KATHOLIEKE UNIVERSITEIT

LEUVEN

Kernel methods for genomic data fusion

Yves Moreau

University of Leuven, Belgium

Genetic diagnosis

- Main medical goals
- End diagnostic odyssey
- Estimate risk for next pregnancy
- Predict disease progression, life expectancy, etc.
- Patient - deletion $\operatorname{del}(22)(q 12.2)$
- Pulmonary valve stenosis
- Cleft uvula
- Mild dysmorphism
- Mild learning difficulties
- High myopia

Prioritization by example

- Known/training genes
- Type 2 diabetes: 21 known genes in OMIM, 118 known genes in GAD
- Manually curated gene set from Elbers et al., 2007
- ACDC, ADRA2A, ADRA2B, ADRB1, ADRB2, ADRB3, LEP, LEPR, NR3C1, UCP1, UCP2, UCP3, PPARG, KCNJ11, TCF7L2
- Candidate/test genes
- Prioritizations of a known region (from Elbers et al., 2007)
- 12q24: 327 candidates

Responsible for MODY, an uncommon monogenetic form of early onset T2D.

NCOR2 has an important role in the adipocyte by inhibiting adipocyte differentiation via repression of PPAR-g activity.

PTPN11

Key component in the reverse cholesterol transport pathway.
F2.D10 Genetically associated with differences in insulin sensitivity in healthy subjects

- A term is over-represented if its frequency inside the training set is significantly larger than its frequency over the genome
- Gene Ontology, Interpro, KEGG \& EST submodels

\square biovec.Ensemblestmodel
\square biovec.ExpressionModel_atlas
\square biovec.Iprmodel
\square biovec.KeggModel
\square biovec.Gomodel
\square biovec.TextModel

http://www.esat.kuleuven.ac.be/endeavour

Large-scale statistical validation

- Evaluation by an independent third party (pharma)
- MetaCore pathway and disease maps
- 454 pathway maps with 10,053 pathway genes
- 833 disease maps with 12,699 disease genes
- ROC curve for ranks

A novel locus for congenital heart $\therefore \quad \therefore \quad$ defect on chromosome 6q24-25

Patients with cardiac defects
Chromosome 6
105 candidate genes

*Translocation t(2:6) carrier
Mutation screen

\circ \circ \circ \circ \circ \circ \circ \circ \circ

Kernel matrix
\sim nonlinear extension of covariance/correlation matrix
Instead of using original data directly, use kernel matrix only
(Think of hierarchical clustering.)
Advantage 1: kernel matrices form a single type of object, regardless of the heterogeneity of the original data types

Advantage 2: all machine learning methods can be applied to kernels (classification, clustering, prioritization, ranking, etc.)

$\therefore \because$ One-class support vector machine

$$
\mathrm{P}: \min _{\vec{w}, \xi, \rho} \frac{1}{2} \vec{w}^{T} \vec{w}-\frac{1}{\nu l} \sum_{k=1}^{l} \xi_{k}-\rho
$$

s.t. $\vec{w}^{T} \phi\left(\vec{x}_{k}\right) \geq \rho-\xi_{k}, k=1, \ldots, N$

$$
\xi_{k} \geq 0, k=1, \ldots, N
$$

\vec{w} : the norm vector of the separating hyperplane
\vec{x}_{k} : the training samples
ν : a regularization term penalizing the outliers in the training samples $\phi(\cdot)$: the feature map ρ : the bias term
ξ_{k} : the slack variables
N : the number of training samples

D: $\min _{\vec{\alpha}} \vec{\alpha}^{T} K \vec{\alpha}$

$$
\begin{aligned}
\text { s.t. } & 0 \leq \alpha_{k} \leq \frac{1}{\nu N}, \quad k=1, \ldots, N \\
\sum_{k=1}^{N} \alpha_{k} & =1
\end{aligned}
$$

α_{k} : the dual variables
K : the kernel matrix

Kernel fusion for novelty detection

Kernel fusion in one-class SVM

- L_{∞}-norm kernel fusion (De Bie et al., 2007)

$$
\min _{\vec{\alpha}} t
$$

$$
\text { s.t. } t \geq \vec{\alpha}^{T} K_{j} \vec{\alpha}, j=1, \ldots, p
$$

$$
0 \leq \alpha_{k} \leq \frac{1}{\nu N}, \quad k=1, \ldots, N
$$

$$
\sum_{k=1}^{N} \alpha_{k}=1
$$

- L_{2}-norm kernel fusion (Yu et al., 2009) $\min _{\vec{\alpha}} t$
s_{j} : dummy variables
s.t. $t \geq\left\|s_{j}\right\|_{2}, j=1, \ldots, p$

$$
\begin{aligned}
& s_{j} \geq \vec{\alpha}^{T} K_{j} \vec{\alpha}, j=1, \ldots, p \\
& 0 \leq \alpha_{k} \leq \frac{1}{\nu N}, k=1, \ldots, N \\
& \sum_{k=1}^{N} \alpha_{k}=1
\end{aligned}
$$

ETkL: Extract, Transform, Kernelize, Learn

- Systematic multi-tier framework for data integration
- Resembles multi-tier architecture of complex IT systems and Extract-Transform-Load methodology of datawarehousing

Database / web service sources
Data reconciliation, cleaning, and warehousing, etc.
Scaling, normalization, feature selection, etc.
Computation and storage of kernels
5. Learning

- May require feedback loops (e.g., feature selection)
- Scale up to large, heterogeneous databases
- 20,000 x 20,000 kernel matrices are ugly animals

The No-Voodoo principle

- Given a data matrix D for a learning problem, the no voodoo principle states that, in the absence of prior knowledge or arbitrary assumptions, no information can be extracted about the problem except the information provided by the data matrix
- In particular, no information can be created that wasn't initially present in the data
- No amount of bagging, random projection, nonlinear high-dimensional feature map, etc. can extract information that was not present in the data (except through the implicit or explicit injection of constraints into the problem)
- If two frameworks represent data in ways that are related in a one-to-one fashion, there is nothing that prevents the development of methods with identical accuracy (e.g., random projections vs. spectral methods)
- If one method outperforms another on a given problem (remember the no free lunch theorem), it is because the methods are more or less efficient (in particular, in terms of generalization performance vs. retrospective accuracy) at capturing the available information or because the methods incorporate explicit or implicit constraints that are more or less relevant to the given learning task

Handling large kernel matrices

- One way to handle large kernel matrices is via lowrank approximations
- Store $r \mathrm{x} n$ instead of $n \mathrm{x} n$
- Cholesky decomposition
- K symmetric positive definite
$\exists C$ (lower triangular \& unique) : $K=C C^{\prime}$

Incomplete Cholesky decomposition

- Incomplete Cholesky
- K symmetric positive semidefinite
- Limit to rank $r \leq \operatorname{rank}(K)$
- Add pivoting to capture more informative rows/columns first
- Limit information loss to e.g. 5\%

Expression of candidate genes

- For positional cloning, checking expression of candidate genes is standard but has a low yield
- No guarantee that disease gene itself is perturbed
- Existing prioritization methods (e.g., Endeavour) rely heavily on prior knowledge and hard to achieve "breakthroughs"

Methods

- Machine-learning strategies
- Naive ranking
- Use only the differential expression of the candidate
- Direct neighborhood ranking
- Combine differential expression level of candidate with the average of the differential expression levels of the direct neighbors
- Kernel ridge regression
- Smooth a candidate's differential expression level by kernel ridge regression
- Approximate heat kernel diffusion
- Discrete low-accuracy approximation to the exponential diffusion kernel $\exp (\alpha L)=\exp (\alpha(D-A))$ takes direct and indirect association into account
- Arnoldi diffusion
- Memory-light high-accuracy approximation to exponential diffusion kernel using Krylov subspaces (Arnoldi algorithm)

Methods \& benchmark

- Benchmark: 40 KO experiments in mouse
- Publicly available data sets from GEO - Affymetrix platform
- Simple KO versus control
- How well can we rank the KO gene?
- Which algorithm and what combination of steps performs best?
- Preprocessing
- RMA
- GCRMA
- MAS5
- Differential expression
- Log2 ratio
- Regularized t-statistic (CyberT)
- Significant $\log 2$ ratio
- Different networks

Database (mouse)	Number of genes	Number of interactions	Average node degree
STRING v7.1	16,566	820,177	49.5
STRING v8.2	24,442	$1,405,375$	57.5
BioGRID v2.0.61	1,417	2,026	2.5
I2D v1.72	10,867	79,088	10.6

- STRING7, STRING8
- PPI Network from BioGRID
- PPI Network from I2D

Results

Strategy	AUC	Error reduction relative to baseline
Simple expression ranking	83.0%	baseline
Direct neighborhood ranking	88.0%	26.4%
Kernel ridge regression	86.8%	19.0%
Heat kernel	92.3%	52.8%
Arnoldi diffusion	87.4%	22.7%

A candidate gene for PCOS

- PolyCystic Ovary Syndrome (PCOS)
- Major cause of infertility (chronic anovulation)
- Hormonal dysfunction (hyperandrogenism)
- Obesity (depending on diagnostic criteria)
- Oligogenic disorder (no Mendelian inheritance)
- Two confirmed susceptibility loci
- 19p13.2 -> FBN3 (Fibrillin 3)
- 5q11.2
- FST (follistatin) proposed, but infirmed in subsequent validation
- Expression data (GEO GDS2084)
- Omental (belly) fat from patients vs. control
- Affymetrix HG-U133A

DDX4 as a PCOS candidate

- Prioritization of 5q11.2
- FST ranks 2nd

- DDX4 ranks 1st
- Expression in ovary follicles (image = mouse Ddx4/Vasa)
- A germline development gene (sperm and ovary only)
- Plausible mechanism for infertility and hyperandrogenism
- Mechanism not previously suggested for PCOS
- Not a perfect candidate (male phenotype in mouse, not female)

Krylov subspace methods

- Function of a square matrix $f(A)$
- Matrix inverse
- Matrix exponential (e.g., exponential of graph Laplacian)
- Computationally challenging for large matrices
- In applications, often no need for matrix function $f(A)$ directly, but only its evaluation $f(A) . v$ at a point v
- Krylov methods - simplified argument
- Cayley-Hamilton theorem for characteristic polynomial of square $n \times n$ matrix A

$$
\begin{aligned}
& p_{n}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right) \\
& p_{n}(A)=0
\end{aligned}
$$

- Any power of A higher or equal to n can be expressed in function of $A^{n-1}, A^{n-2}, \ldots, A^{2}, A, I$
- Any matrix function $f(A)$ can be expressed as a polynomial of degree n - 1
- $f(A) . v$ can be expressed as a linear combination of

$$
\left\{v, A v, A^{2} v, \ldots, A^{n-2} v, A^{n-1} v\right\}
$$

- Krylov methods consists in projecting $f(A) . v$ onto the subspace

$$
S_{m}=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{m-2} v, A^{m-1} v\right\}
$$

- Only requires matrix-vector operations!
- The set of spanning vectors is kept orthogonal via QR orthogonalization
- In practice, often fast convergence $m \ll n-1$

Networks vs. kernels

- <Rant> A network is a matrix is a network
- And a symmetric similarity matrix is an undirected graph
- Implicitly, we mean more by a network
- Sparse matrix
- Edges have some underlying biological reality
- e.g., KEGG metabolic network from one organism or regulonDB yeast transcriptional network
- Most predicted protein networks do not have such properties
- Usually calculated much like similarity matrices
- Why handle them as "biological" networks?
- Networks useful in visualization, but should not be misleading
- Network representation usually involves heavy thresholding and creates an information bottleneck </Rant>
- Gillis and Pavlidis suggest that networks and similarity matrices are almost equivalent under the no-voodoo principle

What's wrong with network propagation?

- Kernel diffusion and network module biomarkers all seem to perform less strongly than expected.
- What is wrong?
- Nothing? (Our expectation is unrealistic)

Best 50

Best 500

Curse of the small world?

1. Data is not specific enough to highlight the right network neighborhoods
-> improve experimental design (e.g., factorial design)
2. Our data is improperly scaled or normalized (propagating apples and oranges)
3. Our networks are bad
(STRING > BioGrid, coverage more important than specificity)
4. Network is in fact thresholded propagation matrix already (e.g., STRING) (further propagation does not help much)
5. Our notion of neighborhood and diffusion is unsuitable (curse of the small world)
(rough approximation to heat kernel works better than accurate one)
6. Our randomization procedures are unsuitable (propagation results are still apples and oranges)
7. Uncertainty propagation is the bottleneck
(more complex model propagates more noise and thus destroys the advantage of added knowledge)

Target prioritization

- One drug, many targets
- Many targets are unknown
- Side effects
- Synergistic effects
- Candidates identified by phenotypic screen
- Knowledge of a drug candidate's mode of action can help drug development
- Predict targets based on gene expression following treatment
- Distinguish between genes targeted by the drug and indirectly regulated genes

Network analysis of drug response

- Gene expression integrated with protein associations
- Neighborhood analysis
- Gene prioritization based on differential expression of functionally related network neighborhood

Method

- Filtering
- No filtering
- Expression measure
- log ratio
- Network
- STRING 8.2
- Parameters
- $N=1,2,3, a=0.9$
$p_{\alpha}=p_{0}\left(I-\frac{\alpha}{N} L\right)^{N}$
- $a=0.9, \beta=0.1$

$$
p_{\alpha}=p_{0}\left(I-\alpha L+\frac{\alpha^{2}}{4} L^{2}\right) \Rightarrow p_{\alpha}=p_{0}\left(I-\alpha L+\beta L^{2}\right)
$$

Preliminary results: monoclonal antibodies

- Monoclonal antibodies specifically bind to one target
- 7 datasets from Gene Expression Omnibus:
- tocilizumab: IL6
- bevacizumab: VEGFA
- rituximab: MS4A1
- infliximab: TNF
- h10H5: IGF1R
- anti-CD25: IL2RA
- LY2439821: IL17A
- Can we identify the target from expression response?

- Why does the h10H5 target IGF1R rank this low?
- Bad experiment?
- Bad method?
- No downstream transcriptional effect?
- Test other IGF1R inhibitor: BMS754807
- \rightarrow For $\mathrm{a}=0.9$ and $\beta=0.1$ IGF1R ranked at position 381

Preliminary results: chemical drugs

- Chemical drugs can bind multiple targets
- 7 datasets from Gene Expression Omnibus
- letrozole: CYP19A1
- bicalutamide: AR
- calcitriol: VDR
- methylprednisolone: NR3C1
- gefitinib: EGFR
- methotrexate: DHFR
- progesterone: PGR
- Can we identify the target from expression response?

- Why does the methylprednisolone target NR3C1 rank this low?
- Bad experiment?
- Bad method?
- No downstream transcriptional effect?
- Test other NR3C1 agonist: fluticasone
- \rightarrow For $a=0.9$ and $\beta=0.1$ NR3C1 ranked at position 40

