Learning a Markov logic network for supervised gene regulation inference

application to the ID2 regulatory network in human keratinocytes

C. Brouard¹, C. Vrain², J. Dubois^{1,2}, D. Castel³, M-A. Debily³, F. d'Alché-Buc^{1,4}

 ¹ IBISC, Université d'Evry Val d'Essonne
 ² LIFO, Université d'Orleans
 ³ CEA, Evry
 ⁴ INRIA, LRI umr CNRS 8623, Université Paris Sud, Orsay France

September 8, 2012

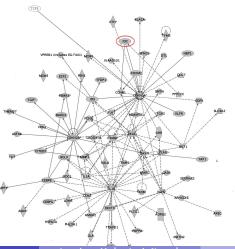
Brouard et al. ()

Learning a Markov Logic Network

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Switch proliferation/differentiation of skin primary cells (human keratinocytes) Source: Ingenuity

RESEAU ANR_avri12007



Brouard et al. ()

Learning a Markov Logic Network

September 8, 2012 2 / 28

Switch proliferation/differentiation of skin primary cells (human keratinocytes)

- Collaboration with two biologists: Marie-Anne Debily and David Castel (CEA, Evry, France)
- This laboratory (Xavier Gidrol) has identified protein ID2 as a major component in this switch
- **Experimental data**: Transcriptomic analysis by microarray experiments of HaCaT cells presenting stable overexpression or transient knock-down achieved by RNA interference of ID2 expression.
- Existing network: provided by Ingenuity (text-mining) on a subset of 63 differentially expressed genes \approx 157 known regulations
- **Background knowledge**: cellular localization of proteins, biological processes, protein-protein interactions, position of genes on chromosomes

Goal of the study

Given a gene regulatory network provided by Ingenuity (text-mining), confront it to experimental data and background knowledge, build a method able to complete the network with new candidate genes

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Machine Learning for biological network inference

Two main families of methods

- Modeling the behavior of the network as a (dynamical) system
- Modeling/predicting edges in the graph: given an ordered pair of genes (A,B) ,predict if A regulates B

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Modeling/predicting edges in the graph

- Supervised network inference: (PPI) pairwise SVM [Ben-Hur and Noble, 2005, Hue and Vert, 2010], mixture of feature experts [Qi, 2008], KCCA [Yamanishi et al., 2004], metric learning [Yamanishi and Vert, 2005], output kernel regression tree [Geurts et al., 2006;2007]; (GR) local classifiers [Bleakley et al. 2007], [Mordelet at al. 2008]
- Semi-supervised network inference: PPI: Kernel Matrix completion using EM [Tsuda et al., 2003], [Kato et al., 2005], Link Propagation [Kashima et al., 2009], Training set expansion [Yip and Gerstein, 2009], Operator-valued kernel [Brouard et al. 2011]
- **Unsupervised**: (GR) Gaussian graphical models [Shafer and Strimmer et al. 2005], [Wille and Buehlman et al.2006]

Our approach: learning a Markov Logic Network

Motivation

- Supervised link prediction
- Combine the efficiency of statistical learning with the interpretability of first order logic

Proposed solution

- Build a classifier based on a set of weighted first order logic rules that conclude on the target predicate "Regulates": if Propr1(A,C) and Propr2(B,D) and Prop3(A,B) then Regulates (A,B).
- Markov Logic network recently introduced by Domingos et al. 2006

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

- Biological motivation
- 2 Markov Logic networks
- 3 Experimental results

4 Conclusion

3

Using first order logic to encode data

- Variables : gene, (protein), level, loc, process
- Constants : Id2, Cdkn2a,Cytoplasm,...
- Atoms : $P(t_1, ..., t_n)$, where P is a predicate ans $t_1, ..., t_n$ are variables or constants
 - Loccell(Akt1, Cytoplasm)
 - Regulates(x, y)
- A ground atom is an atom with no variable, only constants; It can be true or false
- A *possible world*: an assignment of truth values to all possible groundings of predicates

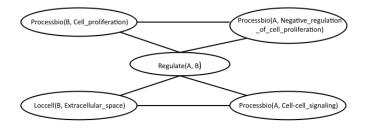
Predicates encoding experimental data and prior knowledge

- Regulation: Regulates (gene1,gene2)
- Expression data :
 - Expwt(gene, level), Expsiid2(gene, level), Expprcid2(gene, level)
 - ► For instance, Expsiid2(G,L) states that the level of expression of gene G is L when the level of expression of ID2 has been increased
- Position on chromosomes :
 - Samechro(gene1, gene2), Sameband(gene1, gene2)
- Biological processes to which genes are contributing :
 - Processbio(gene, process)
- Cellular localization of proteins
 - Loccell(protein, loc)
- Physical interaction between proteins ...
- Links between a gene and a protein ...

4 D K 4 B K 4 B K

Structure of a small Markov Logic Network (example)

- \bullet A MLN is a set ${\cal F}$ of formula (clauses) and a weight vector (each formula is weighted)
- Together with a finite set C of constants, among which the variables can take their values, a MLN defines a Markov Network.
- node: a ground atom
- edge: each time two ground atoms appear in the same ground formula



A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Markov Logic Network (MLN)

- $\bullet\,$ Let ${\mathcal X}$ be the set of all propositions describing a world
- w_i is the weight (positive or negative) associated with the clause $f_i \in \mathcal{F}$, and \mathcal{Z} , the normalizing constant
- Then, the probability of a particular truth assignment x of variables in \mathcal{X} is given by the formula:

$$P(\mathcal{X} = x) = \frac{1}{\mathcal{Z}} \exp(\sum_{f_i \in \mathcal{F}} w_i n_i(x))$$

 $n_i(x)$ is the number of true groundings of f_i in x and Z known as the partition function is the normalization coefficient

(日) (同) (三) (三)

MLN for a supervised prediction of a regulation

Notations

- Let \mathcal{Y} the set of query atoms (regulate predicate)
- $y = (y_{11}, \ldots, y_{nn})$ where y_{ij} correspond to the instantiated predicates **Regulate**(G_i , G_j) and thus to the labeled data.
- x correspond to all the other instanciated predicates

4 6 1 1 4

Modeling the posterior probability of a regulation between ${\boldsymbol i}$ and ${\boldsymbol j}$

$$P(\mathcal{Y} = y_{ij}|x, w) = \frac{\exp(\sum_{k \in \mathcal{F}_{y_{ij}}} w_k n_k(x, y_{ij}))}{\sum_{t=0,1} \exp(\sum_{k \in \mathcal{F}_{y_{ij}}} w_k n_k(x, y_{|Y_{ij}=t}))}$$

Discriminative learning of weights given the structure

Maximization of the penalized conditional log-likelihood

$$\mathcal{L}(w) = \log P(\mathcal{Y} = y | \mathcal{X} = x, w) + \log P(\mathcal{X} = x, w)$$
(1)

$$\approx \sum_{i,j=1}^{n} \log P(\mathcal{Y}_{ij} = y_{ij} | \mathcal{X} = x, w) + \log P(w)$$
(2)

- ℓ_2 norm: P(w) $\propto \exp(-\lambda \parallel w \parallel^2)$
- Implementation with Alchemy (Kok et al. 2007)
- $\bullet\,$ N.B. Sparse models with ℓ_1 constraint also possible not implemented here

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Discriminative learning of the structure

- Used tool: Aleph (Srinivasan, 2001), Inductive Logic Programming
 - Selection of a positive example
 - Construction of the most specific rule satisfied by this example
 - Generalization of this rule by a top-down search
 - The process is iterated until all the positive examples be covered

Description of the experimental studies

Gene regulatory network associated with ID2 in human cells:

- \mathcal{G}_A : set of the 63 genes of interest
- Regulations between these genes were obtained using Ingenuity

We conducted three numerical studies to assess the performance of our method:

- **O** Cross-validation measurements on a well-balanced classification task
- Opdating the network using asymmetric bagging
- Inference of regulations with a new set of genes using asymmetric bagging

The two last studies were defined with the biologist Marie-Anne Debily and considered by her as necessary *in silico* assessment before processing to new wet experiments.

Comparison using a baseline pairwise SVM

- Pairwise SVM [Ben-Hur and Noble, 2005, Hue and Vert, 2010]
- A kernel between ordered pairs of genes is built using a kernel k between single data :

$$K((G_1, G_2), (G_3, G_4)) = k(G_1, G_3)k(G_2, G_4).$$

Definition of six gaussian kernels k_i for each feature previously described
Two ways of combining kernels:

$$\begin{split} & \mathcal{K}_{pairwisesum}((G_1, G_2), (G_3, G_4)) = \frac{1}{6} \sum_{i=1}^{6} k_i(G_1, G_3) k_i(G_2, G_4) \\ & \mathcal{K}_{sum}((G_1, G_2), (G_3, G_4)) = \bar{k}(G_1, G_3) \bar{k}(G_2, G_4)), \\ & \text{where } \bar{k}(G_j, G_k) = \frac{1}{6} \sum_{i=1}^{6} k_i(G_j, G_k). \end{split}$$

A D N A B N A B

Averaged cross-validation measurements on balanced samples (1)

- Genes of \mathcal{G}_A
- R_1 : dataset labeled using Ingeniuity in 2007
- R_1^+ : set of 106 positive examples of regulations between genes of \mathcal{G}_A
- R_1^- : set of all the "negative" examples (no regulation proven)
- 30 samples of negative examples $R^-_{1,i}$, $i=1,\ldots,30$ randomly sampled from R^-_1
- With each set $R_1^+ \cup R_{1,j}^-$: 10-fold cross-validation for each set
- Evaluation metric: averaged AUC-ROC and AUC-PR values obtained within a large range of values of the regularization parameter λ (resp. C) of the MLN (resp. SVM).

Averaged cross-validation measurements on balanced samples (2)

	MLN		
λ	AUC-ROC	AUC-PR	
20	80.8 ± 6.1	82.7 ± 5.4	
50	84.3 ± 3.5	85.5 ± 4.0	
100	84.4 ± 2.8	$\textbf{86.2} \pm \textbf{3.2}$	
500	83.4 ± 2.7	86.0 ± 2.7	
750	83.3 ± 2.8	85.8 ± 2.8	

Pairwise SVM				
C	Pairwise sum		Sum	
	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR
10-3	70.9 ± 3.5	73.1 ± 3.4	82.5 ± 2.3	84.3 ± 2.1
10^{-2}	70.9 ± 3.5	73.1 ± 3.4	82.5 ± 2.3	84.3 ± 2.1
10-1	70.9 ± 3.5	73.1 ± 3.4	82.5 ± 2.3	84.3 ± 2.1
1	76.4 ± 3.1	78.7 ± 3.0	$\textbf{85.2} \pm \textbf{2.8}$	$\textbf{87.3} \pm \textbf{2.5}$
10 ¹	77.5 ± 3.2	79.4 ± 3.5	84.3 ± 3.4	86.3 ± 3.1
10 ²	77.5 ± 3.2	79.4 ± 3.5	84.3 ± 3.4	86.3 ± 3.1
10 ³	77.5 ± 3.2	79.4 ± 3.5	84.3 ± 3.4	86.3 ± 3.1

Brouard et al. ()

▲ 同 → → ● 三

Network completion with a new set of genes (1)

- TRAINING SET: R_2 contains all the ordered labeled pairs between genes of \mathcal{G}_A (updated data 2009)
- TEST set R_3 : containing all the ordered pairs between genes of \mathcal{G}_A and \mathcal{G}_B
- <u>Goal</u>: test the ability of the classifier to label correctly the regulations between the genes of \mathcal{G}_A and \mathcal{G}_B
- The test was made under real conditions: the whole set of positive (55) and negative examples (2969) of R_3 was considered to assess the performance in prediction.

Asymmetric bagging

- Bootstrap sampling only on the over-represented class
- Each generated predictor is trained on a balanced dataset
- Average of their predictions on the test set to provide a single prediction

Network completion with a new set of genes (2)

Bagged MLNs			Bagged pairwise SVMs					
	Auc-roc	Auc-pr	С	Pairwise Sum S		Su	um	
		•		Auc-roc	Auc-pr	Auc-roc	Auc-pr	
50	72.8	6.7	0.001	62.8	4.0	66.2	7.8	
100	73.1	7.7	0.01	62.8	4.0	66.2	7.8	
500	73.2	9.2	0.1	62.8	4.0	66.2	7.8	
750	73.4	9.5	1	65.3	7.7	67.4	8.6	
1000	73.1	9.5	10	65.4	6.1	67.5	8.3	
5000	73.0	9.8	100	65.4	6.1	67.5	8.3	
10000	72.8	9.5	100	65.4	6.1	67.5	8.3	
L			1000	05.4	0.1	07.5	0.3	

• • • • • • • • • •

And what about the rules ?

- Aleph did not find rules involving the positions of genes on chromosomes
- Examples of rules with a high positive weight:
 - ▶ 0.20 ProtLoccell(g₂, Plasma_membrane) ∧ Expsiid2(g₂, Level3) ∧ Expsiid2(g₁, Level3) ⇒ Regulates(g₁, g₂)
 - 0.30 Processbio(g₂, Cell_proliferation) ∧ Processbio(g₁, Negative_regulation_of_cell_proliferation) ⇒ Regulates(g₁, g₂)
- Promising results but it should be possible to find more relevant rules given some constraints on the rule learner
- More relevant rules if data are richer (for instance kinetics during the switch)

Conclusion and perspectives

- First-order logic as a framework to encode heterogeneous data, readable by biologists: not a black box
- Consistency of the built classifier with the experimental data and available knowledge
- In this example, MLN performs as well as SVM in artificial tasks and better in the realistic completion task
- Future work on rules extraction: (1) rules can be improved, constraints on the kind of rules to be built by Aleph must be imposed, (2) rules less numerous (sparse modeling)

- 2 Postdoc positions open at IBISC, Genopole Evry and INRIA, LRI University of Paris Sud, France
 - 1-year postdoc position on protein-protein interaction network inference (CFTR network) with Alexander Edelman (Necker Hospital) and Christine Froidevaux (Paris Sud))
 - 2-year postdoc position on Dynamical modeling for understanding of endothelium dysfunctions in normal tissues following ionizing radiation exposure with Olivier Guipaud (IRSN, Paris)
 - CONTACT : florence.dalche AT ibisc.fr

< 口 > < 同 > < 三 > < 三

2. Updating a graph (1)

- Still genes of \mathcal{G}_A
- R_2^+ : set of regulations between the 63 genes of interest obtained with Ingenuity two years after the construction of the first dataset.
- 51 new regulations were discovered by Ingenuity between these two dates
- Prediction of the updated graph : use R₁ − R₂⁺ to see if we could retrieve the new regulations in R₂⁺ \ R₁⁺ using asymmetric bagging

Asymmetric bagging

- Bootstrap sampling only on the over-represented class
- Each generated predictor is trained on a balanced dataset
- Average of their predictions on the test set to provide a single prediction

2. Updating a graph (2)

- Positive training set: dataset R_1^+
- 30 subsamples $R_{1,i}^-$ from $R_1^-\setminus R_2^+$, such that $|R_{1,i}^-|=|R_1^+|$
- For each sampling, the predictor learned was applied to the 51 new regulations and the predictions obtained were averaged.

Selection of a threshold θ :

- For each sampling,
 - $\frac{2}{3}$ of R_1^+ and $R_{1,i}^-$ considered for the training set and $\frac{1}{3}$ for a validation set.
- The F₁-measure was computed on each validation set for different thresholds:

$$F_1 = 2. \frac{Precision.Recall}{Precision + Recall}$$

• Selection of the threshold maximizing the averaged F₁-measure, that is maximizing precision and recall at the same time.

2. Updating a graph(3)

• Prediction on pairs of genes in R_2^+

Bagged MLNs				
λ	TPR			
20	64.7			
50	64.7			
100	72.6			
500	80.4			
750	84.3			
1000	90.2			
2000	88.2			
5000	84.3			

Bagged pairwise SVMs					
С	Pairwise sum	Sum			
	TPR	TPR			
0.001	90.2	58.8			
0.01	88.3	58.8			
0.1	88.3	58.8			
1	74.5	52.9			
10	64.7	43.1			
100	64.7	43.1			
1000	64.7	43.1			

A D > A B > A B