Tutorial on EEG/MEG inverse source reconstruction

Guido Nolte and Stefan Haufe

Part 1: dipole fits and distributed inverse solutions

Part 2: beamformers and subspace methods

BBCI Summer School 2012, Berlin

EEG and MEG

Cellular currents due to synchronous firing of a large population of equally spatially aligned neurons give rise to extracranial electric potentials and magnetic fields.

Electroencephalography (EEG)

= measuring the potential differences on the scalp

Magnetoencephalography (MEG)

= measuring the extracranial magnetic fields

MEG and EEG are different views of the same neural sources.

Slide by Lauri Parkkonen

EEG and MEG

Advantages:

- Noninvasive
- High temporal resolution
- Portable (EEG)
- Low cost (EEG)

Disadvantage: only indirect measurements

- Low signal-to-noise ratio
- Difficult to interpret

Volume conduction

Problem: Spatial smearing of the source activity in the sensors due to the propagation of el. currents/magnetic fields in the head tissue.

Volume conduction should explicitly be modeled in order to

- Improve signal-to-noise ratio (e.g., in BCIs)
- Interpret the results, localize the sources

Interpretability

source electrical dipole

EEG scalp potential

Direction of dipole current (determined by the local curvature of the cortex) has more influence than location.

Characteristics of the EEG and MEG generation

slide from: Nobukazu Nakasato, 2009

Characteristics of the EEG and MEG generation

slide from: Nobukazu Nakasato, 2009

slide from: Nobukazu Nakasato, 2009

$$\mathbf{x}(t) = \int_{\mathbf{u}\in\mathcal{B}} F(\mathbf{u})\mathbf{s}(\mathbf{u},t)\mathrm{d}\mathbf{u} + \boldsymbol{\epsilon}(t)$$

 \mathcal{B} : brain volume

Scalp potential $\mathbf{x}(t) \in \mathbb{R}^M$ depends on

 $\mathbf{s}(\mathbf{u},t): \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^3$: sources of interest (el. activity in the brain)

 $F(\mathbf{u}): \mathcal{B} \to \mathbb{R}^M \times \mathbb{R}^3$: forward mapping describing the propagation of currents from sources to sensors within volume conductor

 $\boldsymbol{\epsilon}(t) \in \mathbb{R}^{M}$: sources of no interest (e.g., sensor noise, artifacts)

Forward modeling

- $F(\mathbf{u})$ can be computed given
 - The geometry of the brain/skull/skin compartments
 - The conductivities of the different tissue types
 - The electrode positions

Figure from Litvak et al., 2011

• Slightly simpler for MEG than for EEG

Source reconstruction is an ill-posed problem.

Source reconstruction is an ill-posed problem.

Which is the correct solution?

Source reconstruction = selecting the sources that best match prior expectations (assumptions), while explaining the data.

EEG model:
$$\mathbf{x}(t) = \int_{\mathbf{u} \in \mathcal{B}} F(\mathbf{u}) \mathbf{s}(\mathbf{u}, t) d\mathbf{u} + \boldsymbol{\epsilon}(t)$$

Blind source separation:

F and s unknown, estimate both

e.g., ICA, CSP, xDAWN

Inverse source reconstruction:

F given by physical model, estimate s

Inverse methods

MNE MCE WMNE Loreta **sLORETA eLORETA** Laura Electra WROP DICS LCMV-Beamformer **Nulling Beamformer** FOCUSS Champagne Minimum Entropy **Dipole Modeling** Multipole Modeling MUSICRAP-MUSIC S-FLEX DCM

- Every inverse methods makes specific assumptions.
- (Ideally) performs well if assumptions are met.
- There can be no method that performs well in general.

Dipole modeling

Dipole modeling

Model potential

Assumption: few number of point sources

Estimate their locations and orientation.

Estimated source (blue) True source (red)

Dipole Modeling, high noise

- White noise is fairly harmless for dipole fits.
- Magnitude of error is not very informative.

Estimated source (blue) True source (red)

Dipole Modeling, brain noise

Model potential (explains 65%)

• Brain noise looks harmless but isn't.

• Again, magnitude of error is not very informative.

Estimated source (blue) True source (red) Measured potential : x

Model potential :
$$\tilde{\mathbf{x}}({\mathbf{u}_k, \mathbf{s}_k}) = \sum_{k=1}^{K} F(\mathbf{u}_k) \mathbf{s}_k$$

Minimize a cost function $L({\mathbf{u}_k, \mathbf{s}_k})$:

1. Least-squares error

$$L({\mathbf{u}_k, \mathbf{s}_k}) = \sum_{i=1}^M (\mathbf{x}_i - \tilde{\mathbf{x}}({\mathbf{u}_k, \mathbf{s}_k})_i)^2$$

(assumes independent and equal channel noise)

[e.g., Scherg, 1992]

2. Weighted least squares error

$$L(\{\mathbf{u}_k, \mathbf{s}_k\}) = \sum_{i=1}^{M} \frac{(\mathbf{x}_i - \tilde{\mathbf{x}}(\{\mathbf{u}_k, \mathbf{s}_k\})_i)^2}{\sigma_i^2}$$

(for independent and unequal channel noise)

noise level in channel i

3. Full Maximum Likelihood

The Problem of Local Minima

In general, $F(\mathbf{u})$ is nonlinear in the location \mathbf{u} .

> The cost function $L({\mathbf{u}_k, \mathbf{s}_k})$ has local minima (is "nonconvex").

The Problem of Local Minima

1 dipole

Truth

20 fits

Stefan Haufe, BBCI Summer School 2012, Berlin

33

2 dipoles

- 1. "Moving dipoles": treat each time point separately
- **2. "Fixed dipoles":** location and orientation fixed over time, amplitude varies
- **3.** "Rotating dipoles": location is fixed, orientation and amplitude varies (models multiple sources too close to be resolved spatially)

Generally: including time stabilizes inverse solution

Example: Event-related Potentials (ERP)

Distributed Inverse Imaging

Distributed Inverse Imaging

Recall: Dipole modeling tries to explain data with few sources as good as possible.

Here: Explain data ,exactly' with many sources + additional constraint (regularizer/penalty).

Voxels in brain

Model N dipoles with fixed locations, optimize over orientations.

• Model potential is **linear** in the orientation parameters

$$\tilde{\mathbf{x}} = \sum_{i=1}^{N} F(\mathbf{u}_i) \mathbf{s}(\mathbf{u}_i) = \sum_{i=1}^{N} F_i \mathbf{s}_i = A\mathbf{s}$$

Solve underdetermined linear system for s

Infinitely many solutions

- \blacktriangleright Additional constraint g(s) needed to achieve uniqueness
 - **1.** No noise setting: minimize g(s) subject to x = As

2. Noise setting : minimize
$$L(\mathbf{s}) = \|\mathbf{x} - A\mathbf{s}\|_2^2 + \lambda g(\mathbf{s})$$

|
Likelihood Regularizer/penalty

Typically: $M \ll N$ e.g., $M = 100, N = 10\,000$

- > rank(A) = 100, $dim(null(A)) = 9\,900$
- ► For $\mathbf{S}_0 \in \text{null}(A)$: $\|\mathbf{x} A\mathbf{s}\|_2^2 = \|\mathbf{x} A(\mathbf{s} + \mathbf{s}_0)\|_2^2$
- The constraint on s influences the solution more than the Likelihood, must be chosen wisely.

The regularizer should reflect prior knowledge on the sources.

Technical aspect: choose g(s) to be a convex function (e.g., norm)

> Overall cost function L(s) is convex, has only one global minimum

Spatial smoothness

- Assumption: neighboring voxels show similar activity
- E.g., weighted minimum norm estimate (WMN), LORETA

[Jeffs et al., 1987; Pascual-Marqui et al., 1994]

- Technically: L₂-norm $g(\mathbf{s}) = \|\Gamma \mathbf{s}\|_2^2$ leads to smoothness
 - Convex optimization
 - > Solution linear in data: $\hat{\mathbf{s}} = (A^{\top}A + \lambda \Gamma^{\top}\Gamma)^{-1}A^{\top}\mathbf{x}$

 \succ B are precomputable **spatial filters** \xrightarrow{D} very efficient

- · Both sources explain data equally well
- Source 1 has L₂-norm: $\sqrt{1^2 + 1^2} = \sqrt{2}$
- Source 2 has L₂-norm: $\sqrt{2^2} = 2$

Spatial sparsity

- Assumption: only a small part of the brain is active during task
- E.g., minimum current estimate (MCE), FOCUSS

[Matsuura et al., 1995; Gorodnitsky et al., 1995]

- Technically: L_1 -norm $g(s) = ||s||_1$ leads to sparsity
 - Convex optimization
 - \succ Solution \hat{s} nonlinear in data, iterative optimization required

Origin of sparsity

The level sets of Likelihood and constraint **almost always** intersect at the coordinate axes.

The level sets of Likelihood and constraint **almost never** intersect at the coordinate axes.

Limitations of smooth (linear) and sparse inverses

Smooth inverses

• Difficulty to distinguish sources

• "Ghost sources"

Sparse inverses

• Scattered sources in the presence of noise

Goal: combine strengths of smooth and sparse approaches

- 1. Mixed-norm penalties, e.g., $g(\mathbf{s}) = \|\mathbf{s}\|_1 + \gamma \|\mathbf{s}\|_2$
- \rightarrow Solution is sparse, but still smooth

[Haufe et al., 2008; Vega-Hernández et al., 2008]

2. Sparsity after transform, sparsity in different basis

E.g.
$$g(\mathbf{s}) = \|\Gamma \mathbf{s}\|_1$$
 , or $g(\mathbf{s}) = \|\tilde{\mathbf{s}}\|_1$, with $s = \|\Pi \tilde{\mathbf{s}}\|_1$

→ Solution has simple ("low-dimensional") structure

[Haufe et al., 2008; Haufe et al., 2011]

Alternative constraints

Real-world Example

- Electrical stimulation at both thumbs (Median nerves)
- ➢ N20 potential in the EEG

 Localization (should) reveal two symmetric sources in somatosensory cortex

[Haufe et al., 2008]

Depth compensation

- Superficial sources contribute more to the EEG than deep ones
- many superficial sources "cost less" than one deep source.
- Location bias towards superficial sources.

Countermeasure: minimize norm of *weighted* sources

 $g(\mathbf{s}) = \|W\mathbf{s}\|_p$

with diagonal or blockdiagonal W encoding a voxel-specific penalty

Stefan Haufe, BBCI Summer School 2012, Berlin 59

Depth compensation

unweighted

1. Norm of the columns of the forward matrix A

[Jeffs et al., 1987]

2. Voxel-wise (co-) variance of the minimum-norm solution

[Pascual-Marqui, 2002; Haufe et al., 2008]

3. Norm + distance from EEG sensors

[Marzetti et al., 2008]

Choice of W is crucial!

Optimality results exist for 2.

Sparsity of Vector Fields

Dipole orientations are 3D vectors, source distributions are 3D vectorfields

Technical problem: sparsification using the L_1 -norm sets single dimensions to zero

 Estimated sources are not physiologically plausible (parallel to coordinate axes)

Solution: $L_{1,2}$ -norm penalty $\sum_{i} \|\mathbf{s}_i\|_2$

Dipole dimensions can only be pruned jointly

[Haufe et al., 2008; Ding et al., 2008; Ou et al., 2009]

More "physiological" constraints

K. Jerbi et al. / NeuroImage 22 (2004) 779-793

- 1. Sources on cortex, arbitrary orientation
- 2. Sources on cortex, orientation normal to surface (dangerous!)
- 3. Regions of interest
- 4. Symmetric configurations

Summary (1. part)

- Inverse problem is ill-posed, constraints needed to "solve" it
- Correct solution always relies on correctness of assumptions
- Dipole fits: few number of sources
- Distributed inverse imaging: constraints on the spatial distribution of the sources
- Both approaches (try) to explain the data completely

Inverse Methods for EEG/MEG Part II Tutorial

- 1. Beamformer
- 2. MUSIC

Beamformers

Dipole amplitude?

Task: Reconstruct signal s(t) from sensor data $x_1(t)$ and $x_2(t)$!

There are many perfect solutions:

$$s(t) = x_{1}(t)$$

$$s(t) = x_{2}(t)$$

$$s(t) = \frac{x_{1}(t)}{2} + \frac{x_{2}(t)}{2}$$

$$s(t) = ax_{1}(t) + (1 - a)x_{2}(t)$$

Dipole amplitude?

Beamformer: Use the freedom to also maximize signal to noise ratio!

If $\sigma_1 = 0$ and $\sigma_2 > 0$ then choose $S(t) = X_1(t)$

If
$$\sigma_1 = \sigma_2$$
 then choose $s(t) = \frac{x_1(t)}{2} + \frac{x_2(t)}{2}$
If $\sigma_1 = 2\sigma_2$ then choose $s(t) = \frac{1}{5}x_1(t) + \frac{4}{5}x_2(t)$
Coefficients= "spatial filter"

We measure source + noise How do we know the noise level?

LCMV = Linearly Constrained Minimum Variance

Problem if "noise" is not independent

Nulling beamformer

Three goals

- 1. See s(t) perfectly
- 2. suppress s₂(t) perfectly
- 3. suppress noise as good as possible

Solution here: just ignore first sensor and apply beamformer on the remaining channels

Can be solved in the general case

SAM and LCMV beamformer

Supress perfectly!

SAM = Synthetic Aperture Magnetometry

- 1. See s(t)
- 2. Minimize noise

LCMV= Linearly Constrained Minimum Variance

- 1. See s(t)
- 2. Suppress orthogonal dipoles perfectly
- 3. Minimize noise

For each direction seperarately, then fix direction with maximal power

DICS=LCMV beamformer in frequency domain

Variance \rightarrow Power at frequency f Covariance matrix \rightarrow cross spectrum at frequency f **EEG-simulation of ERD (1 source)**

Rest: Real background + simulated dipole Task: Real background

Inverse using beamformer (DICS) on cortex

Simulated dipole

Estimated power ratio: Rest/Task

Coh., difference

- - 0.8 - - 0.7 - - 0.6 - - 0.5 - 0.4 - 0.3 0.2 0.1

0.9

MUSIC (Multiple Signal Classification)

1. Find important patterns in data: PCA of covariance matrix

1. Find important patterns in data: PCA of covariance matrix

1. Find important patterns in data: PCA of covariance matrix

2. Does a combination of eigenvectors look like a dipole at a some location?

First two PCA comp.

2. Does a combination of eigenvectors look like a dipole at a some location? Right location

Topography of right dipole

Best fit (is good)

First two PCA comp.

Scan: one slice

Scan: whole brain

Truth

MUSIC

RAP-MUSIC Recursively applied MUSIC

Project out maxima iteratively

Source explains data

- 1. Dipole model
- 2. Minimum norm solutions

Source doesn't explain data

- 1. Beamformer
- 2. MUSIC

The End