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Biological motivation

Switch proliferation/differentiation of skin primary cells
(human keratinocytes)
Source: Ingenuity
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Biological motivation

Switch proliferation/differentiation of skin primary cells
(human keratinocytes)

Collaboration with two biologists: Marie-Anne Debily and David Castel
(CEA, Evry, France)
This laboratory (Xavier Gidrol) has identified protein ID2 as a major
component in this switch
Experimental data: Transcriptomic analysis by microarray experiments of
HaCaT cells presenting stable overexpression or transient knock-down
achieved by RNA interference of ID2 expression.
Existing network: provided by Ingenuity (text-mining) on a subset of 63
differentially expressed genes ≈ 157 known regulations
Background knowledge: cellular localization of proteins, biological
processes, protein-protein interactions, position of genes on chromosomes
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Biological motivation

Goal of the study

Given a gene regulatory network provided by Ingenuity (text-mining), confront it
to experimental data and background knowledge, build a method able to complete
the network with new candidate genes
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Biological motivation

Machine Learning for biological network inference

Two main families of methods
Modeling the behavior of the network as a (dynamical) system
Modeling/predicting edges in the graph: given an ordered pair of genes (A,B)
,predict if A regulates B
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Biological motivation

Modeling/predicting edges in the graph

Supervised network inference: (PPI) pairwise SVM [Ben-Hur and Noble,
2005, Hue and Vert, 2010], mixture of feature experts [Qi, 2008], KCCA
[Yamanishi et al., 2004], metric learning [Yamanishi and Vert, 2005], output
kernel regression tree [Geurts et al., 2006;2007]; (GR) local classifiers
[Bleakley et al. 2007], [Mordelet at al. 2008]
Semi-supervised network inference: PPI: Kernel Matrix completion using
EM [Tsuda et al., 2003], [Kato et al., 2005], Link Propagation [Kashima et
al., 2009], Training set expansion [Yip and Gerstein, 2009] , Operator-valued
kernel [Brouard et al. 2011]
Unsupervised: (GR) Gaussian graphical models [Shafer and Strimmer et al.
2005], [Wille and Buehlman et al.2006]
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Biological motivation

Our approach: learning a Markov Logic Network

Motivation
Supervised link prediction
Combine the efficiency of statistical learning with the interpretability of first
order logic

Proposed solution
Build a classifier based on a set of weighted first order logic rules that
conclude on the target predicate "Regulates": if Propr1(A,C) and
Propr2(B,D) and Prop3(A,B) then Regulates (A,B).
Markov Logic network recently introduced by Domingos et al. 2006
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Biological motivation
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Markov Logic networks

Using first order logic to encode data

Variables : gene, (protein), level, loc, process
Constants : Id2, Cdkn2a,Cytoplasm,. . .
Atoms : P(t1, . . . , tn),
where P is a predicate ans t1, . . . , tn are variables or constants

I Loccell(Akt1,Cytoplasm)
I Regulates(x , y)

A ground atom is an atom with no variable, only constants; It can be true or
false
A possible world: an assignment of truth values to all possible groundings of
predicates
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Markov Logic networks

Predicates encoding experimental data and prior knowledge

Regulation: Regulates (gene1,gene2)
Expression data :

I Expwt(gene, level), Expsiid2(gene,level), Expprcid2(gene,level)
I For instance, Expsiid2(G,L) states that the level of expression of gene G is L

when the level of expression of ID2 has been increased

Position on chromosomes :
I Samechro(gene1, gene2), Sameband(gene1, gene2)

Biological processes to which genes are contributing :
I Processbio(gene, process)

Cellular localization of proteins
I Loccell(protein, loc)

Physical interaction between proteins . . .
Links between a gene and a protein . . .
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Markov Logic networks

Structure of a small Markov Logic Network (example)

A MLN is a set F of formula (clauses) and a weight vector (each formula is
weighted)
Together with a finite set C of constants, among which the variables can take
their values, a MLN defines a Markov Network.
node: a ground atom
edge: each time two ground atoms appear in the same ground formula
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Markov Logic networks

Markov Logic Network (MLN)

Let X be the set of all propositions describing a world
wi is the weight (positive or negative) associated with the clause fi ∈ F , and
Z, the normalizing constant
Then, the probability of a particular truth assignment x of variables in X is
given by the formula:

P(X = x) =
1
Z

exp(
∑
fi∈F

wini (x))

ni (x) is the number of true groundings of fi in x and Z known as the partition
function is the normalization coefficient
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Markov Logic networks

MLN for a supervised prediction of a regulation

Notations
Let Y the set of query atoms (regulate predicate)
y = (y11, . . . , ynn) where yij correspond to the instantiated predicates Regulate(Gi ,
Gj)
and thus to the labeled data.
x correspond to all the other instanciated predicates
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Markov Logic networks

Modeling the posterior probability of a regulation between i
and j

P(Y = yij |x ,w) =
exp(

∑
k∈Fyij

wknk(x , yij))∑
t=0,1 exp(

∑
k∈Fyij

wknk(x , y|Yij=t))
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Markov Logic networks

Discriminative learning of weights given the structure

Maximization of the penalized conditional log-likelihood

L(w) = logP(Y = y |X = x ,w) + logP(X = x ,w) (1)

≈
n∑

i,j=1

logP(Yij = yij |X = x ,w) + logP(w) (2)

(3)

`2 norm: P(w) ∝ exp(−λ ‖ w ‖2)

Implementation with Alchemy (Kok et al. 2007)
N.B. Sparse models with `1 constraint also possible not implemented here
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Markov Logic networks

Discriminative learning of the structure

Used tool: Aleph (Srinivasan, 2001), Inductive Logic Programming
I Selection of a positive example
I Construction of the most specific rule satisfied by this example
I Generalization of this rule by a top-down search
I The process is iterated until all the positive examples be covered
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Experimental results

Description of the experimental studies

Gene regulatory network associated with ID2 in human cells:

GA: set of the 63 genes of interest
Regulations between these genes were obtained using Ingenuity

We conducted three numerical studies to assess the performance of our method:

1 Cross-validation measurements on a well-balanced classification task
2 Updating the network using asymmetric bagging
3 Inference of regulations with a new set of genes using asymmetric bagging

The two last studies were defined with the biologist Marie-Anne Debily and
considered by her as necessary in silico assessment before processing to new wet
experiments.
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Experimental results

Comparison using a baseline pairwise SVM

Pairwise SVM [Ben-Hur and Noble, 2005, Hue and Vert, 2010]
A kernel between ordered pairs of genes is built using a kernel k between
single data :

K ((G1,G2), (G3,G4)) = k(G1,G3)k(G2,G4).

Definition of six gaussian kernels ki for each feature previously described
Two ways of combining kernels:

Kpairwisesum((G1,G2), (G3,G4)) = 1
6

∑6
i=1 ki (G1,G3)ki (G2,G4)

Ksum((G1,G2), (G3,G4)) = k̄(G1,G3)k̄(G2,G4)),

where k̄(Gj ,Gk) = 1
6

∑6
i=1 ki (Gj ,Gk).
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Experimental results

Averaged cross-validation measurements on balanced
samples (1)

Genes of GA

R1: dataset labeled using Ingeniuity in 2007
R+

1 : set of 106 positive examples of regulations between genes of GA

R−1 : set of all the "negative" examples (no regulation proven)
30 samples of negative examples R−1,i , i = 1, . . . , 30 randomly sampled from
R−1
With each set R+

1 ∪ R−1,i : 10-fold cross-validation for each set
Evaluation metric: averaged AUC-ROC and AUC-PR values obtained within
a large range of values of the regularization parameter λ (resp. C) of the
MLN (resp. SVM).
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Experimental results

Averaged cross-validation measurements on balanced
samples (2)

MLN
λ AUC-ROC AUC-PR
20 80.8± 6.1 82.7± 5.4
50 84.3± 3.5 85.5± 4.0
100 84.4± 2.8 86.2± 3.2
500 83.4± 2.7 86.0± 2.7
750 83.3± 2.8 85.8± 2.8

Pairwise SVM
C Pairwise sum Sum

AUC-ROC AUC-PR AUC-ROC AUC-PR
10−3 70.9± 3.5 73.1± 3.4 82.5± 2.3 84.3± 2.1
10−2 70.9± 3.5 73.1± 3.4 82.5± 2.3 84.3± 2.1
10−1 70.9± 3.5 73.1± 3.4 82.5± 2.3 84.3± 2.1

1 76.4± 3.1 78.7± 3.0 85.2± 2.8 87.3± 2.5
101 77.5± 3.2 79.4± 3.5 84.3± 3.4 86.3± 3.1
102 77.5± 3.2 79.4± 3.5 84.3± 3.4 86.3± 3.1
103 77.5± 3.2 79.4± 3.5 84.3± 3.4 86.3± 3.1
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Experimental results

Network completion with a new set of genes (1)

TRAINING SET: R2 contains all the ordered labeled pairs between genes of
GA (updated data 2009)
TEST set R3: containing all the ordered pairs between genes of GA and GB

Goal: test the ability of the classifier to label correctly the regulations
between the genes of GA and GB

The test was made under real conditions: the whole set of positive (55) and
negative examples (2969) of R3 was considered to assess the performance in
prediction.

Asymmetric bagging
Bootstrap sampling only on the over-represented class
Each generated predictor is trained on a balanced dataset
Average of their predictions on the test set to provide a single prediction
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Experimental results

Network completion with a new set of genes (2)

Bagged MLNs
λ Auc-roc Auc-pr
50 72.8 6.7
100 73.1 7.7
500 73.2 9.2
750 73.4 9.5
1000 73.1 9.5
5000 73.0 9.8
10000 72.8 9.5

Bagged pairwise SVMs
C Pairwise Sum Sum

Auc-roc Auc-pr Auc-roc Auc-pr
0.001 62.8 4.0 66.2 7.8
0.01 62.8 4.0 66.2 7.8
0.1 62.8 4.0 66.2 7.8
1 65.3 7.7 67.4 8.6
10 65.4 6.1 67.5 8.3
100 65.4 6.1 67.5 8.3
1000 65.4 6.1 67.5 8.3
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Experimental results

And what about the rules ?

Aleph did not find rules involving the positions of genes on chromosomes
Examples of rules with a high positive weight:

I 0.20 ProtLoccell(g2,Plasma_membrane) ∧ Expsiid2(g2, Level3) ∧
Expsiid2(g1, Level3) ⇒ Regulates(g1, g2)

I 0.30 Processbio(g2,Cell_proliferation) ∧
Processbio(g1,Negative_regulation_of _cell_proliferation) ⇒
Regulates(g1, g2)

Promising results but it should be possible to find more relevant rules given
some constraints on the rule learner
More relevant rules if data are richer (for instance kinetics during the switch)
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Conclusion

Conclusion and perspectives

First-order logic as a framework to encode heterogeneous data, readable by
biologists: not a black box
Consistency of the built classifier with the experimental data and available
knowledge
In this example, MLN performs as well as SVM in artificial tasks and better
in the realistic completion task
Future work on rules extraction: (1) rules can be improved, constraints on
the kind of rules to be built by Aleph must be imposed, (2) rules less
numerous (sparse modeling)
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Conclusion

2 Postdoc positions open at IBISC, Genopole Evry and INRIA, LRI University
of Paris Sud, France

I 1-year postdoc position on protein-protein interaction network inference
(CFTR network) with Alexander Edelman (Necker Hospital) and Christine
Froidevaux (Paris Sud))

I 2-year postdoc position on Dynamical modeling for understanding of
endothelium dysfunctions in normal tissues following ionizing radiation
exposure with Olivier Guipaud (IRSN, Paris)

I CONTACT : florence.dalche AT ibisc.fr
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Appendix

2. Updating a graph (1)

Still genes of GA

R+
2 : set of regulations between the 63 genes of interest obtained with

Ingenuity two years after the construction of the first dataset.
51 new regulations were discovered by Ingenuity between these two dates
Prediction of the updated graph : use R1 − R+

2 to see if we could retrieve the
new regulations in R+

2 \ R+
1 using asymmetric bagging

Asymmetric bagging
Bootstrap sampling only on the over-represented class
Each generated predictor is trained on a balanced dataset
Average of their predictions on the test set to provide a single prediction
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Appendix

2. Updating a graph (2)

Positive training set: dataset R+
1

30 subsamples R−1,i from R−1 \ R+
2 , such that |R−1,i | = |R+

1 |
For each sampling, the predictor learned was applied to the 51 new
regulations and the predictions obtained were averaged.

Selection of a threshold θ:
For each sampling,

I 2
3 of R+

1 and R−1,i considered for the training set and 1
3 for a validation set.

The F1-measure was computed on each validation set for different thresholds:

F1 = 2.
Precision.Recall

Precision + Recall

Selection of the threshold maximizing the averaged F1-measure, that is
maximizing precision and recall at the same time.
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Appendix

2. Updating a graph(3)

Prediction on pairs of genes in R+
2

Bagged MLNs
λ TPR
20 64.7
50 64.7
100 72.6
500 80.4
750 84.3
1000 90.2
2000 88.2
5000 84.3

Bagged pairwise SVMs
C Pairwise sum Sum

TPR TPR
0.001 90.2 58.8
0.01 88.3 58.8
0.1 88.3 58.8
1 74.5 52.9
10 64.7 43.1
100 64.7 43.1
1000 64.7 43.1
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