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(Partial) Abstract from Proceedings

 Statisticians have the job of making conclusions based on 
data, but for many questions prior beliefs are strong and may 
take precedence over data when people make decisions. 

 One appealing aspect of Bayesian statistics is that the 
methods allow prior beliefs and expert knowledge to be 
incorporated into the analysis along with the data. 

 One domain where beliefs are almost sure to play a role is in 
the evaluation of scientific data for extrasensory perception. 

 Experiments to test ESP often are binomial, and they have a 
clear null hypothesis (psychic abilities are not real), so they 
are an excellent way to illustrate hypothesis testing. 

 Incorporating beliefs makes them an excellent example for 
the use of Bayesian analysis as well. In this paper, data from 
one type of ESP study are analyzed using both frequentist 
and Bayesian methods.
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Outline of Talk

 Introduction and Background

 On my involvement with research in extrasensory 
perception (ESP)

 On reasons to be a Bayesian

 On what this has to do with teaching statistics

 How research in ESP (“Parapsychology”) is done

 Frequentist analysis of ESP data

 Simple Bayesian analysis

 More complicated Bayesian analysis

 Activities for teaching



Why This Topic? Some Background

 My involvement started in 1986 as consultant to 
classified US government program testing 
psychic abilities for spying

 Continued to consult with parapsychology 
researchers through the years

 Noticed that many people (on both sides) ignore 
data and base conclusions on belief

 Makes this topic a natural for Bayesian statistics

 Also an excellent example for hypothesis testing 
because there is a clear null hypothesis



Why Be a Bayesian? 
Reason 1: Philosophical

 Interpretation of probability as degree of 
belief fits all situations; rel. freq. does not
 Before conception, P(birth is boy) = .512

 Pregnant woman doesn’t know sex of baby, but 
her doctor does. What is P(boy)? Is it 0/1, or is 
it .512? Different for woman and her doctor?

 What about non-repeatable situations, such as 
probability of major earthquake in California?

 Bayesian probability is “degree of belief” in 
outcome, can be assessed for all situations.



Why Be a Bayesian? 
Reason 1: Philosophical, continued

 p-values don’t really answer what we want 
to know. Bayesian results do. 

 p-values are highly dependent on sample 
size; Bayesian results get updated with more 
data in a logical way. 

 Bayesian results assess likely values of 
parameter before looking at data (prior), 
and update them after looking at data 
(posterior).



Why Be a Bayesian? 
Reason 2: Practical

 It’s rare that we have no prior information. 
Bayesian methods build that into analysis.
 Estimate proportion of community infected with 

HIV. Could it really be anything from 0 to 1?

 Estimate mean change in blood pressure after 
program in meditation. Do we really think it 
could be anything from −∞ to ∞?

 Most statistical analyses are now done as a 
collaboration between statisticians and 
experts who have prior knowledge. Why 
not use that knowledge?



Why This Topic for ICOTS?

 We should all think about introducing some 
Bayesian ideas in our (university) courses

 Parapsychology experiments provide 
interesting examples of frequentist and
Bayesian methods:

 Simple binomial hypothesis tests and 
confidence intervals

 Relatively simple Bayesian analyses, especially 
because most people have prior beliefs about 
the possible existence of psychic abilities



Psi/Psychic/ESP/Anomalous Cognition

Having information that could not have 
been gained through the known senses.

Telepathy: Info from another person

Clairvoyance: Info from another place

Precognition: Info from the future

Correlation: Simultaneous access to info



Controlled experiments to Test ESP

Crucial elements:

1. Safeguards to rule out cheating or ordinary communication

2. Knowledge of probabilities of outcomes by chance alone

Examples... are these okay?
1. I am thinking of a number from 1 to 5.  Guess it.

2. My assistant down the hall has shuffled a deck of cards 
(well!) and picked one at random.  What suit is it? 
(Example of forced choice experiment)

Free response ESP experiments meeting crucial elements:
 Remote Viewing, originally done by US Government
 Similar type of experiment called “ganzfeld” (will describe)



Remote Viewing Protocol
Special thanks to Dr. Edwin May for this and other SRI slides

Assistant

“Receiver”

“Monitor”

10:00

10:05

15 Minutes
“Target”



Some Additional Details

 After the session, drawings & descriptions are 
copied and secured so they can’t be altered. 

 Feedback to the remote viewer is given by 
showing him/her the copy of what (s)he drew, 
along with the target photo or video.

 Results are judged. In some labs, viewer is 
judge and feedback is given after judging. In 
others there is an independent judge.

 Meets condition #1: Safeguards to rule out 
cheating or ordinary means of communication



Example of an Excellent Match
(Experiment at SAIC/Stanford)

Words: Key Mountain

Barn or Large Cabin

Shadow

Shadows of Mtns.

Trees

Road

Path

American Rockies or

Maybe Alps



Early Remote Viewing Example (SRI)



Target: Pete’s Harbor Restaurant



How to Judge?



You Judge this Typical Novice Response 

gap

intersection,

notch, groove

wave, sea wall



Rank-Order Judging

12

3 4



Analysis Methods

 Before the experiment, targets put into packs of 4 dissimilar choices 

 Before session begins a pack is randomly selected, then target within 
it (e.g. windmills). The session takes place, producing a response.

 After the session, a judge is given the response and the 4 choices and 
must assign ranks. Judge is blind to correct answer.

 For session, result = the rank assigned to correct target, or “direct hit” 
if it gets 1st place rank. In some labs judge picks best match only.

 Summary statistic: Sum or ranks (some labs), or number of direct hits 
(others), for entire experiment (many sessions).

 Meets Condition #2: Knowledge of probabilities of various outcomes 
by chance alone.

 Note that randomness is in the selection of the target, not response. 
No matter what the response is, the randomly selected target is the 
best match by chance alone with probability ¼.



Automated Ganzfeld Experiments 
Similar to Remote Viewing

 Sender, receiver, experimenter. Target selected in 
same way as remote viewing (random, packs of 4)

 Sender in sound-shielded room, looking at target, which 
is a photograph or short video segment.

 Receiver in sound isolation room with red light in eyes, 
white noise in ears, comfy chair. Listens to relaxation 
tape. Then talks into microphone, attempting to 
describe the unknown target.

 Experimenter and sender listen. Then receiver judges 
response with 4 choices – actual target and 3 decoys. 
Direct hit analysis usually used.



Simplest Model for RV and Ganzfeld

 X = number of direct hits in experiment (proportion 
of successes in n sessions)

 Assume X ~ Binomial (n, p) 

 n = number of sessions 

 p = probability that the judge can identify the correct 
target, given the response.

 By chance alone, p = 1/4 

 If psychic functioning occurs, expect response is a 
better match than chance, and p > ¼. 



Ganzfeld Studies in This Analysis

 From meta-analyses of ganzfeld studies

 (see Proceedings for references)

 Included all ganzfeld studies from those 
meta-analyses that met criteria for 
safeguards and standard procedures

 Used 56 studies

 Combined n = 2124 sessions

 Combined X = 709 hits

 X/n = .334, when .25 expected by chance



Binomial Analysis

 Define p = probability of a success in a 
session. Simple assumption (for now) is that p
is fixed across sessions and studies.

 Hypothesis test:
 Null: p = .25

 Alternative: p > .25

 P-value (exact binomial) = 2.26 × 10−18

 Note that for individual studies, n ranged from 
7 to 128, but mostly very small. Hard to get 
statistical significance for one study; power is 
too low. (For median n of 32, power is only 
.308 if true p is 1/3.)



All studies

Individual Confidence Intervals



All studies

Combined 95% CI is .314 to .354



Are You Convinced?

 Overall p-value is 2.26 × 10−18

 Overall confidence interval is .314 to .354, when 

chance is .25.

 Yet, I have found that disbelievers don’t change 

their minds when they see data. 

 Why not? Perhaps we are all Bayesians!

 Note: Skeptics have tried unsuccessfully to find 

flaws with the experiments. 

 In general, beliefs probably do play a role in how 

we interpret data! 



Simple Bayesian Analysis

 Assume X = number of hits is binomial 
with fixed p = probability of a hit 

 X | p ~ Binomial(2124, p)

 Use Beta distribution to model prior 
belief about p (“conjugate prior”)

 p ~ Beta (a, b)

 More about how to do this on next slide

 Posterior distribution for p is also Beta 
distribution

 Beta(X + a, n – X + b)



How to Determine Beta Prior

 Use free software called “BetaBuster” 
(see paper in Proceedings for url)

 Ask these questions to elicit the prior:

 In your opinion, what is the most likely value 

for p? (This becomes the mode.)

 Fill in the blank: I am 95% certain that p

cannot exceed the value _____.

 The answers to these 2 questions 

determine the parameters for the Beta 

prior.



Consider 3 Prior Sets of Belief

 Skeptic:
 Most likely value for p is .25 (chance)

 95% certain p is below .255

 Believer:
 Most likely value for p is .33

 95% certain p is below .36

 Open-minded observer
 Most likely value for p is .25 (chance)

 95% certain p is below .30



Posterior for p, Skeptic and Believer

Data shifted the skeptic’s 

belief very slightly. 

Posterior median = .2578

Data reduced the 

range of the believer’s 

likely values for p



Open-minded: One study and all data

One study, n = 50, 36% 

hits, shifted the open-

minded belief slightly. 

Open-minded, all 

data, allows data to 

play major role



Summary of Simple Analysis

 Skeptic’s opinion was not changed much by 
the data, even with 2124 trials and 33% 
success rate.

 Open-minded prior allowed data to have a 
larger influence.

 Helps explain why skeptics still are not 
convinced by the evidence, even with a p-
value of 2.26 × 10−18

 Allows skeptics and believers to see why 
they disagree!



More Complex: 

Bayesian Hierarchical Model

 Binomial model relies on the assumption that p is 

constant from study to study and from session to 

session. (May be true only for null hypothesis!)

 To test this assumption, we need a more 

complicated model.  We assume constant hit 

rate within a study, but different hit rates across

studies.

 Let pi, i=1,2,…,56 be the true hit rate for study i.

 ni = number of trials in study i



Bayesian Hierarchical Model, continued

 Hierarchical model:  

 Xi = number of hits in study i, 

 Xi ~ Binomial(ni,pi)

 pi are “study-specific” hit rates and are 

assumed to come from a probability 

distribution.  Want to estimate the median 

and variation of the distribution of pi’s across 

all possible studies that could be done.



Some Technical Stuff…

 We transform to speed convergence to 
normality and stabilize variance:

 For large samples:

and

(delta method)
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More Technical Stuff…

 We need to specify a distribution for the pi’s.  This is done by 
placing a distribution on 

 We assume 

 µ and σ2 are parameters we wish to estimate

 µ is the median of the distribution of θi’s, and since the 
transformation is one-to-one and increasing

 A small σ2 means the θi’s are similar so that the pi’s are 
similar, whereas a large σ2 means the pi’s vary a lot – so 
there are important differences in the study-to-study hit rates.
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Prior Distributions

 Bayesian Analyses were run corresponding to 4 

choices of priors:

 Non-informative prior:  The non-informative prior for µ 

puts equal probability on all real numbers (improper).  

 Weakly informative prior (similar to open-minded in 

simple case):  Uses median(p) = 0.25 and 90% sure 

median(p) is between 0.12 and 0.41*

 Believer’s prior:  Uses median(p) = 0.33 and 90% sure 

median(p) is between 0.30 and 0.36

 Skeptic’s prior:  Uses median(p) = 0.25 and 90% sure 

median(p) is between 0.245 and 0.255

*Comes from prior on θ’s being N(sin-1(.25), .01)



Results

Bayesian noninformative prior Frequentist Bayesian weakly informative prior

parameter 2.50% 50%

97.50

% sd MLE

95% CI 

low

95% CI 

upper 2.50% 50% 97.50% sd

Median(pi) 0.30 0.33 0.36 0.02 0.33 0.31 0.36 0.29 0.33 0.36 0.02

95th percentile of 

p 0.42 0.49 0.57 0.04 0.50 0.45 0.56 0.44 0.51 0.59 0.04

5th percentile of p 0.13 0.19 0.24 0.03 0.18 0.14 0.21 0.12 0.17 0.22 0.03

 0.57 0.61 0.65 0.02 0.61 0.59 0.64 0.57 0.61 0.65 0.02

² 0.0042 0.0100 0.0197 0.0040 0.0116 0.0061 0.0171 0.0059 0.0123 0.0237 0.0046

Bayesian:  Skeptic’s Prior Believer’s Prior

parameter 2.50% 50% 97.50% sd 2.50% 50% 97.50% sd

Median(pi) 0.251 0.257 0.262 0.003 0.308 0.326 0.345 0.01

95th percentile of p 0.253 0.260 0.266 0.003 0.348 0.374 0.394 0.01

5th percentile of p 0.248 0.254 0.260 0.003 0.262 0.281 0.305 0.01

 0.525 0.531 0.537 0.003 0.59 0.61 0.63 0.01

² 2.6E-8 4.4E-6 1.5E-5 4.6E-6 3.5E-4 9.5E-4 0.001 2.0E-4



Percentiles of 

Posterior Distribution of Median(p)

2.5% of 
Median (p)

50% of 
Median (p)

97.5% of 
Median (p)

Non-inform .30 .33 .36

Open-mind .29 .33 .36

Frequentist .31 MLE = .33 .36

Believer .308 .326 .345

Skeptic .251 .257 .262



95% Range for Individual p

 Non-informative: .19 to .49

 Open-minded: .17 to .51

 Frequentist (MLE) .18 to .50

All of the above are similar. 

But these are narrower, especially skeptic:

 Believer: .281 to .374

 Skeptic: .254 to .260



Finding about Study-to-Study Variation

 Under the frequentist analysis, we obtain 

that 90% of the study-specific hit rates

(pi’s) are in the interval (0.18, 0.50), 

weakly informative (open-minded) prior 

gives (0.17,0.51)

 The data DO indicate study-to-study 

differences in the hit rate. Thus, a 

binomial model may not be appropriate.



Comparing of Bayesian 

and Frequentist Results

 Results under frequentist, Bayesian 

non-informative and weakly informative 

(open-minded) priors are very similar 

 95% probability interval for median (pi) is (0.30, 

0.36)

 Bayesian analysis under informative 

priors is sensitive to priors

 Skeptics prior gives 95% probability interval for 

median (pi) as (0.251,0.262)

 Believer’s prior gives 95% probability interval 

for median (pi) as (0.308, 0.345)



Some conclusions from the analyses

 “Average” hit rate (for population) seems to 
be slightly above 30%, whatever method is 
used (except skeptic’s prior).

 Binomial model with fixed p is too simple; hit 
rates may change based on a number of 
factors.

 Statistical models need to incorporate 
additional information about participants, 
conditions of experiment, etc. Bayesian 
approach is most reasonable.



Teaching Activities

 Difficult to do methodologically sound 
experiments in class

 “Stacking effect” results from non-
independence if same target is used

 Easier to assign projects for outside of 
class, where individual sessions can be 
used.

 There are on-line tests students can use for 
fun, good illustration of binomial
 www.gotpsi.org; www.espresearch.com/iphone

http://www.gotpsi.org/


Summary

 ESP experiments are a good way to 
illustrate:
 Testing a clear null hypothesis

 Why “replication” should not be based on p-
values (low power)

 Simple Bayesian analysis

 Why prior beliefs matter

 It is difficult to do methodologically sound 
ESP experiments, but can illustrate good 
experimental design for students.


