

Targeted Retrieval of Gene Expression Measurements Using Regulatory Models

Elisabeth Georgii, Jarkko Salojärvi, Mikael Brosché, Jaakko Kangasjärvi, Samuel Kaski

Funding: Tekes, Academy of Finland, PASCAL2

MLSB 2012

Motivation

- ► Large repositories of measurement data ⇒ use them!
- Goal: automated search for relevant experiments
- Considered task: given a gene expression profile, find "similar" profiles from a database

What is a suitable similarity measure?

Shared keywords in the annotation (= knowledge-driven)
 (+) reliable, state of the art; (-) excludes new findings

(Zhu et al., Bioinformatics, 2008)

Correlation of profiles (= data-driven)
 (+) easy to compute; (-) ignores gene dependencies

(Engreitz et al., BMC Bioinformatics, 2010)

Model-based similarity measure (= data-driven)
 (+) learns from database; (-) computationally expensive

(Caldas et al., Bioinformatics, 2009, 2012)

This approach: Model-based targeted retrieval

Two main aspects

► Targeted focus: guide the model by genes of interest e.g. genes known to be related to a certain disease → adapt to users' needs, reduce computational effort

Similarity based on gene regulatory network models: potential similarity of conditions at detailed biological level → improved interpretability by network activation patterns

System for targeted retrieval

- First step: learn regulatory model for user-provided genes
- Second step: retrieve measurements related to a query

Targeted gene expression model

 Conditional model: expression of target genes, given expression of other genes

 $P(X_{\mathcal{T}}|X_{-\mathcal{T}})$

Pseudo-likelihood approach:

$$ilde{\mathcal{P}}(X_{\mathcal{T}}|X_{-\mathcal{T}}) = \prod_{j\in\mathcal{T}} \mathcal{P}(X_j|X_{-\{j\}}; heta_j)$$

i.e., independent model for each target gene

Gene-specific model: Gaussian linear regression model

$$X_j = X_{-\{j\}}\beta + \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

sparse β estimate by L_1 -norm regularization \rightarrow target gene neighbors

Model-based similarity measure

- Fisher score representation of data point: s_∂(x⁽ⁱ⁾): gradient of its log-likelihood at learned model parameters → direction in which to update the parameters after adding x⁽ⁱ⁾ to the dataset (→ summary of dataset D + x⁽ⁱ⁾)
- Simple Fisher kernel: (Jaakkola and Haussler, NIPS 1998: using HMMs in classifiers)

$$K_{\hat{ heta}}(x^{(i_1)}, x^{(i_2)}) = s_{\hat{ heta}}(x^{(i_1)})^T s_{\hat{ heta}}(x^{(i_2)})$$

 \rightarrow similarity of datasets $D + x^{(i_1)}$ and $D + x^{(i_2)}$ regarding model-based summary statistics

Parameters of biological interest in our model: coefficients of target gene neighbors

Case study on plant osmotic stress

- Osmotic stress: dehydration of plant
- Causes: drought, salt, or cold conditions
- Relevance: important abiotic stress for crop productivity
- Cellular response:

Boudsocq M , Laurière C Plant Physiol. 2005;138:1185-1194

©2005 by American Society of Plant Biologists

Case study on plant stress

- Data: 141 differential expression profiles from 38
 A. thaliana stress datasets, 6658 diff. expr. genes
- Task: retrieval of osmotic stress experiments
 (31 profiles from 5 datasets, ≥ 6 profiles per dataset)
- Target gene lists from two sources:
 - 10 water-stress related genes (TF DREB2A + targets) (Sakuma et al., PNAS, 2006)
 - 41 genes annotated as 'drought-salt-cold'

(STIFDB, Shameer et al., Int J Plant Genomics, 2009)

- overlap: 4 genes
- Experimental setup:
 - One left-out dataset as queries (cross-validation)
 - Unsupervised model training with all other profiles (including osmotic and non-osmotic)

Precision-recall analysis

Target list: Sakuma-water

Target list: STIFDB

Modeling targeted gene relationships helps

Aalto University School of Science MLSB 2012 09.09.2012 10/14

Osmotic stress network analysis

Top edges in bootstrapping

Target	Predictor	Stress-related annotation of predictor?
RD17	LTI45	yes (also included in STIFDB)
COR15A	COR15B	yes (also included in STIFDB)
XERO2	LSR3	yes (also included in Sakuma-water)
RD29A	LTI45	yes (also included in STIFDB)
AT3G02480	LEA7	yes (also included in Sakuma-water)
AT1G52690	AT3G02480	yes (also included in Sakuma-water)
LSR3	XERO2	yes (also included in Sakuma-water)
LSR3	ERD14	yes (also included in STIFDB)
AT3G17520	RD29B	yes (response to water deprivation)
RD17	ERD14	yes (also included in STIFDB)
DREB2A	AT3G62260	 (protein phosphatase 2C)
DREB2A	ZAT12	yes (involved in cold acclimation)

Model-based comparison of measurements

MLSB 2012 09.09.2012 12/14

Discriminative target genes

Test performance of optimal subsets of size k

Best subset of size 1: RD29A (responsive to dehydration)

Best subset of size 3: RD29A, LEA7, COR15A

Discussion

- Summary: targeted retrieval using regulatory model
- Purpose: investigating specific commonalities between biological conditions based on (putative) gene relationships
- Efficiency: gene-specific models can be pre-computed
- Open questions:
 - Given promising performance with simple model, what is the most suitable model for retrieval? (also supervised options, prior knowledge, ...)
 - Is the conceptual idea feasible for applications with heterogeneous data? (different platforms, species, measurement types, ...)

