Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization

6th International Workshop on Machine Learning in Systems Biology (MLSB 2012) Basel, Switzerland

Mehmet Gönen mehmet.gonen@aalto.fi
http://users.ics.aalto.fi/gonen/
Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science
Aalto University School of Science
September 9, 2012

In This Talk

■ Introduction

■ Materials

■ Earlier Approaches

■ Kernelized Bayesian Matrix Factorization

■ Results

- Conclusions

Aalto University

Introduction

Identifying Interactions Between Drugs and Proteins

■ Functions of proteins can be modulated by drugs

■ Growing knowledge about chemical space of drug compounds and genomic space of target proteins

■ high-throughput chemical compound screening with biological assays
■ high-throughput experimental projects that analyze the genome

- Limited knowledge about relationship between these two spaces

■ laborious and costly experimental procedures

Introduction

Identifying Interactions Between Drugs and Proteins

■ A small number of experimentally validated interactions in existing databases

■ ChEMBL (Gaulton et al., 2012), DrugBank (Knox et al., 2011), KEGG DRUG (Kanehisa et al., 2012) and SuperTarget (Hecker et al., 2012)

- Computational methods for identifying interactions between drug compounds and target proteins

■ to guide experimentalists towards new predictions
■ to provide supporting evidence for their experimental results

Introduction

Identifying Interactions Between Drugs and Proteins

■ Traditional methods

1. docking simulations (Cheng et al., 2007; Rarey et al., 1996)

- requires structural information of target protein

2. ligand-based approaches (Butina et al., 2002; Byvatov et al., 2003; Keiser et al., 2007)

- requires a significant number of known ligands for target protein

3. literature text mining (Zhu et al., 2005)

- can not predict unknown interactions
- suffers from nonstandard naming practices

Introduction

Identifying Interactions Between Drugs and Proteins

■ Machine learning methods operate on

1. chemical properties of drug compounds
2. genomic properties of target proteins
3. known interaction network

■ "Similar drug compounds are likely to interact with similar target proteins"

■ Similarities can be encoded using kernel functions designed for chemical compounds and protein sequences

Aalto University
School of Science

Materials

Datasets

■ Four important protein families from humans

1. Enzymes (E): proteins that catalyze (i.e., increase the rates of) chemical reactions
2. Ion Channels (IC): proteins that regulate the flow of ions across the membrane in all cells
3. G-Protein-Coupled Receptors (GPCR): proteins that sense molecules outside the cell and activate inside signal transduction pathways and cellular responses
4. Nuclear Receptors (NR): proteins that are responsible for sensing steroid and thyroid hormones and certain other molecules

Materials

Datasets

■ Four drug-target interaction networks from Yamanishi et al. (2008)

Dataset	Number of Drugs	Number of Proteins	Number of Interactions	Ratio of Interactions
E	445	664	2926	$\approx 1.0 \%$
IC	210	204	1476	$\approx 3.5 \%$
GPCR	223	95	635	$\approx 3.0 \%$
NR	54	26	90	$\approx 6.5 \%$

■ Only experimentally validated interactions

Aalto University
School of Science

Materials

Chemical Data

■ Drug compounds

D00109
(a) Aspirin

D00217
(b) Paracetamol

■ Structural similarity between drug compounds using SIMCOMP (Hattori et al., 2003)

■ Drugs are represented as graphs

Materials
 Chemical Data

- A dictionary of substructures

■ Each drug is a set of substructures

■ Chemical similarity score between two drug compounds
$s_{c}\left(\boldsymbol{d}_{i}, \boldsymbol{d}_{k}\right)=\frac{\left|\boldsymbol{d}_{i} \cap \boldsymbol{d}_{k}\right|}{\left|\boldsymbol{d}_{i} \cup \boldsymbol{d}_{k}\right|}$

Materials

Genomic Data

■ Target proteins (two enzymes affected by paracetamol)

- Sequence similarity between target proteins using normalized Smith-Waterman score (Smith and Waterman, 1981)

■ Proteins are represented as amino-acid sequences

Materials

Genomic Data

■ Each protein is a string from 20-letter alphabet MSALGVTVALLVWAAFLLLVSMWRQVHSSWNLPPGPFPLPIIGNLFQLELKNIPKSFTRL AQRFGPVFTLYVGSQRMVVMHGYKAVKEALLDYKDEFSGRGDLPAFHAHRDRGIIFNNGP TWKDIRRFSLTTLRNYGMGKQGNESRIQREAHFLLEALRKTQGQPFDPTFLIGCAPCNVI ADILFRKHFDYNDEKFLRLMYLFNENFHLLSTPWLQLYNNFPSFLHYLPGSHRKVIKNVA EVKEYVSERVKEHHQSLDPNCPRDLTDCLLVEMEKEKHSAERLYTMDGITVTVADLFFAG TETTSTTLRYGLLILMKYPEIEEKLHEEIDRVIGPSRIPAIKDRQEMPYMDAVVHEIQRF ITLVPSNLPHEATRDTIFRGYLIPKGTVVVPTLDSVLYDNQEFPDPEKFKPEHFLNENGK FKYSDYFKPFSTGKRVCAGEGLARMELFLLLCAILQHFNLKPLVDPKDIDLSPIHIGFGC IPPRYKLCVIPRS

- Genomic similarity score between two target proteins

$$
s_{\mathrm{g}}\left(\boldsymbol{t}_{j}, \boldsymbol{t}_{l}\right)=\frac{\operatorname{SW}\left(\boldsymbol{t}_{j}, \boldsymbol{t}_{\boldsymbol{l}}\right)}{\sqrt{\operatorname{SW}\left(\boldsymbol{t}_{j}, \boldsymbol{t}_{j}\right) \mathrm{SW}\left(\boldsymbol{t}_{l}, \boldsymbol{t}_{l}\right)}}
$$

Materials

Interaction Data

■ N_{d} drug compounds denoted as $\mathbf{X}_{\mathrm{d}}=\left\{\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \ldots, \boldsymbol{d}_{N_{\mathrm{d}}}\right\}$

■ N_{t} target proteins denoted as $\mathbf{X}_{\mathrm{t}}=\left\{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{N_{\mathrm{t}}}\right\}$

■ $N_{\mathrm{d}} \times N_{\mathrm{t}}$ matrix of known interactions between these two sets denoted as \mathbf{Y}
$y_{j}^{i}= \begin{cases}+1 & \text { if drug compound } \boldsymbol{d}_{i} \text { interacts with target protein } \boldsymbol{t}_{j} \\ -1 & \text { otherwise }\end{cases}$

Materials

Interaction Data

■ Three important out-of-sample prediction scenarios

1. To find interacting proteins from \mathbf{X}_{t} for a new drug \boldsymbol{d}_{\star}
2. To find interacting drugs from \mathbf{X}_{d} for a new target \boldsymbol{t}_{\star}
3. To estimate whether a new drug \boldsymbol{d}_{\star} and a new target \boldsymbol{t}_{\star} are interacting with each other

■ Predicting unknown drug-target interactions of given network
■ Some drug-target pairs are labeled as -1 due to missing experimental evidence but they can be interacting in reality

Earlier Approaches

Pairwise Kernel Methods

■ A binary classification task between drug-target pairs using pairwise kernel functions (Jacob and Vert, 2008; Wassermann et al., 2009)
$k\left(\left(\boldsymbol{d}_{i}, \boldsymbol{t}_{j}\right),\left(\boldsymbol{d}_{k}, \boldsymbol{t}_{l}\right)\right)=k_{c}\left(\boldsymbol{d}_{i}, \boldsymbol{d}_{k}\right) k_{g}\left(\boldsymbol{t}_{j}, \boldsymbol{t}_{l}\right)$

- Computationally heavy due to high number of drug-target pairs
- calculates an $N_{\mathrm{d}} N_{\mathrm{t}} \times N_{\mathrm{d}} N_{\mathrm{t}}$ kernel matrix between object pairs $\Rightarrow \mathcal{O}\left(N_{\mathrm{d}}^{2} N_{\mathrm{t}}^{2}\right)$ storage complexity
- trains a kernel-based classifier using this kernel matrix $\Rightarrow \mathcal{O}\left(N_{\mathrm{d}}^{3} N_{\mathrm{t}}^{3}\right)$ time complexity

Earlier Approaches

Bipartite Graph Inference

- Maps drug compounds and target proteins into a unified space called pharmacological space (Yamanishi et al., 2008, 2010)

■ Mapping is done by considering
■ chemical similarity between drug compounds
■ genomic similarity between target proteins

■ A drug-target pair is labeled as interacting if distance between them in pharmacological space is less than a threshold

Earlier Approaches
 Matrix Factorization Methods

■ Neighborhood methods versus latent factor models

■ Matrix factorization models map both users and items into a joint latent factor space of dimensionality R

■ User-item interactions are modeled as inner products in that space

■ Best-known example is recommender systems (e.g., movie recommendation)

Earlier Approaches

Matrix Factorization Methods

latent item components

rating matrix

out-of-sample item

Kernelized Bayesian Matrix Factorization

 Idea Behind Proposed Method
(a) Kernel-based nonlinear dimensionality reduction (Schölkopf and Smola, 2002)
(b) Matrix factorization (Srebro, 2004)
(c) Binary classification

Kernelized Bayesian Matrix Factorization

Graphical and Probabilistic Models

$$
\begin{align*}
& \lambda_{\mathrm{d}, \mathrm{~s}}^{i} \sim \mathcal{G}\left(\lambda_{\mathrm{d}, s}^{i} ; \alpha_{\lambda}, \beta_{\lambda}\right) \\
& \forall(i, s) \\
& a_{\mathrm{d}, s}^{i} \mid \lambda_{\mathrm{d}, \mathrm{~s}}^{i} \sim \mathcal{N}\left(a_{\mathrm{d}, s}^{i} ; 0,\left(\lambda_{\mathrm{d}, s}^{i}\right)^{-1}\right) \quad \forall(i, s) \\
& g_{\mathrm{d}, i}^{s} \mid \boldsymbol{a}_{\mathrm{d}, \mathrm{~s}}, \boldsymbol{k}_{\mathrm{d}, i} \sim \mathcal{N}\left(g_{\mathrm{d}, i}^{\mathrm{s}} ; \boldsymbol{a}_{\mathrm{d}, \mathrm{~s}}^{\top} \boldsymbol{k}_{\mathrm{d}, i}, \sigma_{g}^{2}\right) \quad \forall(\mathrm{s}, i) \\
& f_{j}^{i} \mid \boldsymbol{g}_{\mathrm{d}, i}, \boldsymbol{g}_{\mathrm{t}, j} \sim \mathcal{N}\left(f_{j}^{i} ; \boldsymbol{g}_{\mathrm{d},,}^{\top} \boldsymbol{g}_{\mathrm{t}, j}, 1\right) \\
& y_{j}^{i} \mid f_{j}^{i} \sim \delta\left(f_{j}^{i} y_{j}^{i}>\nu\right) \tag{i,j}\\
& \forall(i, j)
\end{align*}
$$

- $\mathcal{G}(; ;, \cdot) \Rightarrow$ Gamma distribution
- $\mathcal{N}(\cdot ;, \cdot,) \Rightarrow$ Normal distribution
- $\delta(\cdot) \Rightarrow$ Kronecker delta

Kernelized Bayesian Matrix Factorization Inference Using Variational Approximation

■ Exact inference for our probabilistic model is intractable

■ Using a Gibbs sampling approach is computationally expensive (Gelfand and Smith, 1990)

■ We propose a deterministic variational approximation to make inference efficient

- Variational methods use a lower bound on the marginal likelihood using an ensemble of factored posteriors (Beal, 2003)

Kernelized Bayesian Matrix Factorization

 Inference Using Variational Approximation■ Factorable ensemble approximation of required posterior
$p\left(\boldsymbol{\Theta}, \equiv \mid \mathbf{K}_{\mathrm{d}}, \mathbf{K}_{\mathrm{t}}, \mathbf{Y}\right) \approx q(\boldsymbol{\Theta}, \equiv)=$
$q\left(\boldsymbol{\Lambda}_{\mathrm{d}}\right) q\left(\mathbf{A}_{\mathrm{d}}\right) q\left(\mathbf{G}_{\mathrm{d}}\right) q\left(\boldsymbol{\Lambda}_{\mathrm{t}}\right) q\left(\mathbf{A}_{\mathrm{t}}\right) q\left(\mathbf{G}_{\mathrm{t}}\right) q(\mathbf{F})$
■ We can bound marginal likelihood using Jensen's inequality
$\log p\left(\mathbf{Y} \mid \mathbf{K}_{\mathrm{d}}, \mathbf{K}_{\mathrm{t}}\right) \geq$

$$
\mathrm{E}_{q(\boldsymbol{\Theta}, \equiv)}\left[\log p\left(\mathbf{Y}, \boldsymbol{\Theta}, \equiv \mid \mathbf{K}_{\mathrm{d}}, \mathbf{K}_{\mathrm{t}}\right)\right]-\mathrm{E}_{q(\boldsymbol{\Theta}, \Xi)}[\log q(\boldsymbol{\Theta}, \equiv)]
$$

Kernelized Bayesian Matrix Factorization

 Inference Using Variational Approximation$$
\begin{aligned}
& q\left(\Lambda_{\mathrm{d}}\right)=\prod_{i=1}^{N_{\mathrm{d}}} \prod_{s=1}^{R} \mathcal{G}\left(\lambda_{\mathrm{d}, s}^{i} ; \alpha_{\lambda}+1 / 2,\left(1 / \beta_{\lambda}+\widetilde{\left(a_{\mathrm{d}, s}^{j}\right)^{2}} / 2\right)^{-1}\right) \\
& q\left(\mathbf{A}_{\mathrm{d}}\right)=\prod_{s=1}^{R} \mathcal{N}\left(\mathbf{a}_{\mathrm{d}, \mathrm{~s}} ; \Sigma\left(\boldsymbol{a}_{\mathrm{d}, s}\right) \widetilde{\mathbf{K}_{\mathrm{d}}\left(\widetilde{\boldsymbol{g}_{\mathrm{d}}^{s}}\right)^{\top}} / \sigma_{g}^{2},\left(\operatorname{diag}\left(\widetilde{\boldsymbol{\lambda}_{\mathrm{d}}^{s}}\right)+\mathbf{K}_{\mathrm{d}} \mathbf{K}_{\mathrm{d}}^{\top} / \sigma_{g}^{2}\right)^{-1}\right) \\
& q\left(\mathbf{G}_{\mathrm{d}}\right)=\prod_{i=1}^{N_{\mathrm{d}}} \mathcal{N}\left(\boldsymbol{g}_{\mathrm{d}, i} ; \Sigma\left(\boldsymbol{g}_{\mathrm{d}, i}\right)\left(\widetilde{\mathbf{A}_{\mathbf{d}}^{\top}} \boldsymbol{k}_{\mathrm{d}, i} / \sigma_{g}^{2}+\widetilde{\mathbf{G}_{\mathrm{t}}} \widetilde{\left.\boldsymbol{f}^{i}\right)^{\top}}\right),\left(\mathbf{I} / \sigma_{g}^{2}+\widetilde{\mathbf{G}_{\mathrm{t}} \mathbf{G}_{\mathrm{t}}^{\top}}\right)^{-1}\right) \\
& q(\mathbf{F})=\prod_{i=1}^{N_{\mathrm{d}}} \prod_{j=1}^{N_{\mathrm{t}}} \mathcal{T} \mathcal{N}\left(f_{j}^{i} ; \widetilde{\boldsymbol{g}_{\mathrm{d},}^{\mathrm{d}}} \widetilde{\boldsymbol{g}_{\mathrm{t}, j}}, 1, f_{j}^{j} y_{j}^{i}>\nu\right)
\end{aligned}
$$

Kernelized Bayesian Matrix Factorization

 Inference Using Variational Approximation■ Complete algorithm
Require: $\mathbf{K}_{\mathrm{d}}, \mathbf{K}_{\mathrm{t}}, \mathbf{Y}, R, \alpha_{\lambda}, \beta_{\lambda}, \sigma_{g}$ and ν
1: Initialize $q\left(\mathbf{A}_{\mathrm{d}}\right), q\left(\mathbf{A}_{\mathrm{t}}\right), q\left(\mathbf{G}_{\mathrm{d}}\right), q\left(\mathbf{G}_{\mathrm{t}}\right)$ and $q(\mathbf{F})$ randomly
2: repeat
3: Update $q\left(\boldsymbol{\Lambda}_{\mathrm{d}}\right), q\left(\mathbf{A}_{\mathrm{d}}\right)$ and $q\left(\mathbf{G}_{\mathrm{d}}\right)$
4: Update $q\left(\boldsymbol{\Lambda}_{t}\right), q\left(\mathbf{A}_{t}\right)$ and $q\left(\mathbf{G}_{t}\right)$
5: Update $q(\mathbf{F})$
6: until convergence
7: return $q\left(\mathbf{A}_{d}\right)$ and $q\left(\mathbf{A}_{t}\right)$

Results

■ Our proposed method kernelized Bayesian matrix factorization with twin kernels (KBMF2K)

■ Three experimental scenarios

1. exploratory data analysis using low-dimensional projections
2. predicting interactions for out-of-sample drugs
3. predicting unknown interactions of given network

Results

Exploratory Data Analysis

■ By displaying low-dimensional projections on NR dataset

■ Not including 10\% of drugs (proteins) and their interactions to our training network

Results

Exploratory Data Analysis

■ Some important observations

1. KBMF2K successfully captures bipartite nature of given interaction networks (i.e., two disjoint node sets)
2. Dashed lines (i.e., interactions from training network) connect nearby drugs and proteins
3. Projections for held-out drugs (proteins) are meaningful because they are connected to nearby proteins (drugs)

■ Prediction performance with just two dimensions may not be enough, but these two-dimensional figures can be used for exploratory data analysis

Results

Predicting Interactions for Out-of-Sample Drugs

■ Five replications of five-fold cross-validation over drugs

■ Average AUC (area under ROC curve) values over 25 replications

Dataset	Yamanishi et al. (2010)	KBMF2K
E	0.821	0.832
IC	0.692	0.799
GPCR	0.811	0.857
NR	0.814	0.824

■ 10.7% and 4.6% improvements on IC and GPCR datasets

Results

Predicting Interactions for Out-of-Sample Drugs

■ Average AUC values with changing subspace dimensionality

■ R can be optimized using automatic relevance determination (Neal, 1996)

Results
 Predicting Unknown Interactions of Given Network

- Experimental procedure

1. train KBMF2K with given interaction network
2. rank noninteracting (i.e., not known to interact) drug-target pairs with respect to their interaction scores
3. check predicted interactions manually from latest online versions of ChEMBL (Gaulton et al., 2012), DrugBank (Knox et al., 2011) and KEGG DRUG (Kanehisa et al., 2012) databases

■ If we pick top five predicted interactions, 80% of predictions (16 out of 20) is reported in at least one database

Results

Predicting Unknown Interactions of Given Network

■ E dataset has 2926 interacting and 292554 noninteracting (i.e., not known to interact) drug-target pairs

Rank	Pair	Annotation
$\begin{aligned} & 1 \\ & C D \end{aligned}$	$\begin{aligned} & \text { D00437 } \\ & 1559 \end{aligned}$	Nifedipine (JP16/USP/INN) cytochrome P450, family 2 , subfamily C, polypeptide 9
$\underset{\mathrm{CDK}}{2}$	$\begin{aligned} & \text { D00542 } \\ & 1571 \end{aligned}$	Halothane (JP16/USP/INN) cytochrome P450, family 2, subfamily E, polypeptide 1
$\begin{aligned} & 3 \\ & C D \end{aligned}$	$\begin{aligned} & \text { D00097 } \\ & 5743 \end{aligned}$	Salicylic acid (JP16/USP) prostaglandin-endoperoxide synthase 2
4	$\begin{aligned} & \text { D00501 } \\ & 5150 \end{aligned}$	Pentoxifylline (JAN/USP/INN) phosphodiesterase 7A
${ }_{5}{ }_{\text {DK }}$	$\begin{aligned} & \text { D00139 } \\ & 1543 \end{aligned}$	Methoxsalen (JP16/USP) cytochrome P450, family 1 , subfamily A, polypeptide 1

Aalto University

Conclusions

Summary

■ A novel Bayesian formulation that combines
■ kernel-based nonlinear dimensionality reduction

- matrix factorization
- binary classification

■ First fully probabilistic formulation proposed for drug-target interaction network inference

■ Empirical evidence on four drug-target interaction networks

- chemical similarity between drug compounds
- genomic similarity between target proteins

Conclusions
 Summary

■ Propose a variational approximation for efficient inference

■ Matlab implementation is available at http://users.ics.aalto.fi/gonen/kbmf2k

■ An interesting direction for future research is to integrate multiple similarity measures for both drugs and proteins using multiple kernel learning (Gönen and Alpaydın, 2011)

- chemical descriptors for drug compounds

■ structural descriptors for target proteins

References

Beal,M.J. (2003). Variational Algorithms for Approximate Bayesian Inference. PhD thesis, The Gatsby Computational Neuroscience Unit, University College London.
Butina,D., Segall,M.D. and Frankcombe,K. (2002) Predicting ADME properties in silico: Methods and models. Drug Discovery Today, 7, S83-S88.

Byvatov,E., Fechner,U., Sadowski,J. and Schneider,G. (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Journal of Chemical Information and Computer Sciences, 43, 1882-1889.
Cheng,A.C., Coleman,R.G., Smyth,K.T., Cao,Q., Soulard,P., Caffrey,D.R., Salzberg,A.C. and Huang,E.S. (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology, 25, 71-75.
Gaulton,A., Bellis,L.J., Bento,A.P., Chambers,J., Davies,M., Hersey,A., Light,Y., McGlinchey,S., Michalovich,D., Al-Lazikani,B. and Overington,J.P. (2012) ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40, D1100-D1107.

Gelfand,A.E. and Smith,A.F.M. (1990) Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409.
Gönen,M. and Alpaydın,E. (2011) Multiple kernel learning algorithms. Journal of Machine Learning Research, 12, 2211-2268.
Hattori,M., Okuno,Y., Goto,S. and Kanehisa,M. (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. Journal of the American Chemical Society, 125, 11853-11865.

Aalto University

References II

Hecker,N., Ahmed,J., von Eichborn,J., Dunkel,M., Macha,K., Eckert,A., Gilson,M.K., Bourne,P.E. and Preissner,R. (2012) SuperTarget goes quantitative: Update on drug-target interactions. Nucleic Acids Research, 40, D1113-D1117.
Jacob,L. and Vert,J.P. (2008) Protein-ligand interaction prediction: An improved chemogenomics approach. Bioinformatics, 24, 2149-2156.
Kanehisa,M., Goto,S., Sato,Y., Furumichi,M. and Tanabe,M. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40, D109-D114.

Keiser,M.J., Roth,B.L., Armbruster,B.N., Ernsberger,P., Irwin,J.J. and Shoichet,B.K. (2007) Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 25, 197-206.
Knox,C., Law,V., Jewison,T., Liu,P., Ly,S., Frolkis,A., Pon,A., Banco,K., Mak,C., Neveu,V., Djoumbou,Y., Eisner,R., Guo,A.C. and Wishart,D.S. (2011) DrugBank 3.0: A comprehensive resource for 'omics' research on drugs. Nucleic Acids Research, 39, D1035-D1041.

Neal,R.M. (1996) Bayesian Learning for Neural Networks. Springer, New York, NY.
Rarey,M., Kramer,B., Lengauer,T. and Klebe,G. (1996) A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261, 470-489.
Schölkopf,B. and Smola,A.J. (2002) Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA.
Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subsequences. Journal of Molecular Biology, 147, 195-197.

Aalto University
Kernelized Bayesian Matrix Factorization
34/35
School of Science

References III

Srebro,N. (2004). Learning with Matrix Factorizations. PhD thesis, Massachusetts Institute of Technology.
Wassermann,A.M., Geppert,H. and Bajorath,J. (2009) Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. Journal of Chemical Information and Modeling, 49, 2155-2167.

Yamanishi, Y., Araki,M., Gutteridge,A., Honda,W. and Kaneisha,M. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232-i240.
Yamanishi,Y., Kotera,M., Kanesiha,M. and Goto,S. (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 26, i246-i254.
Zhu,S., Okuno,Y., Tsujimoto,G. and Mamitsuka,H. (2005) A probabilistic model for mining implicit 'chemical compound-gene' relations from literature. Bioinformatics, 21 (Suppl 2), ii245-ii251.

Aalto University

