

Efficient Network Inference using a Linear Programming Approach

Bettina Knapp, Johanna Mazur, Lars Kaderali

Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Dresden University of Technology

Basel, 08.09.2011

Citri, Yarden; Nature Reviews, Molecular Cell Biology, 2006

ERBB signaling pathway

 Treatment of breast cancer patients with trastuzumab, a neutralizing monoclonal ERBB2 antibody, prolongs the disease-free survival and improves the clinical outcome for breast cancer patients However, at least 2/3 of the patients are *de novo* resitant, mechanisms are poorly understood

 \rightarrow New targets are necessary

RNA interference (RNAi)

 Knockdown experiments to elucidate gene function and gene involvement in biological processes

 Identification of hit genes which play a role in a certain disease

18.10.2012

6

Medical Faculty Carl Gustav Carus, Institute for Medical Informatics and Biometry (IMB)

The ERBB family of receptor tyrosine kinase

Network Inference

Problem: for a directed graph with n nodes there are $2^{n(n-1)}$ possible network topologies:

i.e. for 17 nodes: 7.59*10⁸¹ possible networks.

Network Inference

Solution: use linear programming (LP) \rightarrow can be solved efficiently even for large-scale problems.

Knockdown of	Effect on			
	Gene 1	Gene 2	Gene 3	
Gene 1	0	0	0	
Gene 2	1	0	1	
Gene 3	1	1	0	
Gene 2 & 3	1	0	0	

LP Model assumptions

- Information flow starts at a source node *S* and ends at a sink node *F*.
- Each perturbation effect is propagated along the network.

LP Model constraints

If
$$\mathbf{x}_{ik} \ge \delta_i$$
 and $b_{ik} = 1$:
 $w_i^0 + \sum_{j \ne i} (w_{ji}^+ - w_{ji}^-) \mathbf{x}_{jk} \ge \delta_i$

If
$$x_{ik} < \delta_i$$
 and $b_{ik} = 1$:
 $w_i^0 + \sum_{j \neq i} (w_{ji}^+ - w_{ji}^-) x_{jk} \le 0 + \xi_l$

LP-SF Model

$$\min \ z(\mathbf{w}_{ji}^{+}, \mathbf{w}_{ji}^{-}, \mathbf{w}_{i}^{0}, \xi_{l}) \coloneqq \left(\sum_{i,j} (w_{ji}^{+} + w_{ji}^{-}) + \sum_{i} \mathbf{w}_{i}^{0} + \frac{1}{\lambda} \sum_{l} \xi_{l} \right)$$

s.t.
if $\mathbf{x}_{ik} \ge \delta_{i}$ and $b_{ik} = 1$: $w_{i}^{0} + \sum_{j \ne i} (w_{ji}^{+} - w_{ji}^{-}) \mathbf{x}_{jk} \ge \delta_{i}$
if $\mathbf{x}_{ik} < \delta_{i}$ and $b_{ik} = 1$: $w_{i}^{0} + \sum_{j \ne i} (w_{ji}^{+} - w_{ji}^{-}) \mathbf{x}_{jk} \le 0 + \xi_{l}$

Determine penalty parameter λ :

- Leave-one-out cross-validation and mean squared error.
- 10-fold stratified cross-validation for larger networks.

Simulations

- Activity of a node is computed from two normal distributions.
- Simulated single, double (randomly chosen) and one experiment without any knockdown.
- Computation of area under the ROC (AU-ROC) and area under the precision-to-recall curve (AU-PR).
- Different standard deviations to simulate noise and simulations for missing data.
- Using networks extracted from KEGG:
 - 10 sub-networks randomly selected with 10 nodes.
 - 5 random sub-networks of larger size.

• Comparison with an approach published by Froehlich et al. in 2009: Deterministic Effects Propagation Networks (DEPNs).

5

2

3

Run time

Medical Faculty Carl Gustav Carus, Instit

Noisy Data: 10 node-nw

ROC

Precision-to-recall

Medical Faculty Carl Gustav Carus, Inst

Incomplete Data: 10 node-nw

1.0

0.8

0.6

0.4

0.2

0.0

LP-SF

LP-SF 6%

AUC value

LP Model constraints if prior knowledge is available

If
$$i \in V \setminus S$$
:

$$\sum_{j \in V, j \neq i} (w_{ji}^{+} + w_{ji}^{-}) \geq \delta_{i}$$
If $i \in V \setminus F$:

$$\sum_{j \in V, j \neq i} (w_{ij}^{+} + w_{ij}^{-}) \geq \delta_{i}$$

Medical Faculty Carl Gustav Carus, Institute

Prior knowledge integration: 10 node-nw

20

Medical Faculty Carl Gustav Carus, Institute for Medical Informatics and Biometry (IMB)

ERBB signaling data

Normalized data is given for 16 genes of the ERBB signaling network (Froehlich et al., 2009): 16 kds (3 double kd).

ERBB signaling data

Evalutation of the results based on String database. Comparison with the DEPNs and random networks:

	LP model	DEPN	random
True positives	9	7	13.11
True negatives	72	73	59.11
False positives	15	14	27.9
False negatives	32	34	27.9
Specificity	0.83	0.84	0.68
Sensitivity	0.22	0.17	0.32
Precision	0.38	0.33	0.32
Accuracy	0.63	0.63	0.56

Summary

- Formulation as an LP allows an efficient computation.
- Model can include double (multiple) knockdowns.
- Inferred edges are activating and deactivating.
- Prior knowledge can be easily incorporated but is not essential for the network inference.

Problems and Open Questions

- Nonlinearities \rightarrow topologies are not always connected
- Only steady-state data \rightarrow loops not fully resolved

Thank you for your attention!

Bettina Knapp

Institute for Medical Informatics and Biometry, Dresden University of Technology

Bettina.knapp@tu-dresden.de http://141.76.248.53/homepages/knapp

COOPERATION

SYSPatho

24

Medical Faculty Carl Gustav Carus, Institute for Medical Informatics and Biometry (IMB)

Acknowledgments

- Prof. Dr. Lars Kaderali,
 Medical Faculty Carl Gustav Carus,
 TU Dresden
- Dr. Johanna Mazur,
- University Medical Center of the Johannes Gutenberg University Mainz

ViroQuant

