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Motivation
I Large repositories of measurement data =⇒ use them!
I Goal: automated search for relevant experiments
I Considered task: given a gene expression profile,

find “similar” profiles from a database
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What is a suitable similarity measure?

I Shared keywords in the annotation (= knowledge-driven)
(+) reliable, state of the art; (-) excludes new findings
(Zhu et al., Bioinformatics, 2008)

I Correlation of profiles (= data-driven)
(+) easy to compute; (-) ignores gene dependencies
(Engreitz et al., BMC Bioinformatics, 2010)

I Model-based similarity measure (= data-driven)
(+) learns from database; (-) computationally expensive
(Caldas et al., Bioinformatics, 2009, 2012)
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This approach: Model-based targeted retrieval

I Two main aspects

I Targeted focus: guide the model by genes of interest
e.g. genes known to be related to a certain disease
→ adapt to users’ needs, reduce computational effort

I Similarity based on gene regulatory network models:
potential similarity of conditions at detailed biological level
→ improved interpretability by network activation patterns
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System for targeted retrieval
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interest

Query: 
measurement 
of interest
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compendium 
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Targeted
regulatory
model

Ranking by 
model-based
similarity:
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USER 
INTERACTION

METHODS DATABASE

I First step: learn regulatory model for user-provided genes
I Second step: retrieve measurements related to a query



MLSB 2012
09.09.2012

6/14

Targeted gene expression model
I Conditional model: expression of target genes, given

expression of other genes

P(XT |X−T )

I Pseudo-likelihood approach:

P̃(XT |X−T ) =
∏
j∈T

P(Xj |X−{j}; θj)

i.e., independent model for each target gene
I Gene-specific model: Gaussian linear regression model

Xj = X−{j}β + ε, ε ∼ N (0, σ2)

sparse β estimate by L1-norm regularization
→ target gene neighbors
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Model-based similarity measure

I Fisher score representation of data point: sθ̂(x
(i)):

gradient of its log-likelihood at learned model parameters
→ direction in which to update the parameters after
adding x (i) to the dataset (→ summary of dataset D + x (i))

I Simple Fisher kernel: (Jaakkola and Haussler, NIPS 1998: using HMMs in classifiers)

Kθ̂(x
(i1), x (i2)) = sθ̂(x

(i1))T sθ̂(x
(i2))

→ similarity of datasets D + x (i1) and D + x (i2) regarding
model-based summary statistics

I Parameters of biological interest in our model:
coefficients of target gene neighbors
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Case study on plant osmotic stress
I Osmotic stress: dehydration of plant
I Causes: drought, salt, or cold conditions
I Relevance: important abiotic stress for crop productivity
I Cellular response:

Regulatory network of stress responses to drought, salt, and cold: specificity and cross-talk.  

Boudsocq M , Laurière C Plant Physiol. 2005;138:1185-1194 

©2005 by American Society of Plant Biologists 
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Case study on plant stress

I Data: 141 differential expression profiles from 38
A. thaliana stress datasets, 6658 diff. expr. genes

I Task: retrieval of osmotic stress experiments
(31 profiles from 5 datasets, ≥ 6 profiles per dataset)

I Target gene lists from two sources:
I 10 water-stress related genes (TF DREB2A + targets)

(Sakuma et al., PNAS, 2006)

I 41 genes annotated as ‘drought-salt-cold’
(STIFDB, Shameer et al., Int J Plant Genomics, 2009)

I overlap: 4 genes
I Experimental setup:

I One left-out dataset as queries (cross-validation)
I Unsupervised model training with all other profiles

(including osmotic and non-osmotic)
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Precision-recall analysis

Target list: Sakuma-water Target list: STIFDB
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I Modeling targeted gene relationships helps
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Osmotic stress network analysis

Model-Based Targeted Retrieval of Gene Expression Measurements

Table 1. Retrieval performance of targeted model-based retrieval of Relevant Experiments (REx) and baseline methods in a leukemia case
study. Mean average precision among the top-k results is given for several k (taken across all queries). The best value in each column is
marked in bold.

Mean precision (and sdev) across all queries (in %) top1 top5 top10 top20 top50 top100

1 REx: predictors among all other genes 97.53 (15.53) 93.93 (15.68) 91.75 (17.86) 89.40 (18.24) 85.78 (18.69) 82.21 (21.01)
2 REx: predictors among other targets 95.59 (20.55) 93.40 (18.21) 92.42 (17.34) 91.02 (17.59) 87.31 (20.36) 81.41 (23.34)
3 Hybrid: Pearson correlation on predictors 84.30 (36.41) 83.63 (31.41) 82.77 (31.21) 82.62 (30.12) 83.22 (27.09) 83.38 (25.07)
4 Hybrid: Euclidean distance on predictors 80.07 (39.98) 77.04 (36.52) 75.31 (36.53) 72.74 (36.49) 68.12 (37.29) 63.28 (38.16)
5 Baseline: Pearson correlation on all genes 79.72 (40.25) 77.78 (36.78) 76.40 (36.60) 75.45 (36.16) 73.15 (34.39) 70.69 (33.65)
6 Baseline: Euclidean distance on all genes 78.13 (41.37) 74.67 (37.32) 72.59 (37.21) 70.00 (37.28) 66.00 (37.14) 62.20 (36.73)
7 Baseline: Pearson correlation on targets only 57.50 (49.48) 52.73 (40.19) 51.08 (38.21) 48.20 (35.97) 42.34 (31.77) 36.17 (26.43)
8 Baseline: Euclidean distance on targets only 73.90 (43.96) 71.15 (40.23) 70.49 (39.76) 68.84 (39.64) 65.64 (39.10) 61.88 (38.40)

Abbreviations for the methods used later on in the paper: 1. REx, 2. REx (targets), 3. Corr. (predictors), 4. Eucl. (Predictors), 5. Corr., 6. Eucl., 7. Corr. (targets),
8. Eucl. (targets).

a) Target list: Sakuma-water b) Target list: Sakuma-all c) Target list: STIFDB
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Fig. 1. Osmotic stress retrieval performance of several methods for three different gene lists of interest (see text for details). For the meaning of method
abbreviations, see Table 1.
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Fig. 2. Osmotic stress network learned around Sakuma-water targets (box-shaped). Arrows point from predictors to targets. The dashed edge indicates a
negative relationship. Black edges are increased in weight for a majority of osmotic stress samples, compared to the background model. See text for details.

DREB2A as regulator in osmotic stress and heat shock response is
well established (Yoshida et al., 2008). The smallest network, cente-
red around AT2G46140, is a novel finding suggesting that DREB2A
and some of its targets also have a role in responses to pathogen
infection and pathogen elicitors.

We checked the significance of the inferred relationships in a
bootstrapping experiment (see Suppl. Material). The most preva-
lent relationships were well supported by functional annotations.
In addition, concordant expression between the transcription factor
DREB2A and the predictors AT3G62260 and ZAT12 was validated
in two independent datasets, giving rise to interesting biologi-
cal hypotheses (see Suppl. Material). While further experimental

5

I Top edges in bootstrapping

Table 2: Top “false positive” experiments for osmotic stress queries using the Sakuma-water gene list. These
experiments were not annotated apriori as osmotic stress experiments. However, they share network activation
patterns with osmotic stress experiments (see Figure 1). The most frequently occurring false positive experiment
is treatment with ABA, a plant hormone that promotes mechanisms to avoid dehydration in abiotic stress
conditions. ABA is also involved in plant development; the 17 days leaf sample is the second most frequent in
the list.

Measurement name Frequency among top10 results
ABA 3h 30
17days leaf2 5
ctr1 4
UV-B 327nm 6h 3
UV-B 305nm 6h 3
17days leaf4 3
UV-B 295nm 6h 3
35days 2
abi1td O3 6h 2
H2O2 2
UV-B 327nm 1h 2
B.graminis 1
ABA Exp2 1

Table 3: Top-ranked predictor-target pairs in a bootstrapping experiment (AGI codes of gene symbols: COR15A:
AT2G42540, COR15B: AT2G42530, DREB2A: AT5G05410, ERD14: AT1G76180, LEA7: AT1G52690, LSR3:
AT1G01470, LTI45: AT1G20450, RD17: AT1G20440, RD29A: AT5G52310, RD29B: AT5G52300, XERO2:
AT3G50970, ZAT12: AT5G59820).

Target Predictor Stress-related annotation of predictor?
RD17 LTI45 yes (also included in STIFDB)
COR15A COR15B yes (also included in STIFDB)
XERO2 LSR3 yes (also included in Sakuma-water)
RD29A LTI45 yes (also included in STIFDB)
AT3G02480 LEA7 yes (also included in Sakuma-water)
AT1G52690 AT3G02480 yes (also included in Sakuma-water)
LSR3 XERO2 yes (also included in Sakuma-water)
LSR3 ERD14 yes (also included in STIFDB)
AT3G17520 RD29B yes (response to water deprivation)
RD17 ERD14 yes (also included in STIFDB)
DREB2A AT3G62260 – (protein phosphatase 2C)
DREB2A ZAT12 yes (involved in cold acclimation)

3
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Model-based comparison of measurements

Georgii et al
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Fig. 3. Heatmap of Fisher scores of expression profiles (rows) with respect
to the networks in Fig. 2; columns represent network links. The horizontal
line separates osmotic stress samples from the other samples, the vertical
lines separate the networks. The RD29A network is highly activated in
osmotic stress samples. The DREB2A network is activated in UV-B samp-
les and some osmotic stress samples. The AT2G46140 network is induced
by pathogen infection and treatment with pathogen elicitors. Annotation of
each sample can be found in Suppl. Fig. 1.

studies are needed to untangle regulatory mechanisms of stress
genes, our results show that the relationships discovered by REx
are relevant in recognizing osmotic stress conditions.

Smallest Discriminative Set of Target Genes. In Fig. 1, we obser-
ved that the list of ten targets (Sakuma-water) is more discrimi-
native on our data compendium than the larger lists Sakuma-all
and STIFDB. Next we were interested whether even smaller lists
of target genes have discriminative power. For that purpose, we
tested the retrieval performance with reduced versions of Sakuma-
water. More specifically, for given sizes of the target list, we used
cross-validation on the training set to choose the best subset of
Sakuma-water satisfying the size constraint, where the quality cri-
terion was average precision (across the whole recall range). This

best subset was used to learn a model with all training data, which
was then tested on left-out test data. Training and test data were
defined by cross-validation in exactly the same way as for Fig. 1.
Suppl. Fig. 4a shows the precision-recall curves obtained on the
test data (averaged across all queries) for different sizes of the tar-
get list. Target lists of size 3 outperformed the original target list
of size 10. The exact composition of the subset differed between
the cross-validation folds, but only the following genes occurred
(in decreasing order): RD29A, LEA7, COR15A, AT3G17520, and
LSR3. Remarkably, a model with a single target gene performed
very well, except in the top precision end. In all cases, RD29A was
the selected gene (responsive to dehydration). However, while selec-
ted subsets of targets can be very powerful, on average the retrieval
performance decreases monotonically when reducing the size of the
target list (see Suppl. Fig. 4b).

Robustness Against Nuisance Target Genes. A further question is
whether errors in the target list are harmful for the retrieval. To study
this, we added randomly picked genes to Sakuma-water; they were
chosen among the other 6648 genes (genes showing only minor dif-
ferential expression in all datasets were removed in preprocessing).
We did fifty repeats on each number of additional genes. Suppl.
Fig. 4c shows the average retrieval performance. As expected, a
larger number of added random genes led to a stronger decrease
in precision. However, the change was not very dramatic, implying
that a reasonable number of unrelated genes can be tolerated quite
well as long as the target list contains also discriminative genes.

4 DISCUSSION

We introduced a novel approach for targeted model-based retrie-
val of gene expression measurements. The model we proposed is
suitable for efficient retrieval; due to the decomposition into gene-
specific submodels, learning can be done offline, prior to the queries.
While we used L1-regularized regression to learn a simple regula-
tory model in this work, the approach is not limited to a specific
type of probabilistic models. For instance, it is straightforward to
utilize the elastic net approach (Zou and Hastie, 2005), and it is also
possible to exploit additional data (e.g., protein-protein interactions)
or prior knowledge during learning. If the user-specified genes are
modeled jointly (e.g., by common predictors), more computatio-
nal effort is required at query time; alternatively, the model may be
provided directly by the user. In contrast to condition-specific regu-
latory models (Zhang and Wang, 2010; Shimamura et al., 2010),
our method does not rely on annotation of samples. The current
modeling approach requires that data are comparable. To apply it in
cross-platform analysis, previous methods to achieve comparability
can be used (Stafford and Brun, 2007). An interesting direction for
future work is retrieval across different platforms or species using
an integrated model.

Besides allowing for unsupervised data-based retrieval of related
measurements, the proposed method assists in investigating relati-
onships among genes. As illustrated in the osmotic stress example,
measurements with curated annotation can help to assess the qua-
lity of models and to detect condition-dependent activity changes.
When applying targeted modeling, an important question is how to
choose the target list for a biological process of interest. If it is too
narrow, it might not have sufficient discriminative power; if it is

6
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Discriminative target genes
I Test performance of optimal subsets of size ka) Subset selection b) Size reduction
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c) Addition of nuisance genes
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Figure 4: Osmotic stress retrieval performance for modified versions of the Sakuma-water target list. To facilitate

inspection, we show the results for a representative subset of tested parameter values.

6

I Best subset of size 1: RD29A (responsive to dehydration)
I Best subset of size 3: RD29A, LEA7, COR15A
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Discussion

I Summary: targeted retrieval using regulatory model
I Purpose: investigating specific commonalities between

biological conditions based on (putative) gene relationships
I Efficiency: gene-specific models can be pre-computed

I Open questions:
I Given promising performance with simple model,

what is the most suitable model for retrieval?
(also supervised options, prior knowledge, . . . )

I Is the conceptual idea feasible for applications
with heterogeneous data?
(different platforms, species, measurement types, . . . )


