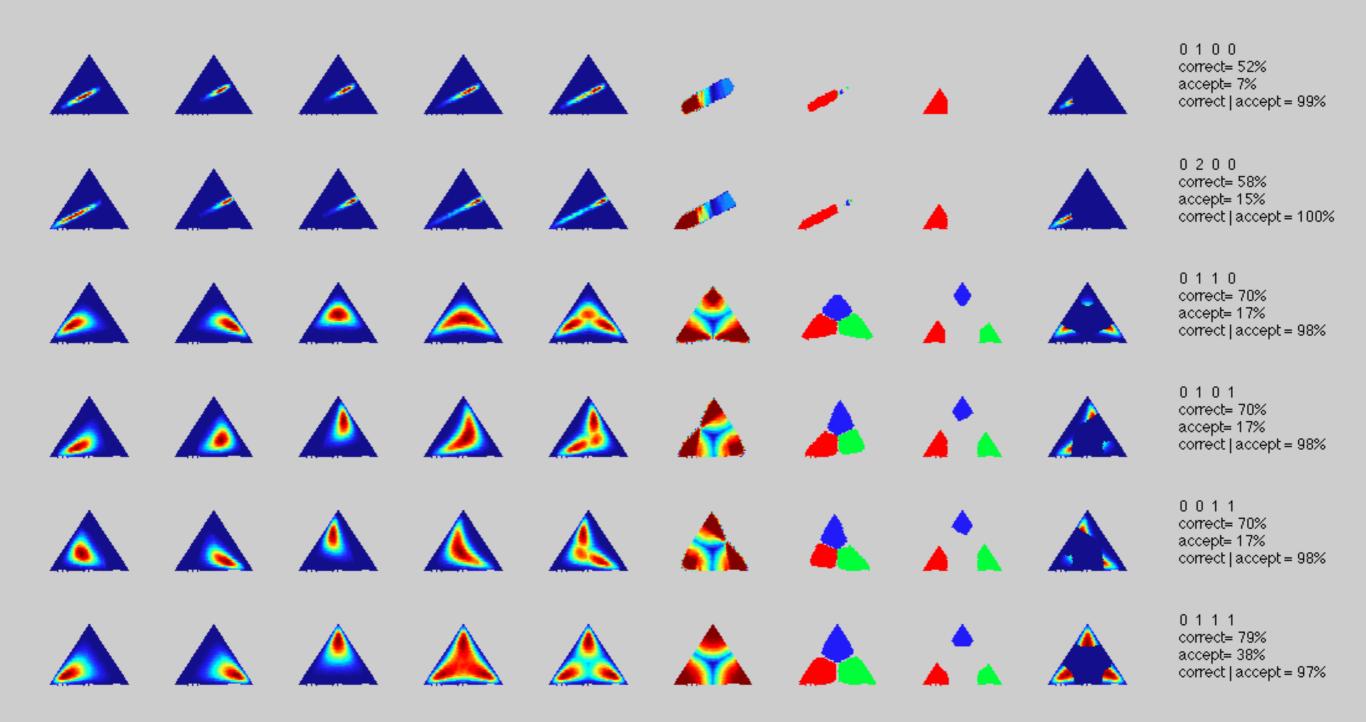
State transitions

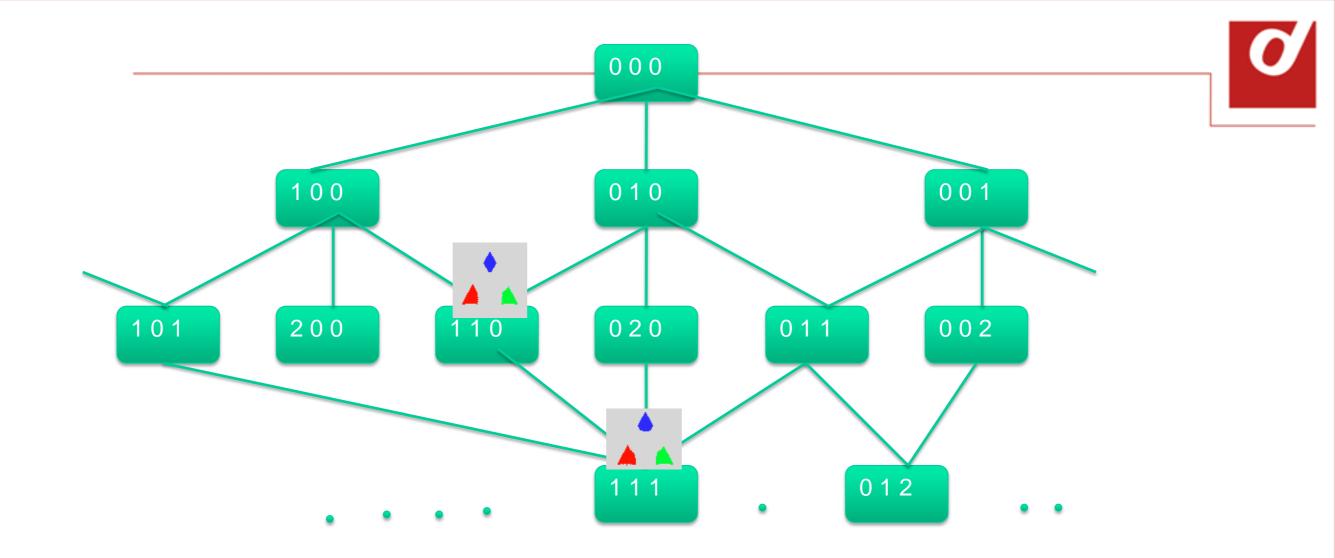


Distributions

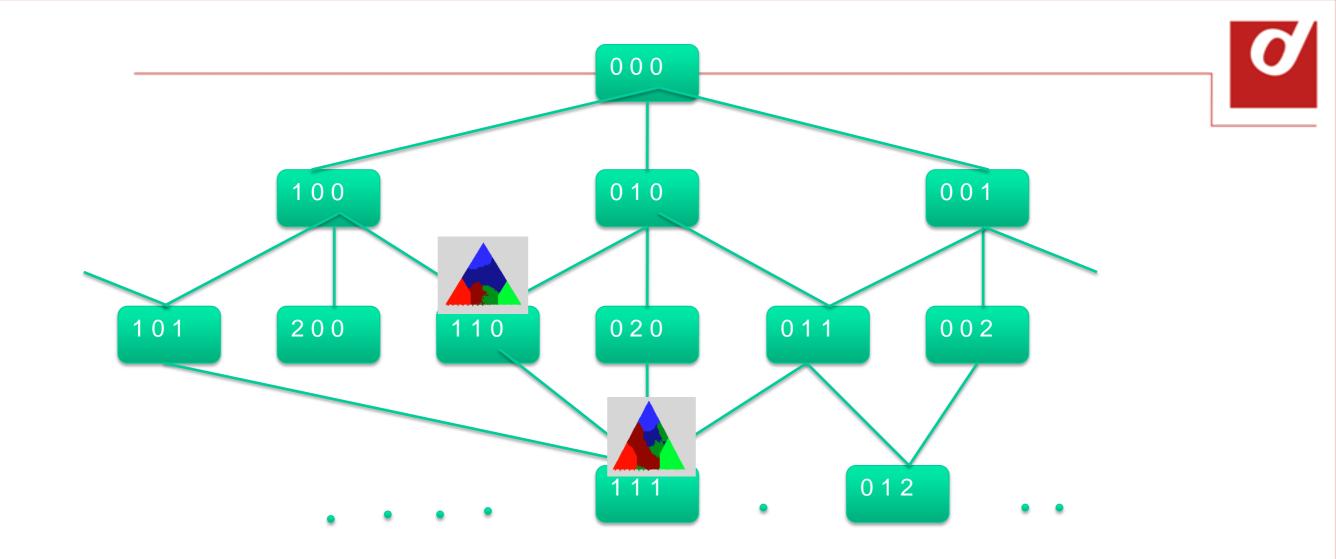
T=1 T=2 T=3 Av Max Correct best accept correct





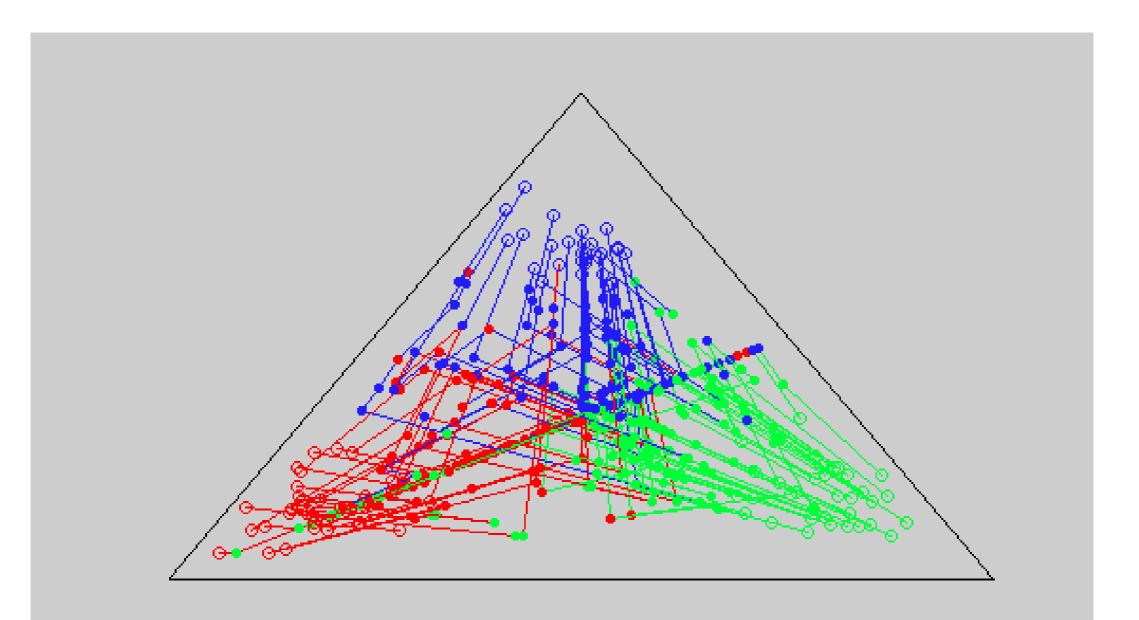


Radboud University Nijmegen



Radboud University Nijmegen

Results (adaptive)



% accepted % correctly accepted capacity

Radboud University Nijmegen

Results

0.25

0.2

0.15

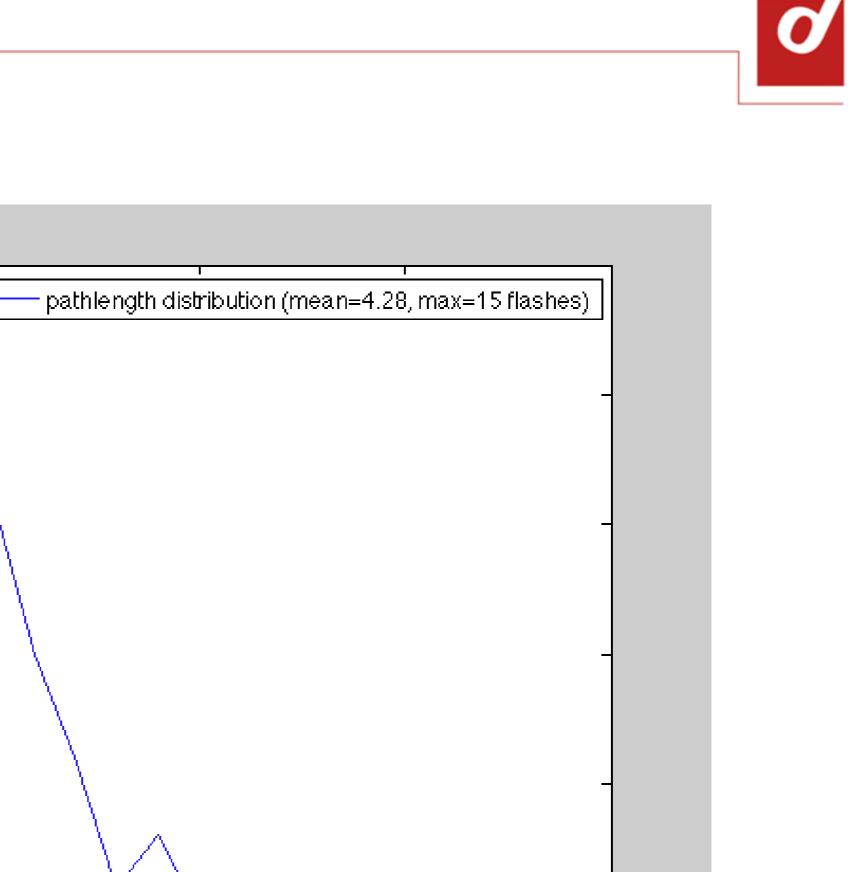
0.1

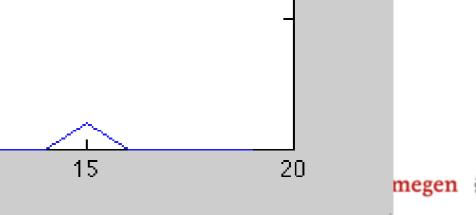
0.05

0 L 0

5

10

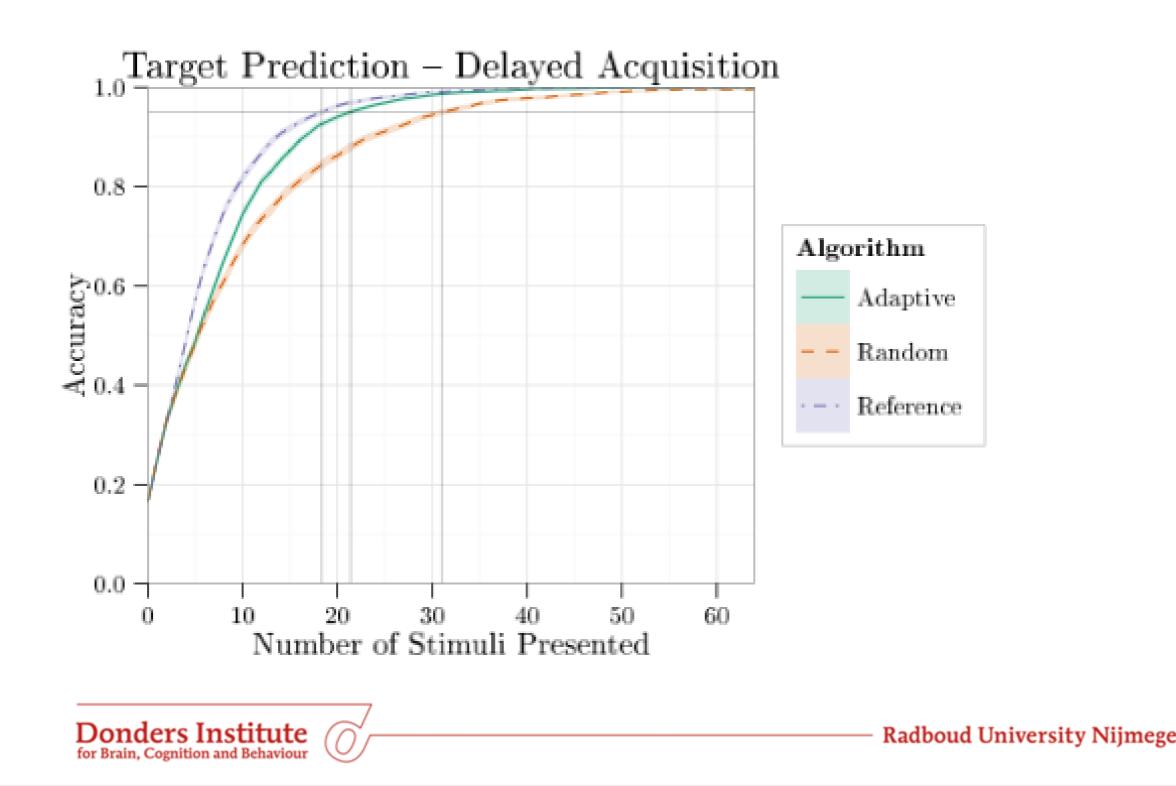




/1,

Results: Simulation full Row/Col

Based on empirical classifier output distribution of single flash



Conclusion

Improvement (confirmed in first full online pilot) Optimality (guaranteed performance) Optimization Criterion can consider pathlength

However, need to build in/model:

Refractory period

Delay

. . .

Periodicity

Method not yet fully exploited because improvement larger for

multi-flash

large number of classes

Domain with large number of classes: words

Hypothesis:

Assume a target word is active (kept in mind)

Presenting a related word gives a detectable response

Like flashing a row gives a detectable response on all targets in that row

There is a very simple relation between row/col and letter in matrix

There is a less systematic (and more sparse) relation between words (associated or not)

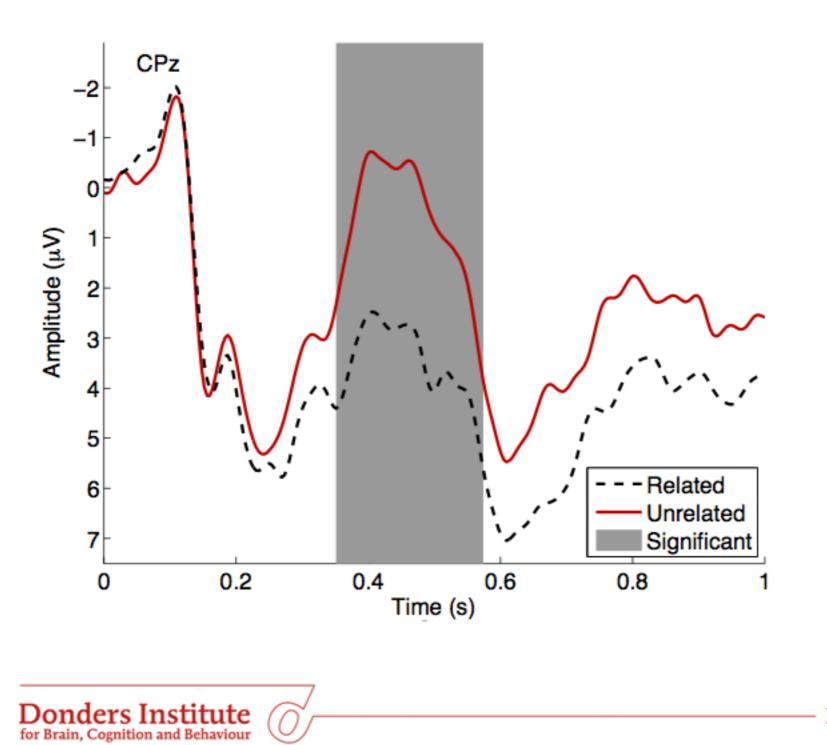
Semantic priming

(non)associated word pairs fom Leuven Database

Prime		Probe
	Unre	lated
tang (pliers)	-	opbrengst (yield)
berg (mountain)	-	drankje (small drink)
eland (moose)	-	eerbied (respect)
rog (ray)	-	maaier (mower)
	Rela	ated
mier (ant)	-	klein (small)
tram (tram)	-	spoor (track)
racket (racket)	-	tennis (tennis)
naald (needle)	-	draad (thread)

Semantic priming

EEG contrast



Radboud University Nijmegen

Semantic priming, study 1

12 subjects, 400 word pairs

Classification rate 60% (+/- 7%)

Careful matching for word frequency, length etc Accurate Association Database, needed checking

Semantic priming

Can we detect which word subject has in mind using this paradigm? a la 20 questions.

Universe Target word (belief state dimension) Probe word

Present probe, classify: update belief, (non)associated targets up(down)

Probe selection

Random

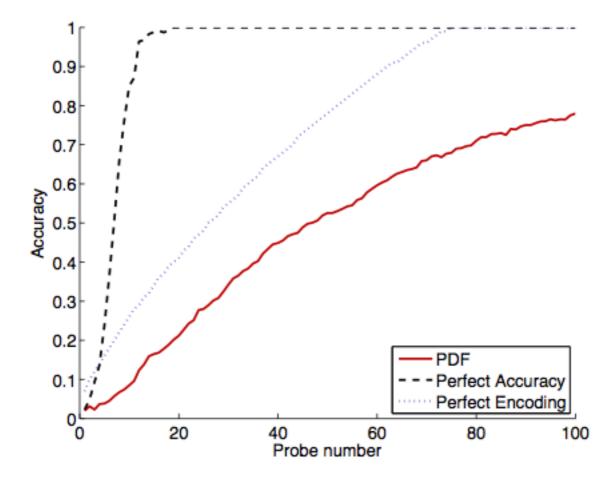
Ordered (most informative first)

Adaptive dynamic selection (rule)

Simulate

Semantic priming, simulation, 100 word universes

Words with most associations Ordered probes



Semantic priming, simulation, word universe size

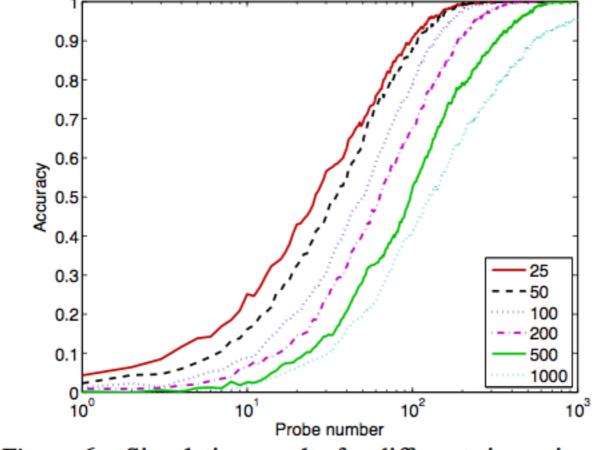


Figure 6. Simulation results for different size universes.

Adaptive semantic word probing

Adaptive model or local rule big improvement (large spaces feasible, scales well)

Good databases needed

Adaptation of system can still bring us a lot

Adaptation of user

Desired non-stationarity (learning)

Traditional neuro-feedback (abstract marker, no task instruction)

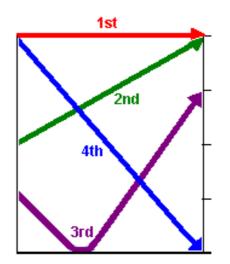
BCI learning, adaptation to output (given task)

BCI supported training of perceptual categories (given marker)

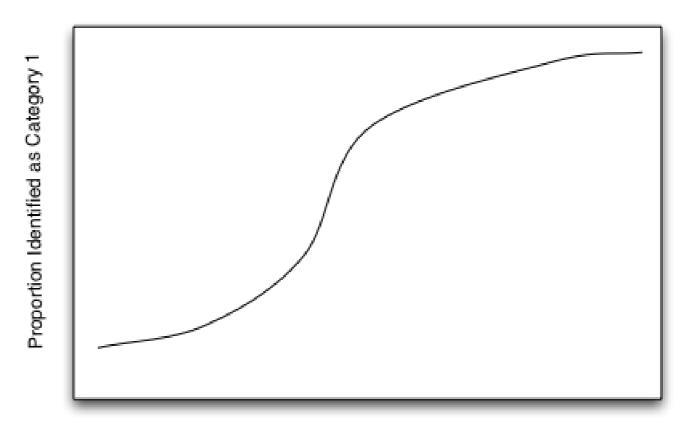
Categorical perception

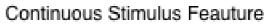
- Continuous variation in stimulus
- Example: speech: d vs t
- Discrete mental representation
- Information lost: efficiency of coding and representation
- Very basic, pervasive process in perception/cognition
- In speech

pa – ba, assu – asu, r – I, mandarin tones, vowels,



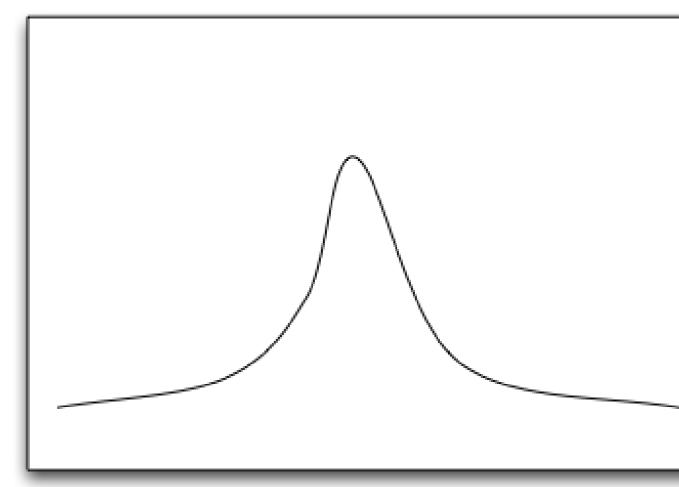
• Recognize and 'label' stimulus



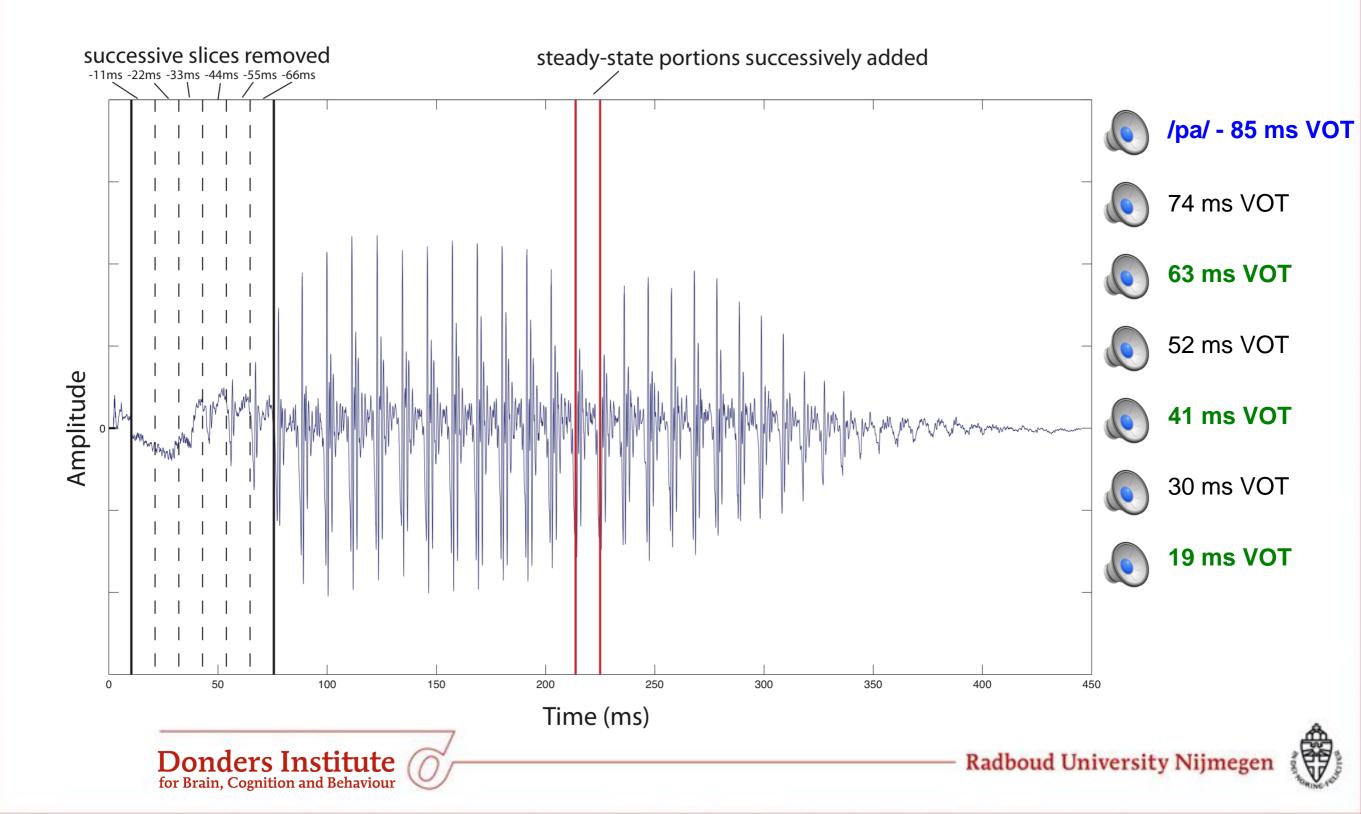


Discrimination

• Sensitivity for differences



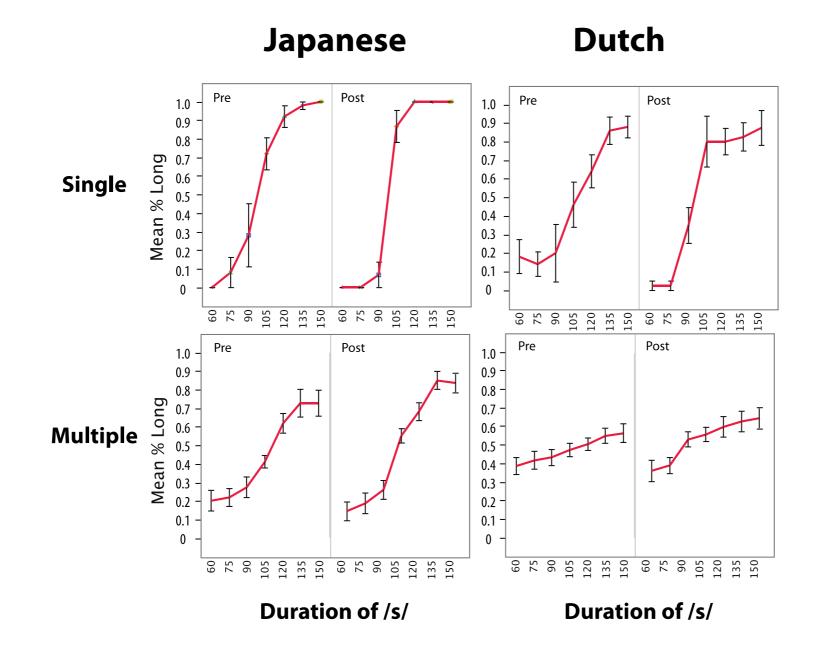
Experiment Ba vs Pa; Stimuli



Behavioral Identification ba vs pa

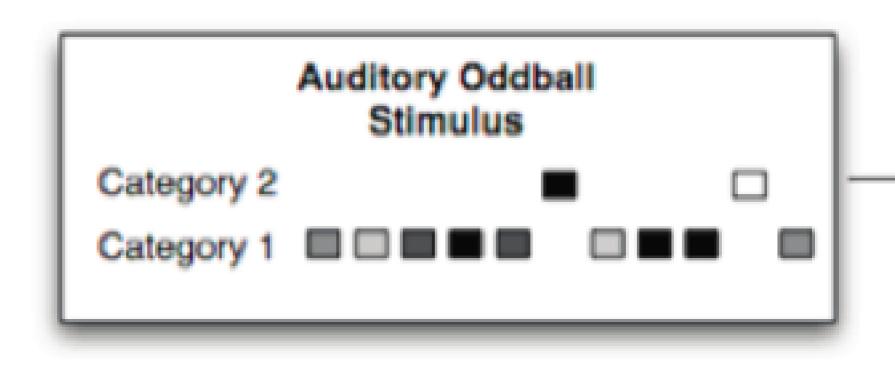


Behavioural Identification s vs ss (before / after exposure during experiment)

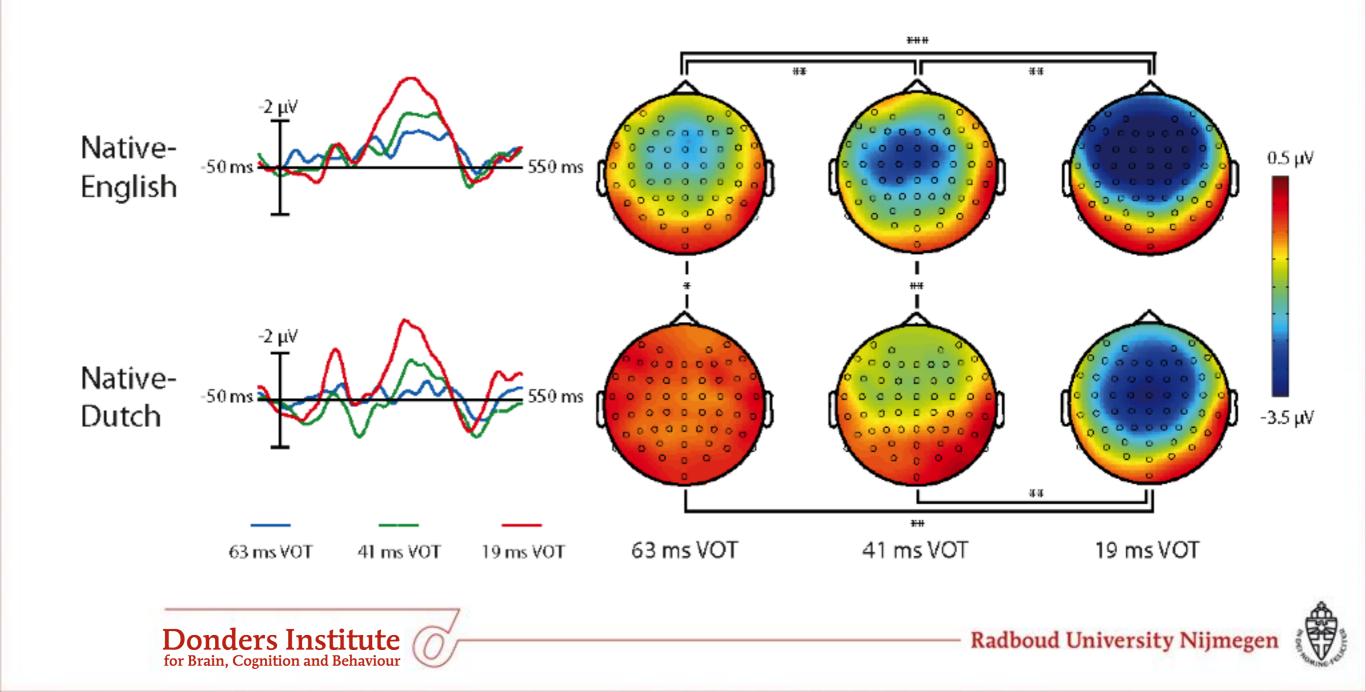


Discrimination test with EEG, Oddball sequence

- Difference perceived? -> Mismatch Negativity Response
- Pre-attentive
- Even present before behavioral response



Results: Mismatch negativity responses

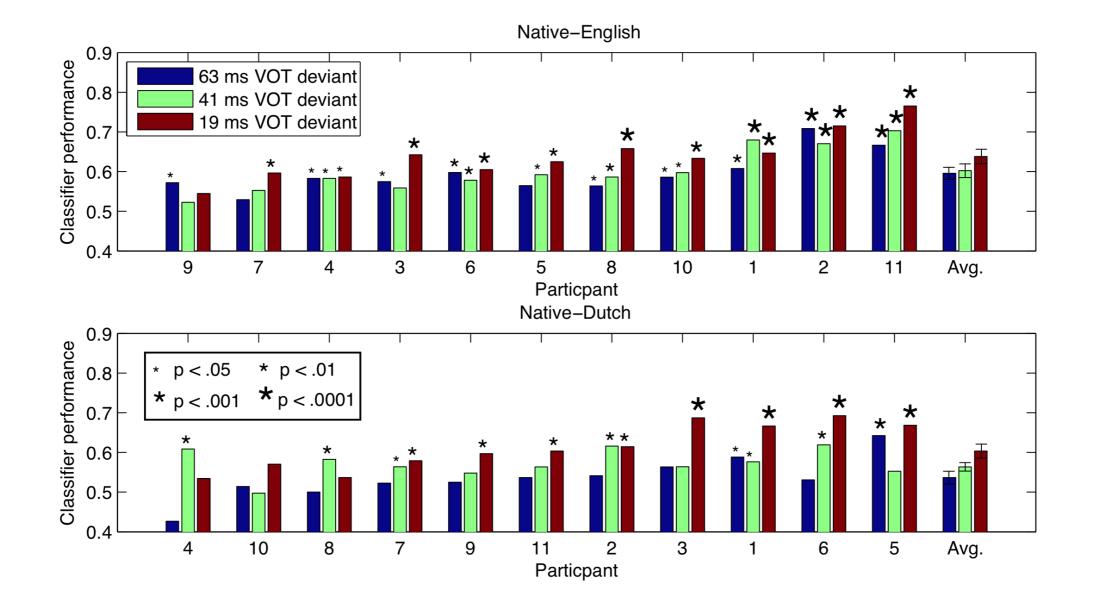


0

Single trial detection?

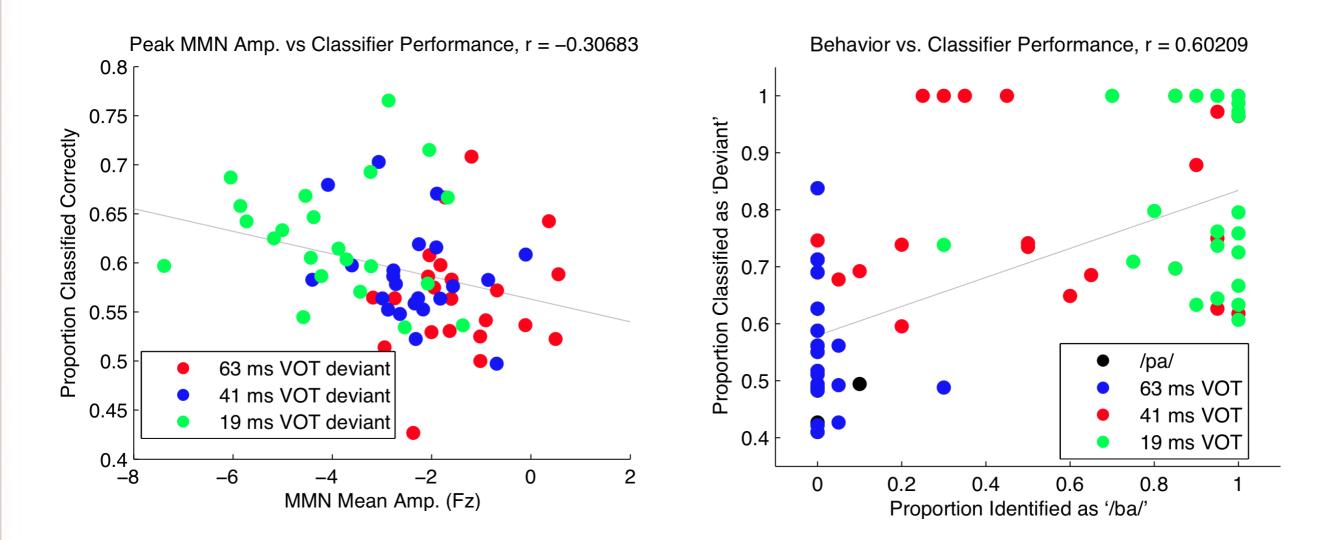
- Discrimination
 - pre-processing
 - classifier
 - cross validation
 - ... all standard BCI practice

Within-participant classification analysis ba vs pa

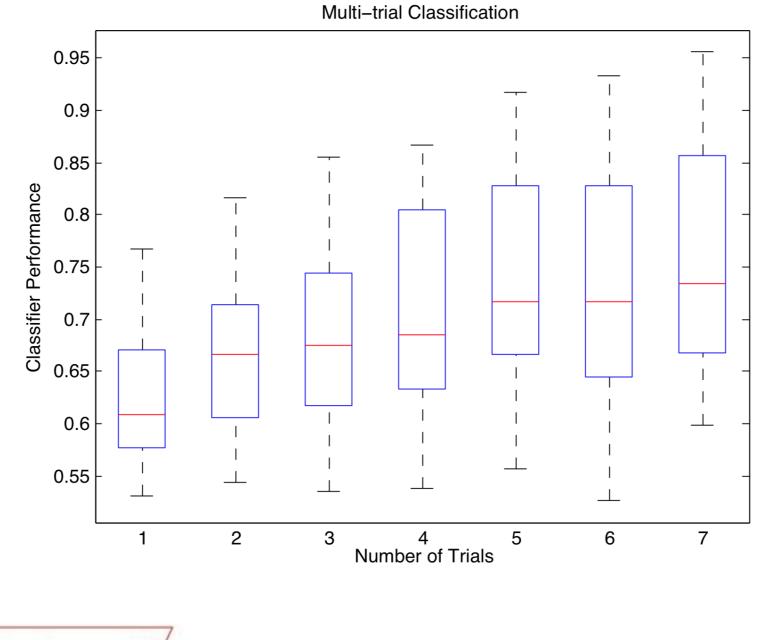


0

Results: Relationship to ERP and behavioral measures



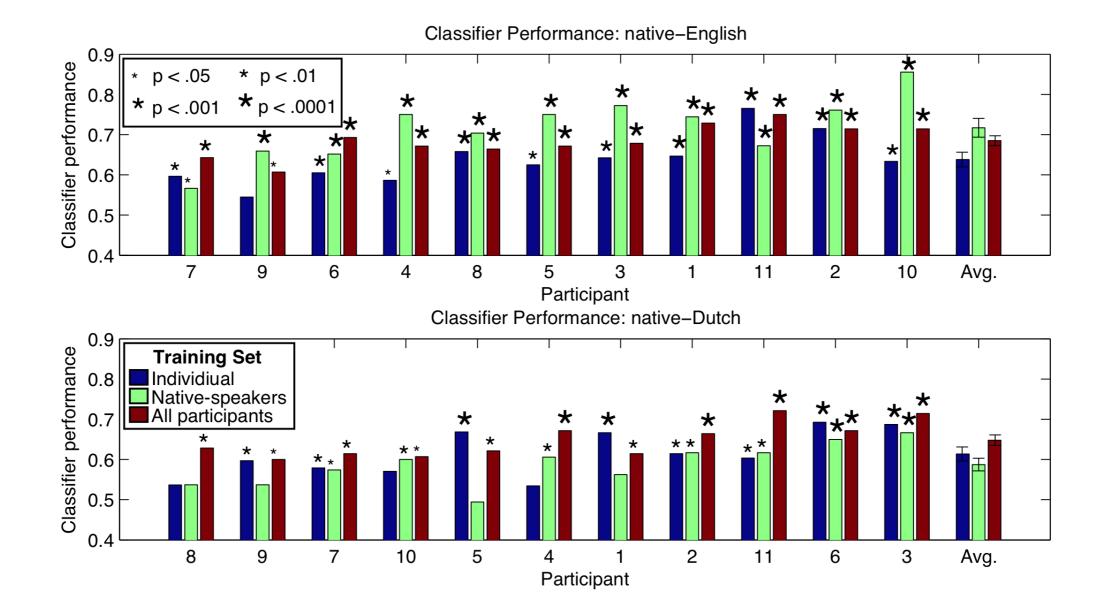
Results: Multi-trial classification performance



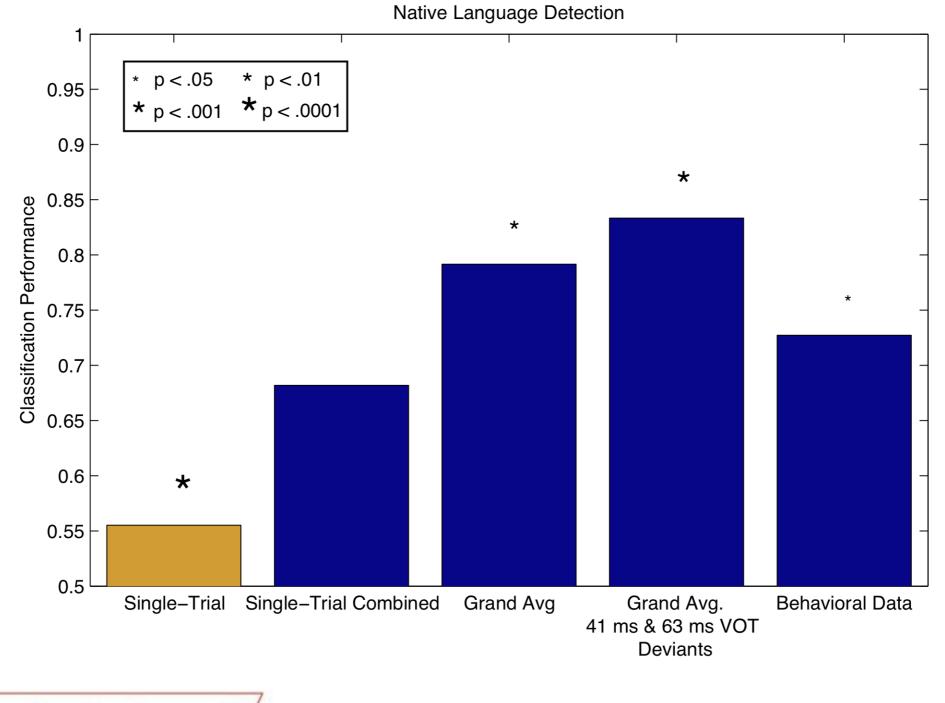
Donders Institute for Brain, Cognition and Behaviour

Radboud University Nijmeger

Results: Cross-participant classification analyses



sideline: Ba vs Pa Detection of native-language EN/NL



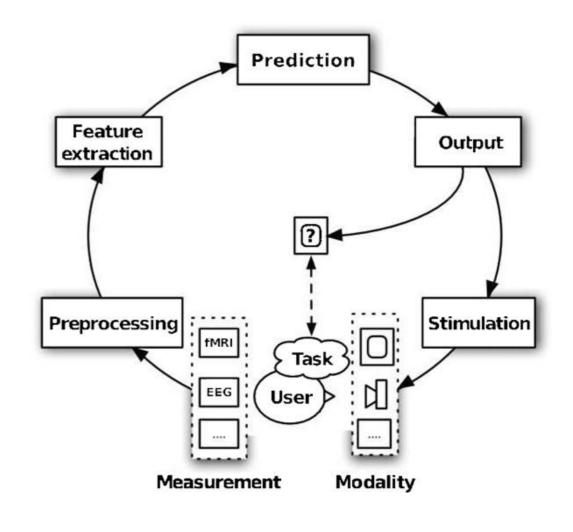
Donders Institute

BCIs & Language Learning

- Train classifier (spatial filter) on (MMN) response to large, already perceivable contrast
- 2. Use this classifier to identify (MMN) response for smaller contrasts
- 3. Based on classifier-performance (i.e. how well we can isolate an MMN/whether there is an MMN), adjust stimuli

Donders Institute

for Brain, Cognition and Behaviour

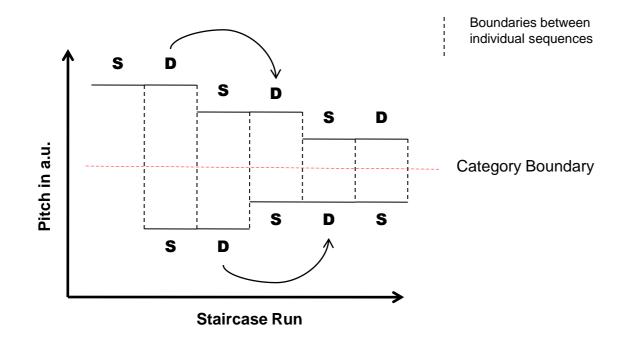


Use of feedback

- Reward (movie blur)
- Determine practice time on task, criterium
- Adapt stimuli

Visual feedback, movie blur

Methodology: staircase stimuli



Conclusion, on BCI for perceptual category learning

- (Speech) categories can be 'probed' with oddball MMN
- Single (few) trial detection is possible
- Even before/better than behavioral testing
- Use in online BCI setting for training (L2) categories
- Is it more efficient than exposure or behavioral training?
 - 3 studies running to test
- Classify deviants and standards (within category discriminations) don't reward bias
- Discrimination (MMN) -> Identification (P300)
- Applicable to many domains (music !)

Adaptation is good

There are many ways to exploit it in the BCI cycle

Thanks

Galin Bajlekov Alex Brandmeier Jason Farquhar Marcel van Gerven Jeroen Geuze Christian Hoffman James McQueen Makiko Sadakata Loukianos Spyrou

Donders Institute (

Radboud University Nijmegen

