

Transcription Regulation: From Sites to Cell-type Specificity

Uwe Ohler

Institute for Genome Sciences & Policy Duke University

Berlin Institute for Medical Systems Biology Max Delbrueck Centrum Humboldt University

- In the past 5 years, sequencing technologies have made the anticipated quantum leap
 - 1 mio base pairs currently for <10c
 - Illumina HiSeq: typically ~100 mio reads of ~100 bp
 - Everyone is able to generate more data than s/he needs
 - Unbiased exploration of genomes (DNA) & transcriptomes (RNA)

The ENCODE project

Nature ; Genome Research; Genome Biology 2012

Computational Biology of Gene Regulation

- General information: the core promoter
 - Region around the transcription start site (TSS) where RNA polymerase II (pol-II) interacts with basal transcription factors
 - Potentially far away from the *translation* start site
- Specific information about functional context of genes: proximal promoter/enhancers
 - Binding sites of specific transcription factors confer activation at the right developmental stage or tissue

non-degenerate motif (AATGTCT)

- seq 1 AGGTGTGGTTGTAAATGTGTTAAGTGTTG<u>AATGTCT</u>GAAAATGTGTGTGAAAAAATGTGTG
- seq 2 AAGTGTGT<u>AATGTCT</u>TGTGTGTAAAAACCGTGTGTGAAACCCTTCAATTGTGTGCACACGT
- seq 3 AAATGTGGTCCCCGGTGTGTGAATTGGTTAACCTCT<u>AATGTCT</u>GTAACCAAGTGTGTAATG
- seq 4 AGGTGTGATGATGCTGTAGATGCTCGTASGT<u>AATGTCT</u>GGGCTTTTAATTCCCTTACGTCG
- seq 5 GTGGCTATGTGGTCAATGTCTCACTGGCGTCTTAGTTGGCTAGTAGCTCTCTGATGATGAT

more realistic (degenerate motif: WATGTNT)

- seq 1 AGGTGTGGTTGTAAATGTGTTAAGTGTTGAAAAATGTCTGAAAAAATGTGTGAAAAAATGTGTG
- seq 2 AAGTGTGT<u>TATGTCT</u>TGTGTGTAAAAACCGTGTGTGAAACCCTTCAATTGTGTGCACACGT
- seq 3 AAATGTGGTCCCCGGTGTGTGAATTGGTTAACCTCT<u>TATGTGT</u>GTAACCAAGTGTGTAATG
- seq 4 AGGTGTGATGATGCTGTAGATGCTCGTASGT<u>AATGTAT</u>GGGCTTTTAATTCCCTTACGTCG
- seq 5 GTGGCTATGTGGTCAATGTTTCACTGGCGTCTTAGTTGGCTAGTAGCTCTCTGATGATGAT

Extended alphabet: **A**, **G**, **C**, **T**, **M** {A,C}, **S** {G,C}, **R** {A,G}, **W** {A,T}, **Y** {C,T}, **K** {G,T}, **N** {A,G,C,T}

Still more realistic (position weight matrix)

Duke Experimental mapping: "Footprinting"

- 1. Sites: Motif finding what do target sequences look like?
 - Given a set of "foreground" promoter sequences, identify a model/description of one or more enriched binding sites (and their location in the sequences)
 - This is a search problem: Find the model/description that maximizes a score reflecting the overrepresentation of hits in the data
 - Indirect evidence: clusters of co-regulated genes
 - Direct evidence: Binding of regulatory factors
- 2. Regions: Enhancer codes what defines specificity?
 - Given known/predicted binding sites for a large set of TFs, find a specific combination that encodes an expression pattern
 - Goal: e.g. model for tissue-specific promoters

- Can we predict TF binding from sequence?
- Can we predict expression patterns from binding?
- Can we predict phenotype from expression?

Information:

- Chromatin state, DNA sequence
- Direct binding (ChIP) and/or models to predict TF binding
- Expression (Pol-II recruitment? Production? Steady state?)

Problems:

- large intergenic space;
- many degenerate sites;
- noisy assays

- How is tissue specific gene expression defined?
 - Expression of regulatory factors
 - Activity of the factors (e.g. nuclear localization)
 - Availability of target DNA sites
- Problem: direct binding studies (or predictions) show thousands of (potential) target sites
- Hypothesis:
 - The binding of several TFs within a "regulatory module" leads to the specificity needed
 - These factors need to bind to accessible regions

Mapping of open chromatin

After initial alignment, tracks are smoothed & variable size DNase hypersensitive sites (DHS) above cutoff are extracted

The setup

- Duke DNase-seq conducted on >50 human cell lines
 - Identification of DNaseI hypersensitive sites (DHS)
 - Score associated with each site

DHS across 19 least related cell lines

TSS DHS Specificity and CG Content

Defining expression patterns

Most up- and downregulated genes from each cell type, plus one set of constitutive genes (200 genes each)

Duke Models to distinguish expression patterns

Classifiers are trained to distinguish expression patterns based on TF features for > 300 factors

[sparse linear L1-logistic regression, "Lasso"]

- Compare this approach to using proximal promoter region
- Also identifies activators and repressors

NR2F2

- NRSF/REST: Top-scoring factor for Medulloblastoma cell line genes
 - *repressor* not bound in this line

- Oct4: Among the top factors of ES cell genes
 - Stem cell specific *activator*

Duke Example application: sex determination

• Sry is transiently up-regulated

The Network in Supporting Cells

ke

Duke Building a TF network in Supporting Cells

- Characterize the transcriptome as the bipotential gonad differentiates
- Identify enhancers genome-wide in XX and XY supporting cells and use computational approaches to build a predictive models of gene expression
- Test and validate predictions using RNAi and ChIP-seq

A fine-time series transcriptome

- Whole gonads
- 2 sexes: XX and XY
- 6 time points
- 2 strains

70

• 3 replicates per sex, strain and stage

Cascades of dimorphic expression

mke

A Hidden Markov Model to identify dimorphic expression

Fold Difference

Fold Difference

E11.4

Female

enriched

E11.6

E11.8

E12.0

E11.2

Duke Different paths to dimorphic expression

Up-regulation in XX gonads

Identify activator in XX gonads

Down-regulation in XY gonads

Identify repressor in XY gonads

Activation and Repression in the Gonad

New candidate regulators

ce

- TFs and co-factors that are predicted to have a role in the XY supporting cells
- Monitor genes using qPCR
 - Known players in sex determination
 - Predicted targets of the TF being knocked-down
- E13.5 XY gonad cells
 - FAC sort supporting cells and perform RNAi

DNase-seq on E13.5 XY identifies known testis specific enhancers

Material from >250 XY and >2,500 XX embryos

Duke Identify Enhancers in DNase-seq data

- Look for differences in regions of open chromatin between E13.5 XX and XY supporting cells
- Analyze sequence content to identify + decode enhancers

Towards an integrated understanding of

- Site-level resolution: ChIP or not?
- Chromatin features (HiC)
- Dynamic changes, e.g. differentiation

Variation of non-coding functional elements

- Binding site occupancy
- Identification of sequence variants with influence on gene expression

- Heterogeneous datasets digital sequence data vs continuous representation & statistics
- Very high (nt-level) resolution
- Increased spatial & temporal characterization of biological systems – hierarchical/dynamic models
- Large datasets
- Even more parameters
 - If only few genes are truly co-regulated, how to identify significant "grammars"?

Acknowledgements

Current lab members:

- Andrea Gossett (promoters/chromatin)
- Dina Hafez (3'UTRs)
- Parawee Lekprasert (microRNAs)
- Song Li (RNAseq expression)
- Bill Majoros (promoter evolution)
- Neel Mukherjee (PAR-CLIP seq)
- Anirudh Natarajan (chromatin + TFs)
- Iulian Pruteanu (fly images + expression)
- Galip Yardimci (DNase/chromatin)
- David Corcoran (RNAseq promoters/miRs)
- Stoyan Georgiev (motifs)
- Mano Arunachalam (enhancers)
- Alexa Carda (RNAseq libraries)
- Dan Mace (image analysis)
- Brad Martsberger (plant images)
- Molly Megraw (reg. networks)
- Brad Moore (plant images)
- Elizabeth Rach (fly TSS)

Collaborators:

- Philip Benfey, Duke (plant genomics/microscopy)
- Blanche Capel, Duke (mouse)
- Greg Crawford, Duke (ENCODE)
- Bryan Cullen, Duke (miRNAs)
- Jim Kadonaga, UCSD (core motifs)
- Jack Keene, Duke (RNA)
- Sayan Mukherjee, Duke (Stats)
- Pavel Tomancak, MPI Dresden/ Casey Bergman, U Manchester (HFSP; fly expression patterns)
- David Wassarman, U Winsconsin
- Tom Tuschl, Rockefeller (RNA)
- Jun Zhu, NHLBI (TSSs)

Funding: NSF DBI, IOS, MCB, **NHGRI** R01, HFSP Young Investigator, **NIGMS** Center for Systems Biology

Postdoc/PhD opportunities in Berlin!

http://www.genome.duke.edu/labs/ohler