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Introduction
Identifying Interactions Between Drugs and Proteins

Functions of proteins can be modulated by drugs

Growing knowledge about chemical space of drug compounds
and genomic space of target proteins

high-throughput chemical compound screening with
biological assays
high-throughput experimental projects that analyze the
genome

Limited knowledge about relationship between these two spaces
laborious and costly experimental procedures
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Introduction
Identifying Interactions Between Drugs and Proteins

A small number of experimentally validated interactions in
existing databases

ChEMBL (Gaulton et al., 2012), DrugBank (Knox et al.,
2011), KEGG DRUG (Kanehisa et al., 2012) and
SuperTarget (Hecker et al., 2012)

Computational methods for identifying interactions between drug
compounds and target proteins

to guide experimentalists towards new predictions
to provide supporting evidence for their experimental results
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Introduction
Identifying Interactions Between Drugs and Proteins

Traditional methods
1. docking simulations (Cheng et al., 2007; Rarey et al., 1996)
− requires structural information of target protein
2. ligand-based approaches (Butina et al., 2002; Byvatov et al.,

2003; Keiser et al., 2007)
− requires a significant number of known ligands for target

protein
3. literature text mining (Zhu et al., 2005)
− can not predict unknown interactions
− suffers from nonstandard naming practices
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Introduction
Identifying Interactions Between Drugs and Proteins

Machine learning methods operate on
1. chemical properties of drug compounds
2. genomic properties of target proteins
3. known interaction network

“Similar drug compounds are likely to interact with similar target
proteins”

Similarities can be encoded using kernel functions designed for
chemical compounds and protein sequences
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Materials
Datasets

Four important protein families from humans
1. Enzymes (E): proteins that catalyze (i.e., increase the rates

of) chemical reactions
2. Ion Channels (IC): proteins that regulate the flow of ions

across the membrane in all cells
3. G-Protein-Coupled Receptors (GPCR): proteins that

sense molecules outside the cell and activate inside signal
transduction pathways and cellular responses

4. Nuclear Receptors (NR): proteins that are responsible for
sensing steroid and thyroid hormones and certain other
molecules
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Materials
Datasets

Four drug–target interaction networks from Yamanishi et al.
(2008)

Number of Number of Number of Ratio of
Dataset Drugs Proteins Interactions Interactions

E 445 664 2926 ≈ 1.0%
IC 210 204 1476 ≈ 3.5%
GPCR 223 95 635 ≈ 3.0%
NR 54 26 90 ≈ 6.5%

Only experimentally validated interactions
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Materials
Chemical Data

Drug compounds

(a) Aspirin (b) Paracetamol

Structural similarity between drug compounds using SIMCOMP
(Hattori et al., 2003)

Drugs are represented as graphs
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Materials
Chemical Data

A dictionary of substructures
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Each drug is a set of substructures

Chemical similarity score between two drug compounds

sc(d i ,dk ) =
|d i ∩ dk |
|d i ∪ dk |
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Materials
Genomic Data

Target proteins (two enzymes affected by paracetamol)

(a) 2FDV (b) 3E6I

Sequence similarity between target proteins using normalized
Smith-Waterman score (Smith and Waterman, 1981)

Proteins are represented as amino-acid sequences
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Materials
Genomic Data

Each protein is a string from 20-letter alphabet
MSALGVTVALLVWAAFLLLVSMWRQVHSSWNLPPGPFPLPIIGNLFQLELKNIPKSFTRL
AQRFGPVFTLYVGSQRMVVMHGYKAVKEALLDYKDEFSGRGDLPAFHAHRDRGIIFNNGP
TWKDIRRFSLTTLRNYGMGKQGNESRIQREAHFLLEALRKTQGQPFDPTFLIGCAPCNVI
ADILFRKHFDYNDEKFLRLMYLFNENFHLLSTPWLQLYNNFPSFLHYLPGSHRKVIKNVA
EVKEYVSERVKEHHQSLDPNCPRDLTDCLLVEMEKEKHSAERLYTMDGITVTVADLFFAG
TETTSTTLRYGLLILMKYPEIEEKLHEEIDRVIGPSRIPAIKDRQEMPYMDAVVHEIQRF
ITLVPSNLPHEATRDTIFRGYLIPKGTVVVPTLDSVLYDNQEFPDPEKFKPEHFLNENGK
FKYSDYFKPFSTGKRVCAGEGLARMELFLLLCAILQHFNLKPLVDPKDIDLSPIHIGFGC
IPPRYKLCVIPRS

Genomic similarity score between two target proteins

sg(t j , t l) =
SW(t j , t l)√

SW(t j , t j)SW(t l , t l)
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Materials
Interaction Data

Nd drug compounds denoted as Xd = {d1,d2, . . . ,dNd}

Nt target proteins denoted as Xt = {t1, t2, . . . , tNt}

Nd × Nt matrix of known interactions between these two sets
denoted as Y

y i
j =

{
+1 if drug compound d i interacts with target protein t j

−1 otherwise

Kernelized Bayesian Matrix Factorization 12/35
Mehmet Gönen September 9, 2012
HIIT & Aalto ICS MLSB 2012



Materials
Interaction Data

Three important out-of-sample prediction scenarios
1. To find interacting proteins from Xt for a new drug d?
2. To find interacting drugs from Xd for a new target t?
3. To estimate whether a new drug d? and a new target t? are

interacting with each other

Predicting unknown drug–target interactions of given network
Some drug–target pairs are labeled as −1 due to missing
experimental evidence but they can be interacting in reality
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Earlier Approaches
Pairwise Kernel Methods

A binary classification task between drug–target pairs using
pairwise kernel functions (Jacob and Vert, 2008; Wassermann
et al., 2009)

k((d i , t j), (dk , t l)) = kc(d i ,dk )kg(t j , t l)

Computationally heavy due to high number of drug–target pairs
− calculates an NdNt × NdNt kernel matrix between object

pairs⇒ O(N2
dN

2
t ) storage complexity

− trains a kernel-based classifier using this kernel matrix
⇒ O(N3

dN
3
t ) time complexity
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Earlier Approaches
Bipartite Graph Inference

Maps drug compounds and target proteins into a unified space
called pharmacological space (Yamanishi et al., 2008, 2010)

Mapping is done by considering
chemical similarity between drug compounds
genomic similarity between target proteins

A drug–target pair is labeled as interacting if distance between
them in pharmacological space is less than a threshold
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Earlier Approaches
Matrix Factorization Methods

Neighborhood methods versus latent factor models

Matrix factorization models map both users and items into a joint
latent factor space of dimensionality R

User–item interactions are modeled as inner products in that
space

Best-known example is recommender systems (e.g., movie
recommendation)
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Earlier Approaches
Matrix Factorization Methods
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Kernelized Bayesian Matrix Factorization
Idea Behind Proposed Method

Kd
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kernel
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(a) Kernel-based nonlinear dimensionality reduction (Schölkopf and
Smola, 2002)

(b) Matrix factorization (Srebro, 2004)
(c) Binary classification
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Kernelized Bayesian Matrix Factorization
Graphical and Probabilistic Models

Λd

Kd

Y

Ad

Gd F

λi
d,s ∼ G(λi

d,s;αλ, βλ) ∀(i, s)

ai
d,s|λi

d,s ∼ N (ai
d,s; 0, (λi

d,s)−1) ∀(i, s)

gs
d,i |ad,s, kd,i ∼ N (gs

d,i ; a>d,skd,i , σ2
g) ∀(s, i)

f i
j |gd,i ,gt,j ∼ N (f i

j ; g>d,igt,j , 1) ∀(i, j)

y i
j |f i

j ∼ δ(f i
j y i

j > ν) ∀(i, j)

G(·; ·, ·)⇒ Gamma distribution

N (·; ·, ·)⇒ Normal distribution

δ(·)⇒ Kronecker delta
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Kernelized Bayesian Matrix Factorization
Inference Using Variational Approximation

Exact inference for our probabilistic model is intractable

Using a Gibbs sampling approach is computationally expensive
(Gelfand and Smith, 1990)

We propose a deterministic variational approximation to make
inference efficient

Variational methods use a lower bound on the marginal likelihood
using an ensemble of factored posteriors (Beal, 2003)
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Kernelized Bayesian Matrix Factorization
Inference Using Variational Approximation

Factorable ensemble approximation of required posterior

p(Θ,Ξ|Kd,Kt,Y) ≈ q(Θ,Ξ) =

q(Λd)q(Ad)q(Gd)q(Λt)q(At)q(Gt)q(F)

We can bound marginal likelihood using Jensen’s inequality

log p(Y|Kd,Kt) ≥
Eq(Θ,Ξ)[log p(Y,Θ,Ξ|Kd,Kt)]− Eq(Θ,Ξ)[log q(Θ,Ξ)]
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Kernelized Bayesian Matrix Factorization
Inference Using Variational Approximation

q(Λd) =
Nd∏
i=1

R∏
s=1
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(
λi
d,s;αλ + 1/2, (1/βλ + (̃ai
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Kernelized Bayesian Matrix Factorization
Inference Using Variational Approximation

Complete algorithm

Require: Kd, Kt, Y, R, αλ, βλ, σg and ν
1: Initialize q(Ad), q(At), q(Gd), q(Gt) and q(F) randomly
2: repeat
3: Update q(Λd), q(Ad) and q(Gd)
4: Update q(Λt), q(At) and q(Gt)
5: Update q(F)
6: until convergence
7: return q(Ad) and q(At)
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Results

Our proposed method kernelized Bayesian matrix factorization
with twin kernels (KBMF2K)

Three experimental scenarios
1. exploratory data analysis using low-dimensional projections
2. predicting interactions for out-of-sample drugs
3. predicting unknown interactions of given network
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Results
Exploratory Data Analysis

By displaying low-dimensional projections on NR dataset

 

 

Drugs

New Drugs

Targets
 

 

Drugs

Targets

New Targets

Not including 10% of drugs (proteins) and their interactions to our
training network
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Results
Exploratory Data Analysis

Some important observations
1. KBMF2K successfully captures bipartite nature of given

interaction networks (i.e., two disjoint node sets)
2. Dashed lines (i.e., interactions from training network)

connect nearby drugs and proteins
3. Projections for held-out drugs (proteins) are meaningful

because they are connected to nearby proteins (drugs)

Prediction performance with just two dimensions may not be
enough, but these two-dimensional figures can be used for
exploratory data analysis
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Results
Predicting Interactions for Out-of-Sample Drugs

Five replications of five-fold cross-validation over drugs

Average AUC (area under ROC curve) values over 25
replications

Dataset Yamanishi et al. (2010) KBMF2K

E 0.821 0.832
IC 0.692 0.799
GPCR 0.811 0.857
NR 0.814 0.824

10.7% and 4.6% improvements on IC and GPCR datasets
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Results
Predicting Interactions for Out-of-Sample Drugs

Average AUC values with changing subspace dimensionality

5 10 15 20 25
0.76

0.78

0.80

0.82

0.84

0.86

R
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U

C

 

 

Enzyme
Ion Channel
GPCR
Nuclear Receptor

R can be optimized using automatic relevance determination
(Neal, 1996)
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Results
Predicting Unknown Interactions of Given Network

Experimental procedure
1. train KBMF2K with given interaction network
2. rank noninteracting (i.e., not known to interact) drug–target

pairs with respect to their interaction scores
3. check predicted interactions manually from latest online

versions of ChEMBL (Gaulton et al., 2012), DrugBank (Knox
et al., 2011) and KEGG DRUG (Kanehisa et al., 2012)
databases

If we pick top five predicted interactions, 80% of predictions (16
out of 20) is reported in at least one database
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Results
Predicting Unknown Interactions of Given Network

E dataset has 2926 interacting and 292554 noninteracting (i.e.,
not known to interact) drug–target pairs

Rank Pair Annotation

1 D00437 Nifedipine (JP16/USP/INN)
CD 1559 cytochrome P450, family 2, subfamily C, polypeptide 9

2 D00542 Halothane (JP16/USP/INN)
CDK 1571 cytochrome P450, family 2, subfamily E, polypeptide 1

3 D00097 Salicylic acid (JP16/USP)
CD 5743 prostaglandin-endoperoxide synthase 2

4 D00501 Pentoxifylline (JAN/USP/INN)
5150 phosphodiesterase 7A

5 D00139 Methoxsalen (JP16/USP)
DK 1543 cytochrome P450, family 1, subfamily A, polypeptide 1

C: ChEMBL, D: DrugBank and K: KEGG
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Conclusions
Summary

A novel Bayesian formulation that combines
kernel-based nonlinear dimensionality reduction
matrix factorization
binary classification

First fully probabilistic formulation proposed for drug–target
interaction network inference

Empirical evidence on four drug–target interaction networks
chemical similarity between drug compounds
genomic similarity between target proteins
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Conclusions
Summary

Propose a variational approximation for efficient inference

Matlab implementation is available at
http://users.ics.aalto.fi/gonen/kbmf2k

An interesting direction for future research is to integrate multiple
similarity measures for both drugs and proteins using multiple
kernel learning (Gönen and Alpaydın, 2011)

chemical descriptors for drug compounds
structural descriptors for target proteins
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