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2Machine Learning (ML)

Goal: Learn information hidden behind data
There are many ML tasks:

Learning under non-stationarity, domain 
adaptation, multi-task learning, two-sample 
test, outlier detection, change detection in time 
series, independence test, feature selection, 
dimension reduction, independent component 
analysis, canonical dependency analysis, 
causal inference, clustering, object matching, 
conditional probability estimation, probabilistic 
classification, etc.



3Universal Approach
Learning data-generating probability distribution 
allows us to solve all ML tasks.

Ex: Pattern recognition is                                  
possible if data-generating                              
probability distributions                                         
for each class are available.

Class +1 Class -1

Knowing data 
generating 

distributions

Knowing all 
about data

Decision boundary



Task-Specific Approach
However, estimation of probability 
distributions is known to be difficult.
Avoid probability distribution estimation 
and solve the target task directly.
Ex: Support vector machine

Directly learn a decision boundary without 
estimating data-generating distributions.
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Decision boundary

Cortes & Vapnik
(ML1995)

Class +1 Class -1



Task-Specific Approach (cont.)

In principle, task-specific approaches 
can be more accurate than the 
universal approach.   

However, research and development 
for each ML task is highly costly and 
cumbersome:

Theory, algorithms, implementation, 
education, etc.
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Intermediate Approach
Our target: R&D for a group of tasks:

Learning under non-stationarity, domain adaptation, 
multi-task learning, two-sample test, outlier detection, 
change detection in time series, independence test, 
feature selection, dimension reduction, independent 
component analysis, canonical dependency analysis 
causal inference, clustering, object matching, conditional 
probability estimation, probabilistic classification, etc.
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Universal Intermediate Task-specific



7Density-Ratio Estimation
All ML tasks listed in the previous page 
include multiple probability distributions.

For solving these ML tasks, individual 
distributions are not necessary.
But knowing the density ratio is enough.

We directly estimate the density ratio 
without going through density estimation.



8Intuitive Justification

Estimating the density ratio is substantially 
easier than estimating densities!

Vapnik’s principle:
When solving a problem of interest,

one should not solve a more general problem
as an intermediate step

Knowing densities Knowing ratio

Vapnik (1998)



Quick Conclusions
Density ratios can be accurately and efficiently 
estimated by simple least-squares!
Many ML tasks can be solved just by LS:

Importance sampling:

Divergence estimation:

Mutual information estimation:

Conditional probability estimation:
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10Organization of This Lecture

1. Introduction
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5. Conclusions



11Density Ratio Estimation:
Problem Formulation

Goal: Estimate the density ratio

from data 



Density Estimation Approach

Naïve 2-step approach:
1. Perform density estimation:

2. Compute the ratio of estimated densities:

However, this works poorly because   
1. is performed without regard to 2.
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14Kullback-Leibler Importance
Estimation Procedure (KLIEP)

Minimize KL divergence from            
to                                :

Decomposition of KL:

Nguyen, Wainwright & Jordan (NIPS2007)
MS, Nakajima, Kashima, von Bünau & Kawanabe (NIPS2007)



15KLIEP: Formulation
Objective function:

Constraints:
is a probability density:

Linear-in-parameter density-ratio model:

(ex. Gauss kernel)



16KLIEP: Algorithm
Approximate expectations by sample averages:

This is convex optimization, so repeating
Gradient ascent
Projection onto the feasible region

leads to the global solution.
The global solution is sparse!



17KLIEP: Convergence Properties

Parametric case:

Learned parameter converge to the optimal value 
with order       , which is the optimal rate.

Non-parametric case:

Learned function converges to the optimal function 
with order         , which is the optimal rate.

Nguyen, Wainwright & Jordan (IEEE-IT2010)
MS, Suzuki, Nakajima, Kashima, von Bünau & Kawanabe (AISM2008)

: Complexity of the function class related to 
the covering number or bracketing entropy



KLIEP: Numerical Example

Gaussian width can be determined by 
cross-validation with respect to KL.

18

True
densities

Ratios



KLIEP: Summary
Density estimation is not involved.
Cross-validation is available for kernel 
parameter selection.
Variations for various models exist:

Log-linear, Gaussian mixture, PCA mixture, etc.
An unconstrained variant corresponds to 
maximizing a lower-bound of KL divergence.

19

Nguyen, Wainwright
& Jordan (NIPS2007)
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21Least-Squares Importance
Fitting (LSIF)

Minimize squared-loss (SQ):

Decomposition and approximation of SQ:

Kanamori, Hido & MS
(NIPS2008)



22Constrained LSIF Formulation
Linear (or kernel) density-ratio model:

Constrained LSIF (cLSIF):
Non-negativity constraint with    -regularizer

A convex quadratic program with sparse solution.



23cLSIF: Regularization Path Tracking

The solution path is piece-wise linear with 
respect to the regularization parameter    .

Solutions for all    can be computed efficiently
without QP solvers!



24Unconstrained LSIF Formulation

Unconstrained LSIF (uLSIF):
uLSIF: No constraint with    -regularizer

Analytic solution is available:



25uLSIF: Analytic LOOCV Score
Leave-one-out cross-validation (LOOCV):

LOOCV generally requires     repetitions.
However, it can be analytically computed for 
uLSIF (Sherman-Woodbury-Morrison formula).
Computation time including model selection is 
significantly reduced.

Sample   Sample    Sample  Sample  

Estimation Validation

…



uLSIF: Theoretical Properties
Parametric convergence:

Learned parameter converge to the optimal 
value with order        , which is the optimal rate.

Non-parametric convergence:
Learned function converges to the optimal 
function with order            (depending on the 
bracketing entropy), which is the optimal rate.

Non-parametric numerical stability:
uLSIF has the smallest condition number 
among a class of density ratio estimators.
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Kanamori, Hido  & MS (JMLR2009)

Kanamori, Suzuki & MS (MLJ2012)

Kanamori, Suzuki & MS (MLJ2012)



uLSIF: Numerical Example 27

uLSIF

Ratio of kernel
density estimators
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LSIF: Summary
LS formulation is computationally efficient:

cLSIF: Regularization path tracking
uLSIF: Analytic solution and LOOCV

Gives an accurate approximator of Pearson 
(PE) divergence (an f-divergence):

Analytic solution of uLSIF allows us to compute 
the derivative of PE divergence approximator:

Useful in dimension reduction, independent 
component analysis, causal inference etc.
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30Learning under Covariate Shift

Training
samples

Test
samples

Function

Target
function

Covariate shift:
Training/test input distributions are different, 
but target function remains unchanged.
(Weak) extrapolation.

Input density

Shimodaira (JSPI2000)



31Ordinary Least-Squares (OLS)

In standard setting, OLS is 
consistent, i.e., the learned 
function converges to the 
best solution when            .
Under covariate shift, OLS 
is no longer consistent.



32Law of Large Numbers
Sample average converges to the 
population mean:

We want to estimate the expectation 
over test input points only using 
training input points .



33Importance Weighting
Importance：Ratio of test and training 
input densities

Importance-weighted average:



34Importance-Weighted
Least-Squares

IWLS is consistent even 
under covariate shift.
The idea is applicable to any 
likelihood-based methods!

Support vector machine, 
logistic regression,  
conditional random field, etc.



35Model Selection
Controlling bias-variance trade-off is important.

No weighting: low-variance but high-bias
Importance weighting: low-bias but high-variance

“Flattened”-IWLS:
Shimodaira (JSPI2000)



36Model Selection
Importance weighting also plays a central 
role for unbiased model selection:

Akaike information criterion (regular models)

Subspace information criterion (linear models)

Cross-validation (arbitrary models)

Shimodaira (JSPI2000)

MS & Müller (Stat&Dec.2005)

MS, Krauledat & Müller (JMLR2007)

Group 1 Group 2 Group kGroup k-1…
For training For validation



Experiments: Speaker Identification
NTT Japanese speech dataset.
Text-independent speaker identification accuracy for 
10 male speakers.
Kernel logistic regression (KLR) with sequence kernel.
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Training data Speech length IWKLR+IWCV+KLIEP KLR+CV

9 months
before

1.5 [sec] 91.0 % 88.2 %
3.0 [sec] 95.0 % 92.9 %
4.5 [sec] 97.7 % 96.1 %

6 months
before

1.5 [sec] 91.0 % 87.7 %
3.0 [sec] 95.3 % 91.1 %
4.5 [sec] 97.4 % 93.4 %

3 months
before

1.5 [sec] 94.8 % 91.7 %
3.0 [sec] 97.9 % 96.3 %
4.5 [sec] 98.8 % 98.3 %

Yamada, MS & Matsui (SigPro2010)

Matsui & Furui (ICASSP1993)



Experiments: Text Segmentation

Japanese word segmentation dataset.

Adaptation from daily conversation to medical domain.
Segmentation by conditional random field (CRF).

38
Tsuboi, Kashima, Hido, Bickel & MS (JIP2009)

こんな失敗はご愛敬だよ．
→ こんな／失敗／は／ご／愛敬／だ／よ／．

IWCRF+IWCV
+KLIEP CRF+CV

CRF+CV
(use additional

test labels)
F-measure (larger is better) 94.46 92.30 94.43

Tsuboi, Kashima, Mori, Oda & Matsumoto (COLING2008)

Semi-supervised adaptation with importance weighting
is comparable to supervised adaptation!



39Other Applications
Age prediction from faces:

Illumination change 

Brain-computer interface:
Mental condition change

Robot control:
Efficient sample reuse

Ueki, MS & Ihara (ICPR2010)

MS, Krauledat & Müller (JMLR2007)
Li, Kambara, Koike & MS (IEEE-TBME2010)

Hachiya, Akiyama, MS & Peters (NN2009)
Hachiya, Peters & MS (NeCo2011)
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41Inlier-Based Outlier Detection

Goal: Given a set of inlier samples,      
find outliers in a test set (if exist) 

Outlier

Hido, Tsuboi, Kashima, MS & Kanamori (ICDM2008, KAIS2011)
Smola, Song & Teo (AISTATS2009)

Tuning parameters can be optimized 
in terms of ratio approximation error



Experiments

Top10 outliers in the USPS test dataset 
found based on the USPS training dataset.
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5 0 0 0 0

4 8 4 5 4

Most of them are not readable even by human.

Hido, Tsuboi, Kashima, MS & Kanamori (ICDM2008, KAIS2011)



43Failure Prediction
in Hard-Disk Drives

Self-Monitoring And Reporting Technology (SMART)：

LOF works well, given #NN is set appropriately.   
But there is no objective model selection method.
Density ratio method can use cross-validation for 
model selection, and is computationally efficient.

OSVM: Schölkopf, Platt, Shawe-Taylor, Smola & Williamson (NeCo2001)
LOF: Breunig, Kriegel, Ng & Sander (SIGMOD2000)

Least-squares
density ratio

One-class
SVM

Local outlier factor
#NN=5 #NN=30

AUC (larger
is better) 0.881 0.843 0.847 0.924

Comp. time 1 26.98 65.31

Murray, Hughes & Kreutz-Delgado (JMLR 2005)



44Other Applications

Steel plant diagnosis

Printer roller quality control

Loan customer inspection

Sleep therapy

Takimoto, Matsugu
& MS (DMSS2009)

Hido, Tsuboi, Kashima, MS
& Kanamori (KAIS2011)

Kawahara & MS (SADM2012)

Hirata, Kawahara & MS (Patent2011)



45Divergence Estimation

Goal: Estimate a divergence functional from

Kullback-Leibler divergence:

Pearson divergence:

Use density ratio estimation:

Nguyen, Wainwright & Jordan (IEEE-IT2010)
MS, Suzuki, Ito, Kanamori & Kimura (NN2011)

(an f-divergence)



46Real-World Applications
Regions-of-interest detection in images:

Event detection in movies:

Event detection from                               
Twitter data:

Yamanaka, Matsugu & MS
(IEEJ2011)

Matsugu, Yamanaka & MS
(VECTaR2011)

Liu, Yamada, Collier
& MS (arXiv2012)
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48Mutual Information Estimation
Mutual information (MI):

MI works as an independence measure:

Use KL-based density ratio estimation (KLIEP):

and are
statistically

independent

Suzuki, MS, Sese & Kanamori (FSDM2008)

Shannon (1948)



Experiments: Methods Compared

KL-based density ratio method.

Kernel density estimation (KDE).

K-nearest neighbor density estimation 
(KNN).

The number of NNs is a tuning parameter.
Edgeworth expansion density estimation 
(EDGE).
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Kraskov, Stögbauer & Grassberger (PRE2004)

van Hulle (NeCo2005)



Datasets for Evaluation 50

Independent Linear dependency

Quadratic dependency Checker dependency



MI Approximation Error 51

Independent Linear dependency

Quadratic dependency Checker dependency



52Estimation of Squared-Loss
Mutual Information (SMI)

Ordinary MI is based on the KL-divergence.
SMI is based on the Pearson divergence:

Can also be used as an independence measure.
Can be approximated analytically and efficiently 
by least-squares density ratio estimation (uLSIF).

Suzuki, MS, Sese & Kanamori (BMC Bioinfo. 2009)



53Usage of SMI Estimator
Between input and output:

Feature ranking
Sufficient dimension reduction
Clustering

Between inputs:
Independent component analysis
Object matching
Canonical dependency analysis

Between input and residual:
Causal inference

Suzuki & MS (NeCo2012)

Yamada & MS (AAAI2010)

Suzuki, MS, Sese & Kanamori
(BMCBioinfo 2009)

Suzuki & MS
(NeCo2010)

MS, Yamada, Kimura & Hachiya (ICML2011)

Input

Output

Residual

Yamada & MS (AISTATS2011)

Kimura & MS (JACIII2011)

Karasuyama
& MS (NN2012)



Sufficient Dimension Reduction

Input:
Output:
Projected input:

Goal: Find      so that    contains all 
information on   , i.e., 

In terms of SMI:

54
Li (JASA1991)

Suzuki & MS (NeCo2012)



Sufficient Dimension Reduction
via SMI Maximization

55

Let’s solve                                                    .

Since      is on a Grassmann manifold,  
natural gradient gives the steepest direction:

A computationally efficient heuristic update is 
also available.

: uLSIF solution

Amari (NeCo1998)

Yamada, Niu, Takagi & MS (ACML2011)



Experiments
Dimension reduction for multi-label data:

MDDM: Multi-label dimensionality reduction via dependence 
maximization (MDDM)
CCA: Canonical correlation analysis
PCA: Principal component analysis

56
Yamada, Niu, Takagi & MS (ACML2011)

Zhang & Zhou (ACM-TKDD2010)

Pascal VOC 2010 image classification Freesound audio tagging
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58Conditional Density Estimation
MS, Takeuchi, Suzuki, Kanamori, 

Hachiya & Okanohara (IEICE-ED2010)

Regression = Conditional mean estimation
However, regression is not informative 
enough for complex data analysis:

Multi-modality
Asymmetry 
Hetero-scedasticity

Directly estimation of                             
conditional density via                                    
density-ratio estimation.



59Experiments: Transition
Estimation for Mobile Robot

Transition probability              : Probability of 
being at state     when action    is taken at   .

Khepera robot
State: Infrared sensors
Action: Wheel speed

Data uLSIF ε-KDE MDN

Khepera1 1.69(0.01) 2.07(0.02) 1.90(0.36)
Khepera2 1.86(0,01) 2.10(0.01) 1.92(0.26)

Pendulum1 1.27(0.05) 2.04(0.10) 1.44(0.67)
Pendulum2 1.38(0.05) 2.07(0.10) 1.43(0.58)

Comp. Time 1 0.164 1134

Mean (std.) test negative log-likelihood
over 10 runs (smaller is better)
(red: comparable by 5% t-test)

Bishop (Book2006)
ε-KDE: ε-neighbor kernel density estimation
MDN: Mixture density network



60Probabilistic Classification

If     is categorical, conditional probability 
estimation corresponds to learning class-
posterior probability.
Least-squares density ratio estimation (uLSIF)    
provides an analytic estimator:

Computationally efficient alternative to           
kernel logistic regression.
No normalization term included.
Classwise training is possible.

Class 1

Class 2

70%

20%

MS (IEICE-ED2010)

Class 310%



Numerical Example
Letter dataset (26 classes):

uLSIF-based classification method:
Comparable accuracy with KLR.
Training is 1000 times faster!
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Misclassification rate Training time

uLSIF-based
classification 

Kernel
logistic regression



More Experiments 62

Pascal VOC 2010
image classification:

Mean AUC (std) over 50 runs
(red: comparable by 5% t-test)

Freesound audio tagging:
Mean AUC (std) over 50 runs

Dataset uLSIF KLR

Aeroplane 82.6(1.0) 83.0(1.3)

Bicycle 77.7(1.7) 76.6(3.4)

Bird 68.7(2.0) 70.8(2.2)

Boat 74.4(2.0) 72.8(2.6)

Bottle 65.4(1.8) 62.1(4.3)

Bus 85.4(1.4) 85.6(1.4)

Car 73.0(0.8) 72.1(1.2)

Cat 73.6(1.4) 74.1(1.7)

Chair 71.0(1.0) 70.5(1.0)

Cow 71.7(3.2) 69.3(3.6)

Diningtable 75.0(1.6) 71.4(2.7)

Dog 69.6(1.0) 69.4(1.8)

Horse 64.4(2.5) 61.2(3.2)

Motorbike 77.0(1.7) 75.9(3.3)

Person 67.6(0.9) 67.0(0.8)

Pottedplant 66.2(2.6) 61.9(3.2)

Sheep 77.8(1.6) 74.0(3.8)

Sofa 67.4(2.7) 65.4(4.6

Train 79.2(1.3) 78.4(3.0)

Tvmonitor 76.7(2.2) 76.6(2.3)

Training time [sec] 0.7 24.6

uLSIF KLR
AUC 70.1(9.6) 66.7(10.3)

Training time [sec] 0.005 0.612

Yamada, MS, Wichern & Simm (IEICE2011)



63Other Applications
Action recognition from accelerometer

Age prediction from faces
Ueki, MS, Ihara & Fujita (ACPR2011)

Hachiya, MS & Ueda (Neurocomputing2011)
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Bregman (BR) Divergence
: Differentiable convex function

BR divergence with function   :

65

Linear prediction from       to      

Bregman (1967)



66Density-Ratio Fitting
under BR Divergence

Fit a ratio model         to true ratio         
under the BR divergence:

MS, Suzuki & Kanamori (AISM2012)



67Unified View
Logistic regression:

(Extended) kernel mean matching:

KL-based method:

uLSIF:

Robust estimator (power divergence):
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69Direct Density-Ratio Estimation
with Dimensionality Reduction (D3)

Directly density-ratio estimation without 
density estimation is promising.

However, for high-dimensional data,    
density-ratio estimation is still challenging.

We combine direct density-ratio estimation 
with dimensionality reduction!



70

Key assumption:           and             are 
different only in a subspace (called HS).

This allows us to estimate the density ratio 
only within the low-dimensional HS!

: Full-rank and orthogonal

HS

Hetero-distributional Subspace (HS)
MS, Kawanabe & Chui (NN2010)



71Characterization of HS

HS is given as the maximizer of the 
Pearson divergence with respect to     :

PE can be analytically approximated by 
uLSIF (with good convergence property).
HS search by

Natural gradient
A heuristic update

MS, Yamada, von Bünau, Suzuki, Kanamori & Kawanabe (NN2011)

Yamada & MS (AAAI2011)



72

Samples (2d) True ratio (2d)

D3-uLSIF (2d)

Plain uLSIF (2d)

Numerical Example

Increasing dimensionality
(by adding noisy dims)

Plain uLSIF

D3-uLSIF

Ratio of KDEs
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Weakness of Density Ratios 74

Density ratio can diverge to infinity:

Estimation becomes unreliable!



Relative Density Ratios

Bounded for any    :

75

Yamada, Suzuki, Kanamori, Hachiya & MS (NIPS2011)



76Estimation of Relative Ratios
Linear model:

Relative unconstrained least-squares 
importance fitting (RuLSIF):

The solution can be computed analytically:



Relative Pearson Divergence

Relative Pearson divergence can be more 
reliably approximated:
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Conclusions
Estimating data-generating probability 
distributions is universal, but inaccurate.
Solving each task directly is ideal, but costly.
Density ratio estimation is realistic compromise:

Systematically avoiding density estimation.
Applicable to a reasonably rich class of tasks.
Useful in many real-world problems.

79

Universal Intermediate Task-specific



Books on Density Ratios
Sugiyama, Suzuki & Kanamori,      
Density Ratio Estimation                                                  
in Machine Learning,                                               
Cambridge University Press, 2012

Sugiyama & Kawanabe      
Machine Learning                                                         
in Non-Stationary Environments,                                     
MIT Press, 2012
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