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Abstract

◮ Introduction to ICA
◮ Problem of blind source separation
◮ Importance of non-Gaussianity
◮ Fundamental difference to PCA

◮ Motivation of resting-state analysis

◮ Improving ICA of spontaneous EEG/MEG
◮ Applying ICA on time-frequency decompositions
◮ Spatial version of independent component analysis (ICA)

◮ Testing components: Are they just random effects?
◮ Intersubject consistency provides an plausible null hypothesis

◮ Causal analysis / effective connectivity
◮ Structural equation models better estimated using

non-Gaussianity
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Problem of blind source separation

There is a number of “source signals”:

Due to some external circumstances, only linear mixtures of the
source signals are observed.

Estimate (separate) original signals!
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A solution is possible

PCA does not recover original signals
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A solution is possible

PCA does not recover original signals

Use information on statistical independence to recover:
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Independent Component Analysis

(Hérault and Jutten, 1984-1991)

◮ Observed random variables xi are modelled as linear sums of
hidden variables:

xi =

m∑

j=1

aijsj , i = 1...n (1)

◮ Mathematical formulation of blind source separation problem

◮ Not unlike factor analysis

◮ Matrix of aij is parameter matrix, called “mixing matrix”.

◮ The si are hidden random variables
called “independent components”, or “source signals”

◮ Problem: Estimate both aij and sj , observing only xi .
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When can the ICA model be estimated?

◮ Must assume:
◮ The si are mutually statistically independent
◮ The si are nongaussian (non-normal)
◮ (Optional:) Number of independent components is equal to

number of observed variables

◮ Then: mixing matrix and components can be identified
(Comon, 1994)
A very surprising result!
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Reminder: Principal component analysis

◮ Basic idea: find directions
∑

i wixi of maximum variance

◮ We must constrain the norm of w:
∑

i w
2
i = 1, otherwise

solution is that wi are infinite.

◮ For more than one component, find direction of max var
orthogonal to components previously found.

◮ Classic factor analysis has essentially same idea as in PCA:
explain maximal variance with limited number of components
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Comparison of ICA, factor analysis and principal

component analysis

◮ ICA is nongaussian FA with no noise or specific factors.
So many components that all variance is explained by them.

◮ No factor rotation left unknown because of identifiability result

◮ In contrast to FA and PCA, components really give the
original source signals or underlying hidden variables

◮ Catch: only works when components are nongaussian
◮ Many “psychological” hidden variables (e.g. “intelligence”)

may be (practically) gaussian because sum of many
independent variables (central limit theorem).

◮ But signals measured by sensors are usually quite nongaussian
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Some examples of nongaussianity
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Why classic methods cannot find original components or

sources

◮ In PCA and FA: find components yi which are uncorrelated

cov(yi , yj) = E{yiyj} − E{yi}E{yj} = 0 (2)

and maximize explained variance (or variance of components)

◮ Such methods need only the covariances, cov(xi , xj)

◮ However, there are many different component sets that are
uncorrelated, because

◮ The number of covariances is ≈ n2/2 due to symmetry
◮ So, we cannot solve the n2 factor loadings, not enough

information!
(“More variables than equations”)
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Nongaussianity, with independence, gives more information

◮ For independent variables we have

E{h1(y1)h2(y2)} − E{h1(y1)}E{h2(y2)} = 0. (3)

◮ For nongaussian variables, nonlinear covariances give more
information than just covariances.

◮ This is not true for multivariate gaussian distribution
◮ Distribution is completely determined by covariances
◮ Uncorrelated gaussian variables are independent, and their
◮ distribution (standardized) is same in all directions (see below)

⇒ ICA model cannot be estimated for gaussian data.
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Illustration

Two components with uniform distributions:
Original components, observed mixtures, PCA, ICA

PCA does not find original coordinates, ICA does!
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Illustration of problem with gaussian distributions

Original components, observed mixtures, PCA

Distribution after PCA is the same as distribution before mixing!
“Factor rotation problem” in classic FA
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Basic intuitive principle of ICA estimation

◮ Inspired the Central Limit Theorem:
◮ Average of many independent random variables will have a

distribution that is close(r) to gaussian
◮ In the limit of an infinite number of random variables, the

distribution tends to gaussian

◮ Consider a linear combination
∑

i wixi =
∑

i qisi

◮ Because of theorem,
∑

i qi si should be more gaussian than si .

◮ Maximizing the nongaussianity of
∑

i wixi , we can find si .

◮ Also known as projection pursuit.

◮ Cf. principal component analysis:
maximize variance of

∑
i wixi .
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Illustration of changes in nongaussianity
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Development of ICA algorithms

◮ Nongaussianity measure: Essential ingredient
◮ Kurtosis: global consistency, but nonrobust.
◮ Differential entropy: statistically justified, but difficult to

compute.
◮ Essentially same as likelihood (Pham et al, 1992/97) or

infomax (Bell and Sejnowski, 1995)

◮ Rough approximations of entropy: compromise

◮ Optimization methods
◮ Gradient methods (e.g. natural gradient; Amari et al, 1996)
◮ Fast fixed-point algorithm, FastICA (Hyvärinen, 1999)
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Sparsity is the dominant form of non-Gaussianity

◮ Sparsity = probability density has heavy tails and peak at zero:
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◮ (Another form of non-Gaussianity is skewness or asymmetry)
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Combining ICA with factor analysis or PCA

◮ In practice, it is useful to combine ICA with classic PCA or FA
◮ First, find a small number of factors with PCA or FA
◮ Then, perform ICA on those factors

◮ ICA is then a method of factor rotation

◮ Very different from varimax etc. which do not use statistical
structure, and cannot find original components (in most cases)

◮ Reduces noise in signals, reduces computation
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The brain at rest

◮ The subject’s brain is being measured while
◮ the subject has no task
◮ the subject receives no stimulation

◮ Measurements by
◮ functional magnetic resonance imaging (fMRI)
◮ electroencephalography (EEG)
◮ magnetoencephalography (MEG)

◮ Why is this data so interesting?
◮ Not dependent on subjective choices in experimental design

(e.g. stimulation protocol, task)
◮ Not much analysis has been done so far
◮ Completely new viewpoint: rich internal dynamics
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Is anything happening in the brain at rest?

◮ Some brain areas are actually
more active at rest

◮ “Default-mode network(s)” in
PET and fMRI (Raichle 2001)

◮ Brain activity is “intrinsic”
instead of just responses to
stimulation

◮ How to analyse resting state in
more detail?

(Raichle, 2010 based on Shulman et al 1997)
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ICA finds resting-state networks in fMRI

(Beckmann et al, 2005)

a) Medial and

b) lateral visual areas,

c) Auditory system,

d) Sensory-motor system,

e) Default-mode network,

f) Executive control,

g) Dorsal visual stream
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ICA finds resting-state networks in fMRI

(Beckmann et al, 2005)

a) Medial and

b) lateral visual areas,

c) Auditory system,

d) Sensory-motor system,

e) Default-mode network,

f) Executive control,

g) Dorsal visual stream

Very similar results obtained if subject watching a movie!
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How about EEG and MEG?

◮ Very high temporal accuracy (millisecond scale)

◮ Not so high spatial accuracy (less than in fMRI)

◮ Spontaneous activity vs. evoked responses

◮ Typically characterized by oscillations, e.g. at around 10 Hz

◮ Up to 306 time series (signals), 104 . . . 105 time points.

◮ Information very different from fMRI
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Different sparsities of EEG/MEG data

◮ ICA finds components by maximizing sparsity, but
sparsity of what?
Depends on preprocessing and representation

◮ Assume we do wavelet or short-time Fourier transform

◮ We have different sparsities:

Aapo Hyvärinen Separating sources and analysing connectivity in EEG/MEG using



Introduction to ICA
Brain at rest

Testing independent components
Causal analysis

Discussion

ICA of resting-state fMRI
ICA of spontaneous EEG/MEG
Different sparsities
Spatial ICA

Different sparsities of EEG/MEG data

◮ ICA finds components by maximizing sparsity, but
sparsity of what?
Depends on preprocessing and representation

◮ Assume we do wavelet or short-time Fourier transform

◮ We have different sparsities:

Sparsity in time:

Temporally modulated
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Different sparsities of EEG/MEG data

◮ ICA finds components by maximizing sparsity, but
sparsity of what?
Depends on preprocessing and representation

◮ Assume we do wavelet or short-time Fourier transform

◮ We have different sparsities:

Sparsity in time:

Temporally modulated
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Sparsity in space:

Localised on cortex
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Different sparsities of EEG/MEG data

◮ ICA finds components by maximizing sparsity, but
sparsity of what?
Depends on preprocessing and representation

◮ Assume we do wavelet or short-time Fourier transform

◮ We have different sparsities:

Sparsity in time:

Temporally modulated
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Sparsity in space:

Localised on cortex

Sparsity in frequency:

narrow-band signals
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Spectral sparsity: Fourier-ICA

◮ Problem: Rhythmic sources
(oscillations) may not be sparse

Modulation of oscillations
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Spectral sparsity: Fourier-ICA

◮ Problem: Rhythmic sources
(oscillations) may not be sparse

Modulation of oscillations
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◮ Solution: Perform ICA on short-time
Fourier transforms:

◮ Divide each channel into
time windows e.g. 1 sec long

◮ Fourier transform each window
◮ Joint sparsity in time and frequency

(NeuroImage, 2010).

⇓
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Spatial sparsity (spatial ICA)

◮ Images observed at different time points are linear sums of
“source images”

= an1

= a21

= a11  +a12 ... +a1n

◮ Reverses the roles of observations and variables

◮ Maximizes spatial sparsity alone

◮ Almost always used in fMRI
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Spatial ICA in MEG

◮ Spatial ICA possible for MEG by projecting data on the cortex

◮ We combine this with short-time Fourier transforms

◮ Maximizes sparsity spatially and spectrally

◮ No assumption on temporal independence

(Ramkumar et al, Human Brain Mapping, 2012.

Here, not resting data but with “naturalistic stimulation”)
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Testing ICs: motivation

◮ ICA algorithms give a fixed number of components and do not
tell which ones are reliable (statistically significant)

◮ How do we know that an estimated component is not just a
random effect?

◮ Algorithmic artifacts also possible (local minima)
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Testing ICs: motivation

◮ ICA algorithms give a fixed number of components and do not
tell which ones are reliable (statistically significant)

◮ How do we know that an estimated component is not just a
random effect?

◮ Algorithmic artifacts also possible (local minima)

◮ We develop a statistical test based on inter-subject
consistency:

◮ Do ICA separately on several subjects
◮ A component is significant if it appears in two or more subjects

in a sufficiently similar form
◮ We formulate a rigorous null hypothesis to quantify this idea

(NeuroImage, 2011)
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Testing ICs: results

One IC Another IC
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Causal analysis: Introduction

◮ Model connections between the measured variables

◮ Two fundamental approaches
◮ If time-resolution of measurements fast enough, we can use

autoregressive modelling (Granger causality)
◮ Otherwise, we need structural equation models

◮ If measured variables are raw EEG/MEG, we should first
localize sources

◮ After blind source separation, sources are uncorrelated
⇒ More meaningful to model dependencies of envelopes
(amplitudes, variances)
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Structural equation models

◮ How does an externally imposed change in
one variable affect the others?

xi =
∑

j 6=i

bijxj + ei

◮ Difficult to estimate, not simple regression
◮ Classic methods fail in general
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Structural equation models

◮ How does an externally imposed change in
one variable affect the others?

xi =
∑

j 6=i

bijxj + ei

◮ Difficult to estimate, not simple regression
◮ Classic methods fail in general

◮ Can be estimated if (Shimizu et al., JMLR, 2005)

1. the ei (t) are mutually independent
2. the ei (t) are non-Gaussian, e.g. sparse
3. the bij are acyclic: There is an ordering of xi

where effects are all “forward”
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Simple measures of causal direction

◮ The very simplest case: choose between regression models

y = ρx + d (4)

where d is independent of x , and symmetrically

x = ρy + e (5)

◮ If data is Gaussian we can estimate ρ = E{xy}
BUT : Both models have same likelihood!

◮ For non-Gaussian data, approximate log-likelihood ratio as

R = ρE{x g(y)− g(x)y} (6)

where g is a nonlinearity similar to those used in ICA:
g(u) = u3 or g(u) = − tanh(u) (ACML2010).

◮ Choose direction based on sign of R!
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Sample of results on MEG

Black: positive influence, red: negative influence.
Green: manually drawn grouping.

Here, using GARCH model (Zhang and Hyvärinen, UAI2010)
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Discussion

◮ Exploratory data analysis by ICA can give information about
internal dynamics during rest, and

◮ activity not directly related to stimulation
◮ responses when stimulation too complex
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Discussion

◮ Exploratory data analysis by ICA can give information about
internal dynamics during rest, and

◮ activity not directly related to stimulation
◮ responses when stimulation too complex

◮ We present two stages of analysis
◮ Finding sources by different variants of ICA

◮ Spatial ICA, time-frequency decompositions, etc.

◮ Analyzing their effective connectivity:
◮ Non-Gaussian versions of SEM
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Discussion

◮ Exploratory data analysis by ICA can give information about
internal dynamics during rest, and

◮ activity not directly related to stimulation
◮ responses when stimulation too complex

◮ We present two stages of analysis
◮ Finding sources by different variants of ICA

◮ Spatial ICA, time-frequency decompositions, etc.

◮ Analyzing their effective connectivity:
◮ Non-Gaussian versions of SEM

◮ At some point, intersubject consistency should be analyzed
◮ Makes significance tests possible
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