Context-specific transcriptional regulatory network inference from global gene expression maps using double two-way *t*-tests

Jianlong Qi¹ Tom Michoel^{1,2}

¹Freiburg Institute for Advanced Studies The University of Freiburg, Germany

²The Roslin Institute The University of Edinburgh, Scotland, UK

MLSB, 2012

Outline

Introduction

- Transcriptional Regulatory Network
- Reconstruction of Transcription Regulatory Network

2 Method

- Critical Contrast Determination
- Scoring of Regulatory Interactions

3 Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

▲ @ ▶ ▲ ■ ▶ ▲

Transcriptional Regulatory Network Reconstruction of Transcription Regulatory Network

Outline

Introduction

Transcriptional Regulatory Network

Reconstruction of Transcription Regulatory Network

2 Method

- Critical Contrast Determination
- Scoring of Regulatory Interactions

3 Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

Regulation of biological processes in cells

- Transcriptional regulation
- Post-transcriptional regulation
- Post-translational regulation

Transcription factor (TF) in transcriptional regulation

- Transcription factors are proteins
- They regulate the expression of their target genes

< ロ > < 同 > < 回 > < 回 >

Figure: Regulation of nitrogen utilization in yeast.

Jianlong Qi, Tom Michoel Context-specific transcriptional regulatory network inference

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

Transcriptional Regulatory Network Reconstruction of Transcription Regulatory Network

Outline

Introduction

- Transcriptional Regulatory Network
- Reconstruction of Transcription Regulatory Network

2 Method

- Critical Contrast Determination
- Scoring of Regulatory Interactions

3 Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

- Gene expression data are often used to infer regulatory networks.
- Molecular interactions between transcription factors and their targets might lead to corresponding correlations between their expression values.

Figure: Heatmap showing the expression values of GLN3, GAT1, DAL2 and DAL7. Red - over-expressed, green - under-expressed and black - no change compared to wild-type expression levels.

< ロ > < 同 > < 回 > < 回 >

Typical algorithms

- Bayesian network [Friedman et al., 2000]
- Mutual information [Faith et al., 2007]
- Linear regression [Bonneau et al., 2006]
- Random forest [Huynh-Thu et al., 2010]

< □ > < 同 > < 回 > < 回 > < 回 >

Input

- A matrix of gene expression values
- A list of candidate transcription factors

Output and evaluation

- An ordered list of putative regulator-gene interactions
- Recall and Precision

$$\operatorname{rec}(k) = \frac{\operatorname{TP}(k)}{N_{\operatorname{ref}}}$$
 $\operatorname{prec}(k) = \frac{\operatorname{TP}(k)}{k},$

where TP(k) is the number of known interactions, among the first *k* predictions and N_{ref} is the total number of known interactions.

< ロ > < 同 > < 回 > < 回 > < 回 >

Benchmark dataset

- Yeast stress dataset [Segal et al., 2003] for 2355 genes under 173 conditions.
- *E. coli* dataset [Faith *et al.* 2007] for 4,345 genes under 189 conditions.

Performance

- Better performance at prokaryote than eukaryote
- Degraded performance at genes regulated by multiple transcription factors

ヘロト 人間 ト イヨト イヨト

э.

Critical Contrast Determination Scoring of Regulatory Interactions

Outline

Introduction

- Transcriptional Regulatory Network
- Reconstruction of Transcription Regulatory Network

2 Method

Critical Contrast Determination

Scoring of Regulatory Interactions

3 Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

 The differential expression of a gene g in a partition (C₁, C₂) of the set of samples in two distinct sets can be determined by the ordinary *t*-statistic,

$$t = \frac{|\mu_1 - \mu_2|}{\sqrt{\frac{(n_1 - 1)\sigma_1^2 + (n_2 - 1)\sigma_2^2}{n_1 + n_2 - 2}}\sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$$

• Given K samples in the dataset, the critical contrast of g can be determined by taking the maximum over all K - 1 partitions.

Critical Contrast Determination Scoring of Regulatory Interactions

 For each gene, sort expression levels and find critical contrast (2-way *t*-test)

Figure: DAL2

< ロ > < 同 > < 回 > < 回 >

Critical Contrast Determination Scoring of Regulatory Interactions

Outline

Introduction

- Transcriptional Regulatory Network
- Reconstruction of Transcription Regulatory Network

2 Method

- Critical Contrast Determination
- Scoring of Regulatory Interactions

Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

- The interaction score t_{f,g} between a TF f and g is determined by the t-statistic of f in the critical contrast of g.
- The higher $t_{f,g}$, the more confident we are about the predicted regulatory interaction $f \rightarrow g$.
- Background correction for t_{f,g}:

$$Z_{f,g} = \frac{t_{f,g} - \mu_g}{\sigma_g},$$

where μ_{g} and σ_{g} are the mean and standard deviation of $\mathit{t}_{\!f,g}$ over all TFs

< ロ > < 同 > < 回 > < 回 > < □ > <

- TFs and their targets are both differentially expressed in a gene-specific sample contrast.
- No assumption on any linear or non-linear relation between the expression profiles of TFs and their targets.
- Interactions found by the *t*-test procedure tend to only co-express locally.

Benchmarking on *E.coli* and Yeast datasets Tissue-Specific Network Inference Discussion

Outline

Introduction

- Transcriptional Regulatory Network
- Reconstruction of Transcription Regulatory Network
- 2 Method
 - Critical Contrast Determination
 - Scoring of Regulatory Interactions

3 Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Benchmarking on *E.coli* and Yeast datasets Tissue-Specific Network Inference Discussion

Network inference methods

- TwixTrix: Two-way t-test
- CLR: Mutual information
- Inferelator: Linear regression
- LeMoNe: Two-way clustering
- GENIE3: Random forest
- Pearson correlation and Spearman correlation

・ 同 ト ・ ヨ ト ・ ヨ

Figure: Recall-precision curves for seven transcriptional regulatory network inference algorithms in *E.coli*.

Jianlong Qi, Tom Michoel Context-specific transcriptional regulatory network inference

Figure: Recall-precision curves for seven transcriptional regulatory network inference algorithms in yeast.

・ロト ・ 日 ・ ・ 回 ・ ・

э

Introduction	Benchmarking on E. coli and Yeast datasets
Method	Tissue-Specific Network Inference
Experimental Results	Discussion

	E. coli	Yeast
TwixTrix	0.05182	0.00157
Inferelator	0.04624	0.00140
GENIE3	0.06767	0.00097
LeMoNe	0.04415	0.00091
CLR	0.06269	0.00190
Pearson	0.05003	0.00097
Spearman	0.03157	0.00052

Table: Area under the recall-precision curve for each method in *E. coli* and yeast. The bold numbers indicate the highest value in each organism.

Introduction	Benchmarking on E. coli and Yeast datasets
Method	Tissue-Specific Network Inference
Experimental Results	Discussion

Figure: Multi-dimensional scaling plot, using the number of non-overlapping interactions among the top 500 predicted interactions as a distance measure between network inference methods.

Figure: Distribution of Pearson correlations for the top 500 predicted TF-target interactions in yeast from five network inference methods.

(日)

ъ

Introduction Benchmarking on *E.coli* and Yeast datasets Method **Tissue-Specific Network Inference** Discussion

Outline

Introduction

- Transcriptional Regulatory Network
- Reconstruction of Transcription Regulatory Network

2 Method

- Critical Contrast Determination
- Scoring of Regulatory Interactions

3 Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

Benchmarking on *E.coli* and Yeast datasets Tissue-Specific Network Inference Discussion

Human dataset

- 12,568 genes, 1,033 samples from 64 tissue types
- Good for testing context-specific interactions and global interactions

Two-way t-test

- TBX5 → BMP10: TBX5 is a TF with a role in heart development.
- GCM1 \rightarrow PAPP: GCM1 is the placental TF.

CLR

- BBX \rightarrow TPR: BBX is a TF for cell cycle progression from G1 to S phase.
- ZNF24 → BPTF: ZNF24 is a TF involved in promoting the cell cycle.

Figure: Scatter plot of expression levels for representative high-scoring TwixTrix (blue and red) and high-scoring CLR (green and black) predicted interactions.

Introduction	Benchmarking on E. coli and Yeast datasets
Method	Tissue-Specific Network Inference
xperimental Results	Discussion

Outline

Introduction

- Transcriptional Regulatory Network
- Reconstruction of Transcription Regulatory Network

2 Method

- Critical Contrast Determination
- Scoring of Regulatory Interactions

3 Experimental Results

- Benchmarking on E.coli and Yeast datasets
- Tissue-Specific Network Inference on a Human Dataset
- Discussion

・ 同 ト ・ ヨ ト ・ ヨ

Introduction Benchmarking on *E.coli* and Yeast dataset Method Tissue-Specific Network Inference Experimental Results Discussion

Strength

- A simple method with performance on par with state-of-the-art methods.
- Sensitive to context-specific regulatory interactions.
- Very fast (e.g., less than a minute in the human dataset)

Weakness

 Assign less weight to globally co-expressed TF-target pairs.

Summary

- The two-way t-test method provides a useful addition to existing network inference methods.
- Integrating results from inference methods with different nature.

Introduction	Benchmarking on <i>E.coli</i> and Yeast datasets
Method	Tissue-Specific Network Inference
Experimental Results	Discussion

In large expression compendia for multi-cellular organisms, it seems expression is highly tissue-specific and consistent with an off/on-model (which is what the proposed method detects). If we move to RNA-seq, will such an off/on-model still work or will we do better with a model where we assume a gene is off in most tissues, but with a more complicated relation in the other tissues?

Introduction	Benchmarking on E. coli and Yeast datasets
Method	Tissue-Specific Network Inference
Experimental Results	Discussion

In yeast, our algorithm works as well as others which try to model the TF-gene interaction in a biophysically more accurate way. This probably means that microarray data is too noisy to reflect true biophysical expression relations. If we move to RNA-seq, will we get sufficient increase in resolution to model TF-gene interactions with biophysical models?

Benchmarking on <i>E.coli</i> and Yeast datasets
Tissue-Specific Network Inference
Discussion

Thank you!

Jianlong Qi, Tom Michoel Context-specific transcriptional regulatory network inference

・得と ・ヨト・

э