

Integrating literature-constrained and data-driven inference of signalling networks

F Eduati^{1,2}, J De Las Rivas³, B Di Camillo¹, G Toffolo¹, J Saez-Rodriguez²

¹Department of Information Engineering, University of Padova, Padova, Italy ²European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK ³Bioinformatics & Functional Genomics Group, Cancer Research Center (CSIC/USAL), Salamanca, Spain

Background

Available information about signalling networks:

high-throughput methods

unsigned and undirected Protein-protein Interaction Networks (PINs)

• literature/databases

causal Prior Knowledge Networks (PKNs)

• perturbation experiments

cell-type and context specific data

Modelling signalling networks

Two main approaches:

training the PKN to the data

Adv	Efficient handling of large amount of data
Lim	Possible missing links

inference of Data-Driven Networks (DDNs) from data

Adv	No prior Knowledge required
Lim	Nontrivial mapping of DDNs to PKNs

Aim

Integration of literature-constrained & data-driven methods
to infer signalling networks

Availability

R package CNORfeeder

[designed to be integrated with CelNOptR (Saez-Rodriguez et al. 2009)]

available at www.cellnopt.org

CNORfeeder

CNORfeeder

stimulated

measured

CNORfeeder

CellNOptR

inhibited

measured

CNORfeeder

CellNOptR

CNORfeeder

CNORfeeder

CellNOptR

Inference

Data are used to **infer** a strictly data-driven network (DDN) using reverse-engineering methods.

4 methods included so far:

1. FEED

(Eduati et al., 2010)

2. ARACNe

('minet R package' (Mayer et al. 2008))

3. CLR

1. Bayesian networks ('catnet R package')

Inference of benchmark model

Comparison of the inferred networks (DDNs) with the Gold Standard:

Inference of benchmark model

Comparison of the inferred networks (DDNs) with the Gold Standard:

→ path in the Gold Standard → in Gold Standard not in DDN → in DDN not in Gold Standard in both networks

Inference of benchmark model

Comparison of the inferred networks (DDNs) with the Gold Standard:

🔸 in both networks 🛾 🛶 path in the Gold Standard 🖊 🛶 in Gold Standard not in DDN 🔑 in DDN not in Gold Standard

Integration

 compressed network is integrated with the DDN

(blue: links from the DDN,

black: links from the PKN)

 one link in the DDN can correspond to multiple links in the PKN,

(e.g. for the link from A to H)

Weighting (and training)

PINs weighting *

* shorter path in the PIN

more plausible link integrated in the PKN

Application: growth and inflammatory signalling

Results: tuning integration penalty

Settings:

• Inference method: FEED

•
$$\alpha = 0.001$$

Integration penalty

• low value of β

Best fit
Many links

• high value of β

Less links
Bad fit

В

	1	100	500
igf1=akt	Χ	Х	Х
tnfa=ikk	Χ	Х	Х
!il1a+mek12=erk12	Х	Х	Х
il1a=mek12	Х	Х	Х
tgfa=akt	Х	Х	
tgfa=mek12	Х		
il1a=jnk12	Х		

 reduced number of links selected/prioritized when using PIN to weight links (dark green).

Results: integrated network and fit

Settings:

- Inference method: FEED
- $\alpha = 0.001$
- $\beta = 700$

Compressed network

akt erk12 ikb jnk12 p38 hsp27 mek12 TOTAL MSE 0.119 0.002 0.159 0.000 0.050 0.000 0.125 0.064

Integrated network

	akt	erk12	ikb	jnk12	p38	hsp27	mek12	TOTAL
MSE	0.087	0.002	0.000	0.000	0.050	0.000	0.023	0.022

→ form PKN

added using CNORfeeder

Results: integrated network and fit

Settings:

- Inference method: FEED
- $\alpha = 0.001$
- $\bullet \quad \beta = 700$

Compressed network

 akt
 erk12
 ikb
 jnk12
 p38
 hsp27
 mek12
 TOTAL

 MSE
 0.119
 0.002
 0.159
 0.000
 0.050
 0.000
 0.125
 0.064

Integrated network

→ form PKN

added using CNORfeeder

Results: added link (example 1)

(il1r) mkk6

Supported by a combination of:

- Literature derived (green)
- Protein-protein interaction (blue)

Results: added link (example 2)

Supported by a combination of:

- Literature derived (green)
- Protein-protein interaction (blue)

Conclusions

CNORfeeder allows to:

- obtain a logic model that better describes data (with the minimum number of link);
- identify possible missing links in the PKN (e.g. incomplete biological Knowledge);
- use PINs as complementary information to suggest and support new interactions.

REFERENCE PAPER

EDUATI F, DE LAS RIVAS J, DI CAMILLO B, TOFFOLO G, SAEZ-RODRIGUEZ J. Integrating literature-constrained and data-driven inference of signalling networks. Bioinformatics, 2012

Open points for discussion

- 1. Inclusion of other reverse-engeneering methods able to use prior Knowledge also in the inference step (e.g. Bayesian).
- 2. Assessment of reverse-engeneering with large number of benchmark network and more realistic simulation of data.
- 3. Shortest paths were used as a metric to discriminate between links in the PPI but different methods could be applied.

Acknowledgements

- Julio Saez-Rodriguez
- Thomas Cokelaer
- Aidan MacNamara
- Camille Terfve

- Gianna Toffolo
- Barbara Di Camillo

Cancer Research Center, Salamanca

Javier De Las Rivas