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Summary

We present a �FingerID�1 machine learning framework for metabolite
identi�cation using tandem mass spectral data

1 We introduce novel kernels for mass spectra for prediction of intermediate
binary metabolite properties

2 We introduce a statistical model to search metabolites with matching
properties

1sourceforge.net/p/fingerid
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Metabolomics bottlenecks

At the American Society for Mass Spectrometry (ASMS) conference 2009, a
survey among the 600 participants asked [http://metabolomicssurvey.com]:

�From your perspective, what is the biggest bottleneck in

metabolomics today?�

Identi�cation of metabolites

35%
Assigning biological signi�cance

22%

Data processing or reduction

14%

Sample preparation

8%

No opinion

6%
Statistical analysis

5% Validation or Utility studies

5% Data acquisition or throughput
3% Other
2%
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Metabolite identi�cation

Determination of the metabolic
contents of the cell

Requirement for further
metabolomic analysis

Mass spectrometry
I O�ers a �wide� view on the cell

contents
I Reveals only mass-to-charges

(m/z), not structures
I Average measurement error ε:

true mass in range [m− ε,m+ ε]

[Kind & Fiehn 2006: Metabolomic database

annotations via query of elemental

compositions: mass accuracy is insu�cient even

at less than 1 ppm]
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Tandem mass spectrometry (MS/MS)

Filter a single unknown compound
by mass

I Fragment the compound by
high-energy collision into
sub-structures called fragments

I Measure the m/z of the
fragments

Each molecule produces a `unique'
set of fragments, and hence peaks

The collision energy can be varied
to produce more or less fragmented
products

⇒ structural information

Data:

The mass of the unknown
metabolite (precursor mass)

A list of (m/z,int) pairs of the
fragments of the unknown
metabolite
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Current metabolite identi�cation methods

Reference databases: Given an MS/MS spectrum of an unknown metabolite,
search matching spectra from reference databases [Wiley, NIST,
MassBank]

Fails if the spectrum is not in the database, or if the
measurement conditions/energies di�er too much

Simulation: Simulate the fragmentation of candidate metabolites and match
the observed spectrum against the simulated in silico spectra

MetFrag software: exhaustively cleave the bonds to produce
possible fragments

Machine learning: Use the MS/MS peaks as a characterizing pattern to predict
the structure of the metabolite

No need for databases or simulation of the fragmentation
process
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Machine learning problem

Given a MS/MS spectrum measurement χ = {x1, . . . ,xk} ∈ X as a
collection of peaks x = (mass, intensity)T with average mass error ε,
predict the measured unknown metabolite (a labeled graph) M ∈M

I ⇒ A structured prediction problem from sets to graphs

f : X →M

We opt for a two-phase scheme instead

1 An intermediate prediction target: a vector of m binary and independent
structural properties (��ngerprints�) y = (yi)

m
i=1, which characterizes the

unknown metabolite structure
I ⇒ A set of standard binary prediction problems (we use SVM's)

fi : X → {0, 1}m i = 1, . . . ,m

2 Reconstruct M from �ngerprints: We introduce a statistical model to �nd
matching metabolite candidate's based on the predicted property vector ŷ
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Overview of the framework
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Fingerprints

We use 528 structural �ngerprints as a prediction targets

Generated from OpenBabel's FP3, FP4 and MACCS �ngerprint sets

The �ngerprints should be predictable from MS/MS data, and be informative
regarding the metabolite structure

SMILES Interpretation

('[N,n]~[C,c](~[O,o])~[N,n]',0) NC(O)N

('[N,n]~[C,c](~[C,c])~[N,n]',0) NC(C)N

('[O,o]~[S,s](~[O,o])~[O,o]',0) OS(O)O

('[C,c]-[O,o]',0) C-O

('[C,c]-[N,n]',0) C-N

[+] cation

[CX3H1](=O)[\#6] aldehyde

[\#6][CX3](=O)[\#6] ketone

[\#6][CX3](=[SX1])[\#6] Thioketone

[SX2H][c] Arylthiol

... ...
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Mass spectral kernels

We introduce kernels for mass spectral data
χ = {x1, . . . ,xk}
We extract three classes of features from
MS/MS spectra into sparse vectors with `bins'
of �xed width of 1

φpeaks(χ)i =
∑

(mass,int)∈χ
δi±0.5(mass) · int i = 1, 2, 3, . . .

φnloss(χ)i =
∑

(mass,int)∈χ
δi±0.5(prec(χ) −mass) · int

φdiff (χ)i =
∑

(mass,int)∈χ
(mass′,int′)∈χ

δi±0.5(|mass −mass′|) · int · int′

where δ is an indicator function
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Integral mass kernel

The integral mass kernels are

Kpeaks(χ, χ
′) = 〈φpeaks(χ, χ′)〉

Knloss(χ, χ
′) = 〈φnloss(χ, χ′)〉

Kdiff (χ, χ′) = 〈φdiff (χ, χ′)〉

A summed kernel

Kfull = Kpeaks +Knloss +Kdiff

correspond to a concatenation of the feature sets

[φpeaks;φnloss;φdiff ].

An explicit feature mapping φ : X → RD

An alignment problem: does a peak 70.493m/z belong to bin 70 or 71 with
mass error ε = 0.5?
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Spectral density model
We incorporate the mass measurement error directly into the features
We model each peak as a 2-dimensional gaussian

p(x) ∼ N (x,Σ).

The spectrum becomes a gaussian mixture model

p(χ) =
1

k

k∑
i=1

N (xi,Σ)

The Σ =

[
σmass 0

0 σint

]
models the error
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High resolution probability product kernel

Kernels between sets or distributions [Jebara & Kondor 2004]

Represent a spectrum χ = {x1, . . . ,xk} of peaks with a probability
distribution p(χ)

The kernel K(χ, χ′) ≡ K(p, p′) is then a similarity between probability
distributions as the integral of the product distribution:

K(p, p′) =

∫
R2

p(x)p′(x)dx

Interpretation as expectation of one distribution under the other (expectation
likelihood kernel): ∫

R2

p(x)p′(x)dx = Ep[p′(x)] = Ep′ [p(x)]

Feature map: ϕ : χ→ p(χ), the kernel K(p, p′) = 〈p, p′〉 in `2 space

Closed form solution for gaussian mixtures (fast)

We use the probability product kernel over the three features
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Fingerprints into metabolites

We predict the �ngerprint vector ŷ of the unknown metabolite using SVM's
and the mass spectral kernels

Next, we �nd candidate metabolites with matching �ngerprints from
molecular databases (PubChem)

The �ngerprint predictions contain almost always errors and thus the
candidate metabolite with exactly matching �ngerprints is rarely correct

I We list candidates according to how con�dent we are in speci�c predictions
I The cross-validation prediction accuracies (pi)

m
i=1 of a �ngerprint i being

correctly predicted are used to determine which �ngerprints we allow to
mismatch
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Poisson-Binomial model

Poisson-Binomial model for a particular �ngerprint vector y being true given
the prediction ŷ and the prediction accuracies p = (pi)

m
i=1:

P (y|p, ŷ) =

m∏
i=1

p
[yi=ŷi]
i (1− pi)[yi 6=ŷi]

I Maximum value at y = ŷ
I A high pi indicates that a candidate with non-matching i'th �ngerprint is

unlikely to be true
I A low pi indicates that a candidate with non-matching i'th �ngerprint might

be true

Each candidate metabolite gets a score based on its �ngerprint vector:

score(M) = P (y(M)|p, ŷ)

We rank metabolites by score (success = true metabolite in top10)
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Experiments

Three datasets from MassBank
I `QqQ' (n = 514,m = 286): A low-accuracy Quadrupole dataset with repeated

measurements at collision energies 10eV, 20eV, ..., 50eV
I `Ltq' (n = 293,m = 128): A high-accuracy LTQ Orbitrap dataset
I `Lipids' (n = 403,m = 20): A high-accuracy LTQ Orbitrap dataset of

non-common phosphatidylethanolamines

Standard SVM's, 5-fold crossvalidation, C parameter from {100, . . . , 104}
Candidate metabolites are queried from

I KEGG (a small database of over 14,000 metabolites)
I PubChem (a large general-purpose repository of over 30 million molecules)

1 We evaluate the accuracy of �ngerprint prediction using di�erent kernels

2 We evaluate the ranks of true metabolites using �ngerprint predictions
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Fingerprint prediction accuracy
QqQ Ltq Lipids

Single spectra (CE eV) Multiple spectra
Kernel 10 20 30 40 50

∑
eKe merge

Integral

Kp, linear 87.8 88.2 88.8 89.3 89.5 89.5 89.2 85.5 98.4
quadr. 87.9 88.3 88.8 89.4 89.6 89.9 89.8 84.4 98.1

Knl 88.4 88.8 88.8 88.7 89.2 89.4 89.0 86.3 98.8
88.4 88.9 88.8 88.9 89.2 89.6 89.3 86.1 98.7

Kdf 87.8 88.0 87.7 87.8 88.2 88.0 87.9 82.6 97.1
87.8 88.0 87.8 87.9 88.3 87.9 87.9 82.9 96.9

Kp+nl 88.5 89.5 89.9 90.1 90.3 90.7 90.3 88.3 99.5

88.4 89.4 90.0 90.0 90.3 90.5 90.6 88.1 99.3
Kp+df 88.2 88.6 89.0 89.4 89.6 89.4 89.2 85.6 98.7

88.1 88.7 89.2 89.6 89.8 89.3 89.7 84.8 98.4
Kp+nl+df 88.5 89.5 90.1 90.1 90.3 90.5 90.3 88.3 99.5

88.6 89.8 90.3 90.3 90.5 90.3 90.7 87.6 99.3

High resolution

Kϕ
p 88.0 88.6 89.1 89.1 89.4 89.3 89.4 86.7 98.6

88.2 89.1 89.5 89.7 89.9 89.3 90.0 85.5 97.3
Kϕ

nl 88.8 89.5 89.3 89.2 89.2 89.8 89.6 88.8 99.1
89.0 89.8 89.7 89.5 89.6 90.0 90.0 88.1 98.0

Kϕ
df 88.5 88.9 88.6 88.4 88.4 89.2 89.3 83.7 97.8

88.6 89.0 88.9 88.6 88.6 89.2 89.5 83.9 97.1
Kϕ

p+nl 89.0 89.9 90.1 90.1 90.2 90.5 90.5 91.1 99.3

89.2 90.1 90.3 90.3 90.4 90.1 90.8 89.6 97.9
Kϕ

p+df 88.8 89.4 89.5 89.5 89.5 90.0 90.0 86.5 98.8

88.9 89.5 89.7 89.8 89.8 89.8 90.4 84.9 97.5
Kϕ

p+nl+df 89.1 90.0 90.3 90.2 90.2 90.6 90.7 90.5 99.3

89.2 90.1 90.4 90.5 90.4 90.2 91.1 88.6 98.0
random 87.3 87.2 87.2 87.2 87.7 87.3 78.7 88.3

Table : The classi�cation accuracies (in %) of the three datasets with various kernels.
Abbreviations: p is peaks, nl is neutral loss, and df is di�erence kernel.
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Fingerprint prediction accuracy cont.
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Figure : Scatter plot of the aggregate average accuracy/F1 across the three datasets
with di�erent kernel features. The open markers represent higher accuracy/F1 ratio in a
linear kernel.
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Individual �ngerprint prediction accuracies
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Figure : SVM prediction accuracies of individual �ngerprints of the LTQ dataset with
high resolution and integral mass kernels. The bottom of the bars is the baseline
classi�er.
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Figure : The ranks of the true metabolite according to the high resolution kernel and the
Poisson-Binomial matching model with three datasets and two molecular repositories.
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Comparison to MetFrag

MetFrag is a state-of-the-art computational metabolite
identi�cation package2

MetFrag simulates the fragmentation process and tries to match the
simulated spectra against the observed

MetFrag also extracts candidate metabolites from KEGG or PubChem

Molecular Spectral FingerID MetFrag
database dataset match Avg. rank rank ≤ 10 match Avg. rank rank ≤ 10

Kegg
QqQ 17 3.2 16/17 16 5.1 9/16
Ltq 20 3.8 18/20 12 5.6 11/12

PubChem
QqQ 11 905 8/11 2 68 0/2
Ltq 20 58 9/20 1 20 0/1

Table : Comparison of metabolite identi�cation against MetFrag on a subset of 20
spectra from both `QqQ' and `Ltq', respectively.

2Wolf, Schmidt, Muller-Heinemann & Neumann 2010; msbi.ipb-halle.de/MetFrag/
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Conclusions

Software FingerID: sourceforge.net/p/�ngerid

A machine learning framework for metabolite identi�cation

Probability product kernels provide a �exible model for mass spectra

Future work: explore structured prediction, feature selection (L1)
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Thank you

Thank you!
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