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EEG and MEG 

 

Cellular currents due to 

synchronous firing of a large 

population of equally spatially 

aligned neurons give rise to 

extracranial electric potentials and 

magnetic fields. 

 

Electroencephalography (EEG) 

= measuring the potential 

differences on the scalp 

 

Magnetoencephalography (MEG) 

= measuring the extracranial 

magnetic fields 

 
MEG and EEG are different views of the same neural sources. 

Slide by Lauri Parkkonen 
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EEG and MEG 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advantages: 

• Noninvasive 

• High temporal resolution 

• Portable (EEG) 

• Low cost (EEG) 

 

 

Disadvantage: only indirect 

measurements 

• Low signal-to-noise ratio 

• Difficult to interpret 
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Volume conduction 

 

 

 

 

 

 

Problem: Spatial smearing of the source activity in the sensors due to 

the propagation of el. currents/magnetic fields in the head tissue. 

 

 

 

 

 

 

Volume conduction should explicitly be modeled in order to 

 

• Improve signal-to-noise ratio (e.g., in BCIs) 

• Interpret the results, localize the sources 
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Interpretability 

source electrical dipole EEG scalp potential 

 

 

 

 

 

 

 

 

 

 

 

Direction of dipole current (determined by the local curvature of the 

cortex) has more influence than location. 
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Characteristics of the EEG and MEG generation 

slide from: Nobukazu Nakasato, 2009 
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Characteristics of the EEG and MEG generation 

slide from: Nobukazu Nakasato, 2009 
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slide from: Nobukazu Nakasato, 2009 
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Generative model of the EEG 

 
 

 

                                                                 : brain volume 

Scalp potential                   depends on 

 

                                      : sources  of interest  (el. activity in the brain) 

 

                                      : forward mapping describing the propagation 

of currents from sources to sensors within volume conductor 

 

                    : sources of no interest (e.g., sensor noise, artifacts)         
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•           can be computed given 

 

– The geometry of the brain/skull/skin compartments 

– The conductivities of the different tissue types 

– The electrode positions 

 

 

 

 

 

 
 

 

• Slightly simpler for MEG than for EEG 

 

 

 

 

Forward modeling 

Figure from Litvak et al., 2011 
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The Inverse Problem  

Source reconstruction is an ill-posed problem. 
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The Inverse Problem  

Source reconstruction is an ill-posed problem. 

 

 

 

 

 

 

Which is the correct solution? 

 

Source reconstruction = selecting the sources that best match prior 

expectations (assumptions), while explaining the data. 

ill-defined 

well-defined well-defined 

ill-defined 
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Blind source separation: 

    and     unknown,  

 estimate both 

 

 

 

 

 

e.g., ICA, CSP, xDAWN 

 

EEG model:   

 

 

 

 

Inverse source reconstruction: 

   given by physical model, 

 estimate  

 

 

 

 

 

Source Reconstruction Paradigms 
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Inverse methods 

MNE 

MCE 

WMNE 

Loreta 

sLORETA 

eLORETA 

Laura 

Electra 

WROP 

DICS 

LCMV-Beamformer 

Nulling Beamformer 

FOCUSS 

Champagne 

Minimum Entropy 

Dipole Modeling  

Multipole Modeling 

MUSICRAP-MUSIC 

S-FLEX 

DCM 

 

 

 

• Every inverse methods makes 

specific assumptions. 

 

• (Ideally) performs well if 

assumptions are met. 

 

• There can be no method that 

performs well in general. 
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Dipole modeling 
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Dipole modeling 

Observation 

Model potential Estimated source (blue) 

True source (red) 

Assumption: few number of point sources 

 

Estimate their locations and orientation. 
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Dipole Modeling, high noise 

Observation 

Model potential 

(explains 35% ) 

Estimated source (blue) 

True source (red) 

• White noise is fairly harmless for dipole fits. 

 

• Magnitude of error is not very informative.  
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Dipole Modeling, brain noise 

 

• Brain noise looks harmless but isn‘t. 

 

• Again, magnitude of error is not very informative.  

Observation 

Model potential 

(explains 65%)  
Estimated source (blue) 

True source (red) 
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What is minimized?  

Measured potential :     

 

 

Model potential       : 

 

 

Minimize a cost function                     : 

 

 

1. Least-squares error 
 

 

 

 

(assumes independent and 

equal channel noise) 

[e.g., Scherg, 1992] 
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2. Weighted least squares error 

 

 

 

 

 

 

3. Full Maximum Likelihood 

 

 

 

 

 

 

What is minimized?  

(for arbitrary noise with 

covariance matrix    ) 

Weights:  

 

 

 

 

 

 
noise level in channel  

(for independent and 

unequal channel noise) 
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The Problem of Local Minima 

In general,          is nonlinear in the location     .                               

 

 The cost function                     has local minima (is „nonconvex“) . 
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The Problem of Local Minima 
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Including time 

1. „Moving dipoles“:  treat each time point separately 

 

2. „Fixed dipoles“:  location and orientation fixed over time, 

amplitude varies 

 

3. „Rotating dipoles“: location is fixed, orientation and amplitude 

varies (models multiple sources too close to be resolved spatially)   

Generally: including time stabilizes inverse solution 
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Example: Event-related Potentials (ERP) 
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Distributed Inverse Imaging 



Stefan Haufe, BBCI Summer School 2012, Berlin 37 

Distributed Inverse Imaging 

Recall: Dipole modeling tries to explain data with few sources as 

good as possible. 

 

Here: Explain data ‚exactly‘ with many sources + additional 

constraint (regularizer/penalty). 

 

 

 

 

 

 

 

 

 

 

Model     dipoles with fixed locations, optimize over orientations. 

Data 

Voxels in brain  

Inverse 
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Cost Function 

• Model potential is linear in the orientation parameters                        

 

           

 

 Solve underdetermined linear system for  

 

Infinitely many solutions 

 Additional constraint          needed to achieve uniqueness 

 

1. No noise setting: minimize          subject to 

 

2. Noise setting : minimize  

 

 

 

 

Likelihood Regularizer/penalty 
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Constraints 

Typically:                                          e.g.,  

 

    

 For  

 

 The constraint on    influences the solution more than the 

Likelihood, must be chosen wisely. 

 

The regularizer should reflect prior knowledge on the sources. 

 

Technical aspect: choose         to be a convex function (e.g., norm) 

  

 Overall cost function          is convex, has only one global minimum 
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Spatial smoothness 

• Assumption: neighboring voxels show similar activity 

 

• E.g., weighted minimum norm estimate (WMN), LORETA 

 

 

 

 

 

• Technically: L2-norm                        leads to smoothness 

 Convex optimization 

 Solution linear in data:  

 

      are precomputable spatial filters  very efficient 

 

 

 

LO
R

ET
A

 

[Jeffs et al., 1987; Pascual-Marqui  et al., 1994] 
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Origin of blurring 

1 mm 

d=1 

d=2 

• Both sources explain data equally well 

 

• Source 1 has L2-norm: 

 

• Source 2 has L2-norm: 

 

   

Source 1 Source 2 
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Spatial sparsity 

• Assumption: only a small part of the brain is active during task 

 

• E.g., minimum current estimate (MCE), FOCUSS 

 

 

 

 

 

• Technically: L1-norm                        leads to sparsity  

 

 Convex optimization 

 

 Solution      nonlinear in data, iterative optimization required 

  

 

[Matsuura et al., 1995; Gorodnitsky et al., 1995] 

M
C

E 
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Origin of sparsity 

 

 

 

 

 

 

 

 

 

The level sets of Likelihood and constraint almost always intersect at 

the coordinate axes. 

 

 

Likelihood 

L1 constraint 
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No sparsity using L2-norm 

 

 

 

 

 

 

 

 

 

The level sets of Likelihood and constraint almost never intersect at 

the coordinate axes. 

 

 

Likelihood 

L2 constraint 
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Limitations of smooth (linear) and sparse inverses 

Smooth inverses 

• Difficulty to distinguish sources 

 

 

 

 

• „Ghost sources“ 

 

 

Sparse inverses 

• Scattered sources in the presence of noise 
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Alternative constraints 

Goal: combine strengths of smooth and sparse approaches 

 

1. Mixed-norm penalties, e.g.,   

 

 Solution is sparse, but still smooth 

 

 

2. Sparsity after transform, sparsity in different basis 

 

E.g.                        , or                      , with  

 

 Solution has simple („low-dimensional“) structure 

[Haufe et al., 2008; Vega-Hernández et al., 2008] 

[Haufe et al., 2008; Haufe et al., 2011] 
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Alternative constraints 

 

 

 

 

 

 

                      Smooth 

 

 

          Both 

 

 

                      Sparse 

 

 

 

 

 



Stefan Haufe, BBCI Summer School 2012, Berlin 56 

Real-world Example 

• Electrical stimulation at both thumbs 

(Median nerves) 

 

 N20 potential in the EEG 

 

 

 

 

 

 

 

 

• Localization (should) reveal two symmetric 

sources in somatosensory cortex 

[Haufe et al., 2008] 
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Depth compensation 

• Superficial sources contribute more to the EEG than deep ones 

 

 many superficial sources „cost less“ than one deep source. 

 

 Location bias towards superficial sources. 

 

Countermeasure: minimize norm of weighted sources   

  

 

 

with diagonal or blockdiagonal       encoding a voxel-specific  penalty 
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Depth compensation 

 

1. Norm of the columns of the forward matrix A 

 

2. Voxel-wise (co-) variance of the minimum-norm solution 

 

3. Norm + distance from EEG sensors 

 

 

 

»                                      Choice of W is crucial! 

 

»                                      Optimality results exist for 2.  

[Jeffs et al., 1987] 

[Pascual-Marqui, 2002; Haufe et al., 2008] 

[Marzetti et al., 2008] 
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Sparsity of Vector Fields 

[Haufe et al., 2008; Ding et al., 2008; Ou et al., 2009] 

Dipole orientations are 3D vectors,  

source distributions are 3D vectorfields 

 

Technical problem: sparsification using the 

L1-norm sets single dimensions to zero 

 

 Estimated sources are not physiologically 

plausible (parallel to coordinate axes) 

 

Solution: L1,2-norm penalty 

 

 Dipole dimensions can only be pruned 

jointly 
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More „physiological“ constraints 

 

 

 

 

 

 

 

 

 

1. Sources on cortex, arbitrary orientation 

2. Sources on cortex, orientation normal to surface (dangerous!) 

3. Regions of interest   

4. Symmetric configurations 
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Summary (1. part) 

 

• Inverse problem is ill-posed, constraints needed to „solve“ it 

• Correct solution always relies on correctness of assumptions 

 

• Dipole fits: few number of sources 

 

• Distributed inverse imaging: constraints on the spatial distribution 

of the sources 

 

• Both approaches (try) to explain the data completely 

 



Inverse Methods for EEG/MEG  

Part II 

Tutorial 

1. Beamformer 

2. MUSIC  

 



Beamformers 



Dipole amplitude? 
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Task: Reconstruct signal s(t) from sensor data x1(t) and x2(t)! 

There are many perfect solutions: 
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Dipole amplitude? 

)()()( 22 tntstx 
)()()( 11 tntstx 

)(ts

Beamformer: Use the freedom to also maximize signal to noise ratio!  

Noise Level 

1  

Noise Level 

2  

)()( 1 txts 

2

)(

2

)(
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ts 

If 1 =0  and 2 >0  then choose  

If 1 =2  then choose  

If 1 =22  then choose  )(
5

4
)(

5

1
)( 21 txtxts 

Coefficients= 

„spatial filter“  



We measure source + noise 

How do we know the noise level? 

Theorem:  

If source and noise are independent, then 

  

Var(sensor data)=Var(source)+Var(noise) 

can be measured is fixed 

„linearly constrained“ 
 

   

Minimizing Var(sensor data) 

=Minimizing noise level 

= Maximizing Signal to Noise raio 

LCMV = Linearly Constrained Minimum Variance 

Problem if „noise“ is not independent 



Nulling beamformer 

)()()( 33 tntstx 

)(ts
)(2 ts

)()()( 22 tntstx )()()()( 121 tntststx 

Three goals 

1. See s(t) perfectly 

2. suppress  s2(t) perfectly 

3. suppress noise as good as possible 

Solution here: just ignore first sensor and apply 

beamformer on the remaining channels 

Can be solved in the general case 



SAM and LCMV beamformer  

)()()( 22 tntstx 

)()()( 11 tntstx 

)(ts

SAM = Synthetic Aperture Magnetometry 

 

1. See s(t) 

2. Minimize noise  

For each direction seperarately, then fix direction with maximal power 

)()()( 22 tntstx 

)()()( 11 tntstx 

)(ts

Supress perfectly! 

LCMV= Linearly Constrained Minimum 

Variance 

  

1. See s(t) 

2. Suppress orthogonal dipoles perfectly 

3. Minimize noise   



DICS=LCMV beamformer in frequency domain 

 

Variance  Power at frequency f  

Covariance matrix  cross spectrum at frequency f 

 



EEG-simulation of ERD (1 source) 

Rest: Real background + simulated dipole 

Task: Real background 

 

Inverse using beamformer (DICS) on cortex 

Simulated dipole 
Estimated power ratio: Rest/Task 



Coh., signal+background Coh., background 

Coh., difference 

seed 



Coh., signal+background Coh., background 

Coh., difference 

seed 

seed 
original dipole 

location 



Noise 
Data 

MUSIC (Multiple Signal Classification) 



1. Find important patterns in data: PCA of covariance matrix 

First two eigenvectors: 

True patterns: 



1. Find important patterns in data: PCA of covariance matrix 

First two eigenvectors: 

True patterns: 



1. Find important patterns in data: PCA of covariance matrix 

First two eigenvectors: 

True patterns: 



2. Does a combination of eigenvectors look like a dipole at a some 

location?  

Wrong 

location 

Topography of 

wrong dipole 

First two PCA comp. 

Best fit 

(is bad) 



2. Does a combination of eigenvectors look like a dipole at a some 

location?  
Right location 

Topography of 

right dipole 

First two PCA comp. 

Best fit 

(is good) 



Scan: one slice 



Scan: whole brain 



A: Forward model 

B 

 

MUSIC 
1. SVD of covariance matrix  

2. Analyze space spanned by P dominant singular vectors 

First PCA-Component 

Second PCA-

Component 

Illustration for P=2 

For each voxel in the brain:  

  

Here: SVD of imaginary part of cross-spectrum 

Display: 1/error=1/sin() 



Simulation: 4 sources 



RAP-MUSIC 
Recursively applied MUSIC 

Project out maxima iteratively 

1 2 

3 4 



Source explains data 
 

1. Dipole model 

2. Minimum norm solutions 

Source doesn’t explain data 
 

1. Beamformer 

2. MUSIC 



The End 


