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Prediction with expert advice

Background

Theory of repeated games
(Hannan, 1956; Blackwell, 1956)
Compression of individual sequences
(Lempel and Ziv, 1976)
Gambling and portfolio selection
(Cover, 1965 and 1991)
Pattern classification
(Novikov, 1962; Littlestone, 1989)

Unifying framework

Prediction with expert advice
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Prediction with expert advice

Binary prediction

A forecaster predicts a binary sequence one bit at the time

At each step t = 1, 2, . . . the forecaster predicts the t-th bit
knowing the previous t− 1 bits

0100010110 ? . . .

After the prediction is made, the t-th bit is observed and the
forecaster finds out whether a mistake was made

Goal
Bound the number of prediction mistakes without making any
statistical assumptions on the way the data sequence is generated
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Prediction with expert advice

The role of experts

Want a nonstatistical framework where good forecasters can be
distinguished from bad forecasters

Any forecaster must use some map of the form

past observations→ predictions

For each forecaster, there exists a bit sequence on which a mistake
is made at each step

Competitive analysis

Compare the performance of the forecaster to that of a set of reference
forecasters (experts)
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Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 6 / 60



Prediction with expert advice

The role of experts

Want a nonstatistical framework where good forecasters can be
distinguished from bad forecasters
Any forecaster must use some map of the form

past observations→ predictions

For each forecaster, there exists a bit sequence on which a mistake
is made at each step

Competitive analysis

Compare the performance of the forecaster to that of a set of reference
forecasters (experts)
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Prediction with expert advice

A simple example

Forecaster competes against three experts on sequence 1101

t = 1 t = 2 t = 3 t = 4 Mistakes
Expert 1 1 1 1 1 M1 = 1
Expert 2 0 1 1 0 M2 = 3
Expert 3 1 0 1 0 M3 = 3

Forecaster 1 0 1 1 M = 2
Bit sequence 1 1 0 1

Goal (refined)
Predict each sequence almost as well as the best expert for that
sequence
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Prediction with expert advice

A more general prediction model

Predict an unknown sequence y1,y2, . . . ∈ Y

(outcome space)

Predictions p̂ are chosen from X (decision space)
Forecasters are scored with their cumulative loss

`(p̂1,y1) + `(p̂2,y2) + . . .

where ` : X× Y→ R is a loss function

Example

Zero-one loss: X = Y = {0, 1} and `(p̂,y) = I{p̂,y}

Quadratic loss: X = Y = [0, 1] and `(p̂,y) = (p̂− y)2

Absolute loss: X = [0, 1], Y = {0, 1} and `(p̂,y) = |p̂− y|
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Prediction with expert advice

On-line prediction with expert advice

Measure performance relatively to a set of N experts

At each step t = 1, 2, . . .

1 Get predictions (advice) f1,t, . . . , fN,t ∈ X of the experts
2 Compute prediction p̂t ∈ X

3 Outcome yt ∈ Y is revealed
4 Forecaster incurs loss `(p̂t,yt) and each expert i incurs loss
`(fi,t,yt)

Note
Experts are viewed as abstract entities, generating predictions in an
unspecified way
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Prediction with expert advice

Regret

ri,t = `(p̂t,yt) − `(fi,t,yt)

Ri,n =

n∑
t=1

ri,t =

n∑
t=1

`(p̂t,yt) −

n∑
t=1

`(fi,t,yt)

We want to design consistent forecasters, i.e. such that

lim
n→∞ 1

n

(
max

i=1,...,N
Ri,n

)
= 0

for any sequence of outcomes and all choices of expert advice
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Prediction with expert advice

Weighted average forecasters

Assume decision space X is a convex subset of a linear space

If Ri,t−1 is big, then we should predict more like expert i

p̂t =

∑N
i=1 µ(Ri,t−1)fi,t∑N

j=1 µ(Rj,t−1)

where µ is some positive monotone increasing function
This is the weighted average forecaster
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Prediction with expert advice

Potential-based forecasters

Choose µ = φ ′

where φ : R→ R is s.t. φ,φ ′ > 0 and φ ′′ exists

Weighted average forecaster is then

p̂t =

∑N
i=1φ

′(Ri,t−1)fi,t∑N
j=1φ

′(Rj,t−1)

Definition

Potential functionΦ : RN → R

Φ(R) = ψ

(
N∑

i=1

φ(Ri)

)

where ψ : R→ R is such that ψ > 0, ψ ′ > 0, ψ ′′ 6 0
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Prediction with expert advice

Blackwell condition

Using the potential, the prediction at time t gets rewritten as

p̂t =

∑N
i=1∇Φ(Ri,t−1)ifi,t∑N

j=1∇Φ(Rj,t−1)j

If the loss is convex, then the following holds

∇Φ(Rt−1)
>rt 6 0 (Blackwell condition)
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Prediction with expert advice

Gradient descent interpretation

Φ(R)

R

Expert 1

E
xp

er
t 2

R+r
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Prediction with expert advice

Polynomial potential

Potential function

Φp(R) =

(
N∑

i=1

(Ri)
p
+

)2/p

= ‖(R)+‖2
p for p > 2

Prediction

p̂t =

∑N
i=1φ

′(Ri,t−1)fi,t∑N
j=1φ

′(Rj,t−1)
=

∑N
i=1 (Ri,t−1)

p−1
+ fi,t∑N

j=1
(
Rj,t−1

)p−1
+
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Prediction with expert advice

Exponential potential

Potential function

Φη(R) =
1
η

ln

(
N∑

i=1

eη Ri

)
for η > 0

Prediction:

p̂t =

∑N
i=1 e

η(L̂t−1−Li,t−1)fi,t∑N
j=1 e

η(L̂t−1−Li,t−1)
=

∑N
i=1 e

−ηLi,t−1fi,t∑N
j=1 e

−ηLi,t−1
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Prediction with expert advice

Regret bounds

Loss ` is convex and takes values in [0, 1]

Polynomial potential with p = 2 lnN

max
i=1,...,N

Ri,n

n
6

√
(2e)
n

lnN

Exponential potential with time-varying parameter ηt

max
i=1,...,N

Ri,n

n
6

√
2
n

lnN+

√
lnN
8n

The regret of any forecaster must satisfy:

max
i=1,...,N

Ri,n

n
=
(
1 − o(1)

)√ 2
n

lnN
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Prediction with expert advice
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Linear classification

Summary

1 Prediction with expert advice

2 Linear classification

3 Kernel-based on-line learning

4 Online SVM and active learning

5 From mistake to risk bounds
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Linear classification

On-line classification

USER

UNLABELED
INSTANCES

SYSTEM

GUESSED
LABEL

CLASSIFICATION

(UPON REQUEST)
TRUE LABEL
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Linear classification

Linear classifiers

Stream of data instances encoded as vectors x1, x2, · · · ∈ Rd

A binary label yt ∈ {−1, 1} associated to each xt

A linear classifier wt−1 ∈ Rd predicts label yt of xt with

p̂t = (w>
t−1xt) wt−1 ∈ Rd

margin

w

x

Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 21 / 60



Linear classification

Linear classifiers

Stream of data instances encoded as vectors x1, x2, · · · ∈ Rd

A binary label yt ∈ {−1, 1} associated to each xt

A linear classifier wt−1 ∈ Rd predicts label yt of xt with

p̂t = (w>
t−1xt) wt−1 ∈ Rd

margin

w

x
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Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 21 / 60



Linear classification

Linear classifiers

Stream of data instances encoded as vectors x1, x2, · · · ∈ Rd

A binary label yt ∈ {−1, 1} associated to each xt

A linear classifier wt−1 ∈ Rd predicts label yt of xt with

p̂t = (w>
t−1xt) wt−1 ∈ Rd

margin

w

x
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Linear classification

Linear classifiers (cont.)

If p̂t , yt then mistake at step t

Goal
On any arbitrary sequence (x1,y1), (x2,y2), . . . perform not much
worse than the best fixed linear classifier

Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 22 / 60



Linear classification

Direct application of experts’ framework

One expert for each linear classifier

Consider the class F of all linear classifiers p̂t = (u>xt) for
u ∈ Rd with ‖u‖ bounded

A covering of F has size exponential in d
Running the weighted average forecaster on the covering requires
managing an exponential number of weights
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Linear classification

A reduction to prediction with expert advice

One expert for each attribute

Allocate d experts F1, . . . , Fd

On instance xt = (xt,1, . . . , xt,d) expert Fj predicts xt,j

Regret rt = yt xt I{p̂t,yt}
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Linear classification

A reduction (cont.)

Weighted average forecaster for binary classification

wt−1 = ∇Φ(Rt−1) p̂t = (w>
t−1xt)

We need Blackwell condition w>
t−1rt 6 0 to hold

Indeed,

w>
t−1rt = yt w>

t−1xt I{p̂t,yt} =

{
0 if I{p̂t,yt} = 0
< 0 otherwise

since I{p̂t,yt} = 1 iff (w>
t−1xt) , yt

The potential-based analysis can be adapted to bound the regret
against any fixed linear classifier
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Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 25 / 60



Linear classification

Formulation as an incremental algorithm

We want to express wt = ∇Φ(Rt) recursively as wt = F(wt−1)

Definition

A potential Φ : Rd → R is Legendre if Φ is strictly convex,
differentiable, and has a convex domain (and . . . )

If a potential is Legendre, then∇Φ is invertible

wt = ∇Φ(Rt) = ∇Φ(Rt−1 + rt) = ∇Φ
(
(∇Φ)−1(wt−1) + rt

)
Update rule

wt = ∇Φ
(
(∇Φ)−1(wt−1) + yt xt I{p̂t,yt}

)
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Linear classification

Incremental formulation (cont.)

Φ

Φ)( −1

wt = ∇Φ
(
(∇Φ)−1(wt−1) + yt xt I{p̂t,yt}

)
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Linear classification

Application to polynomial potential

Polynomial potentialΦp(·) = ‖·‖2
p is Legendre

(
∇ 1

2‖u‖
2
p

)
i
=
(ui) |ui|

p−1

‖u‖p−2
p

(
∇ 1

2‖u‖
2
p

)−1
= ∇ 1

2‖u‖
2
q

where q is such that 1/p+ 1/q = 1

When p = 2 we have ∇Φ2(R) = R

The update rule then is simply

wt = wt−1 + yt xt I{p̂t,yt}

the Perceptron algorithm (Rosenblatt, 1952)
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Linear classification

The Perceptron algorithm

−x

w

x

wt = wt−1 + yt xt I{p̂t,yt}
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Linear classification

Application to the exponential potential

The exponential potentialΦexp(R) = eR1 + · · ·+ eRd is Legendre

The update rule is

w ′i,t = w ′i,t−1 e
η ri,t−1

wi,t =
w ′i,t

d∑
k=1

w ′k,t

This is the Winnow algorithm (Littlestone, 1988)
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Linear classification

The linearly separable case

+
−

u
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Linear classification

Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

p− 1
2

(
Xp ‖u‖q

)2
poly. potential

(
1 + o(1)

)
ln(2d) (X∞ ‖u‖1)

2 exp. potential

q is such that 1/p+ 1/q = 1

Bound for exp. potential assumes tuning
(previous knowledge of X∞ and choice of ‖u‖1)
Both bounds depend on pairs of dual norms: ‖x‖p ‖u‖q vs.
‖x‖∞ ‖u‖1

For p ≈ 2 lnd the bounds are essentially equal
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Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 32 / 60



Linear classification

Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

p− 1
2

(
Xp ‖u‖q

)2
poly. potential

(
1 + o(1)

)
ln(2d) (X∞ ‖u‖1)

2 exp. potential

q is such that 1/p+ 1/q = 1

Bound for exp. potential assumes tuning
(previous knowledge of X∞ and choice of ‖u‖1)
Both bounds depend on pairs of dual norms: ‖x‖p ‖u‖q vs.
‖x‖∞ ‖u‖1

For p ≈ 2 lnd the bounds are essentially equal
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Linear classification

Comparison for spherical potential

Consider a sequence (x1,y1), (x2,y2) . . . such that xt ∈ {−1, 1}d

and yt = (x1,t)

Then u = (1, 0, . . . , 0) is an optimal classifier (no loss)
Moreover, (

‖u‖2 X2
)2

= d and
(
‖u‖1 X∞)2

= 1

Then mistake bounds are

d polynomial potential, p = 2
4 ln(2d) exponential potential

an exponential advantage (verified by experiments)
Opposite situation when instances xt are sparse and best expert u

is dense
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Linear classification

The cone of consistent hyperplanes
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Linear classification

The cone of consistent hyperplanes

Perceptron
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Linear classification

The cone of consistent hyperplanes

Passive−Aggressive
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Linear classification

Mistake bounds for various updates

On any sequence of examples such that ytu
>xt > 1 with ‖u‖ = U

bound algorithm update time
U2 Perceptron O(d)

U2 Passive-Aggressive O(d)

dU lnU 2nd order Perceptron O(d2)

d2 lnU Ellipsoid O(d3)

d lnU Volumetric center O(d3.5)

d lnU Geometric center O(d4)
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Linear classification

The nonseparable case

 0

 1

 2

 3

 4

−1  0  1  2

I{(z),y}︸          ︷︷          ︸
mistake ind.

6
(
1 − y z

)
+︸         ︷︷         ︸

hinge loss

Computing an hyperplane
minimizing the number of
misclassified examples is
NP-hard
The hinge loss is a convex
upper bound of the mistake
indicator function

Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 36 / 60



Linear classification

Perceptron mistake bound

Perceptron’s performance is compared to the hinge loss of the single
best linear classifier u ∈ Rd in hindsight

For any u ∈ Rd and any sequence (x1,y1), . . . , (xn,yn) define

total hinge loss Du =
∑

t

(
1 − yt u>xt

)
+

On any sequence of examples, the number of mistakes made by the
Perceptron is at most

inf
u∈Rd

(
Du + ‖u‖2 + ‖u‖

√
Du

)
Similar to the SVM functional inf

u∈Rd

(
Du + ‖u‖2

)

Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 37 / 60



Linear classification

Perceptron mistake bound

Perceptron’s performance is compared to the hinge loss of the single
best linear classifier u ∈ Rd in hindsight

For any u ∈ Rd and any sequence (x1,y1), . . . , (xn,yn) define

total hinge loss Du =
∑

t

(
1 − yt u>xt

)
+

On any sequence of examples, the number of mistakes made by the
Perceptron is at most

inf
u∈Rd

(
Du + ‖u‖2 + ‖u‖

√
Du

)
Similar to the SVM functional inf

u∈Rd

(
Du + ‖u‖2

)
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Kernel-based on-line learning

Summary

1 Prediction with expert advice

2 Linear classification

3 Kernel-based on-line learning

4 Online SVM and active learning

5 From mistake to risk bounds

Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 38 / 60



Kernel-based on-line learning

On-line learning with kernels

Feature map φ : Rd → RKHS

Kernel K(x, x ′) = 〈φ(x),φ(x ′)〉
Assume a linear algorithm learns w such that

w =
∑

i

αixti

Then we can learn w =
∑

i αiφ(xti
) in the RKHS because


(
〈w,φ(x)〉

)
= 

(∑
i

yti

〈
φ(xti

),φ(x)
〉)

= 

(∑
i

yti
K(xti

, x)

)
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Kernel-based on-line learning

Checking applicability of kernels

Let Rt =
∑

t

ytxtI{p̂t,yt}

Winnow wi,t =
eη Ri,t

d∑
k=1

eη Rk,t

p-norm Perceptron wi,t =
(Ri,t) |Ri,t|

p−1

‖Rt‖p−2
p

Perceptron wt = Rt

Perceptron’s potential is spherical→ rotational invariance
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Kernel-based on-line learning

Kernel Perceptron

Start with empty cache L of examples
Loop:

1 Read next instance xt

2 Predict yt with p̂t = 
(∑

v∈L

K
(
v, xt

))
3 Obtain true label yt

4 If p̂t , yt (mistake) then store new support (ytxt) in L

Mistake bounds hold in the whole RKHS
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Kernel-based on-line learning

Memory bounded learning

Can we control the rate of mistakes when at most B < ∞ supports are
used?

Fact
Using at most B supports, any learner makes an unbounded number of
mistakes on a sequence that is perfectly classified by some u ∈ Rd with zero
hinge loss and ‖u‖ =

√
B+ 1

Thus B > U2 is necessary to compete against u of length U
Can we compete against any u with ‖u‖ 6 U using B = (1 + ε)U2

supports?
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Kernel-based on-line learning

A randomized perceptron

Randomized Budget Perceptron

Parameter: size B of cache for supports
Start with empty cache L

Loop:

1 Read next instance xt

2 Predict yt with p̂t = 
(∑

v∈L

v>xt

)
3 Obtain true label yt

4 If p̂t , yt then:

1 If |L| = B, then throw away a random support from L
2 Add ytxt to L

Result:
Bound on mistakes scales roughly with 1 + 1/ε
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Kernel-based on-line learning

Empirical performance — stationary
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Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 44 / 60



Kernel-based on-line learning

Empirical performance — nonstationary
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Kernel-based on-line learning

Empirical performance 2nd order — nonstationary
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Nicolò Cesa-Bianchi (Univ. di Milano) On-Line Learning 46 / 60



Online SVM and active learning

Summary

1 Prediction with expert advice

2 Linear classification

3 Kernel-based on-line learning

4 Online SVM and active learning

5 From mistake to risk bounds
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Online SVM and active learning

Online approximation of SVM hyperplane

The SVM hyperplane is the shortest u such that ytu
>xt > 1 for all t

+
−

u
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Online SVM and active learning

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: 0 < α 6 1
Set mistake counter k = 1

Loop:

1 Read next instance xt

2 Predict yt with p̂t = 
(
w>xt

)
3 Obtain true label yt

4 If margin smaller than c(1 − α)
/√
k then:

1 w ′ = w + ytxt

/√
k

2 w = w ′/ ‖w ′‖ k← k+ 1

Result

Finds separating u with ‖u‖ 6 ‖u‖
/
(1 − α) after at most(

‖u‖
/
α
)2 updates
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Online SVM and active learning
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Online SVM and active learning
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Online SVM and active learning
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Online SVM and active learning
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Online SVM and active learning

Selective sampling

USER

UNLABELED
INSTANCES

SYSTEM

GUESSED
LABEL

CLASSIFICATION

(UPON REQUEST)
TRUE LABEL
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Online SVM and active learning

A selective sampling classifier

1 Classify next instance xt with (w>xt)

2 If |w>xt| 6 ‖xt‖

√
c ln t
Nt

then query label yt of xt

3 If label queried then use (xt,yt) to update w

Nt = number of labels sampled so far

w updated with the 2nd order Perceptron update rule
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Online SVM and active learning

Empirical performance on RCV1
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From mistake to risk bounds

Summary

1 Prediction with expert advice

2 Linear classification

3 Kernel-based on-line learning

4 Online SVM and active learning

5 From mistake to risk bounds
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From mistake to risk bounds

Statistical learning theory

Linear classifiers H(x) = 
(
w>x

)

Examples (xt,yt) are i.i.d. according to a fixed and unknown
probability distribution on Rd × {−1, +1}

risk(H) = P
(
H(x) , y

)
Learning algorithm

(x1,y1), . . . , (xn,yn) −→ A −→ Ĥ : Rd → {−1, +1}

Ĥ is (random) hypothesis output by learner
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From mistake to risk bounds

The ensemble of hypotheses

Run an incremental learner on the training set

Everytime H(xt) , yt, H is changed by the update rule
This process generates an ensemble of classifiers

H0,H1, . . . ,Hn

Goals

1 Bound the average risk of the ensemble in terms of the size of the
ensemble

2 Find an element of the ensemble whose risk is close to the
ensemble average
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From mistake to risk bounds

Step 1: bound the average risk

The difference
risk(Ht−1) − I{Ht−1(xt),yt}

is a martingale difference sequence because

E
[
risk(Ht−1) − I{Ht−1(xt),yt}

∣∣∣ (x1,y1), . . . , (xt−1,yt−1)
]

= 0

The associated martingale is
n∑

t=1

(
risk(Ht−1) − I{Ht−1(xt),yt}

)
⇐⇒ 1

n

n∑
t=1

risk(Ht−1)︸                   ︷︷                   ︸
average risk

−
1
n

n∑
t=1

I{Ht−1(xt),yt}︸                      ︷︷                      ︸
fraction of mistakes
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From mistake to risk bounds

Bernstein’s bound

If Z1,Z2, . . . is a martingale difference sequence with increments
bounded by 1 and

Vn =

n∑
t=1

E
[
Z2

t | Z1, . . . ,Zt−1
]

then for all S,K > 0

P

(
n∑

t=1

Zn > S, Vn 6 K

)
6 exp

(
−

S2

2(S/3 + K)

)
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From mistake to risk bounds

Application of Bernstein’s bound

Since 0 6 I{H(x),y} 6 1,



[
I{Ht−1(xt),yt}

∣∣∣ (x1,y1), . . . , (xt−1,yt−1)
]

6 E
[
risk(Ht−1)

∣∣∣ (x1,y1), . . . , (xt−1,yt−1)
]

Applying Bernstein’s gives

1
n

n∑
t=1

risk(Ht−1) 6
Mn

n
+
c

n

(
lnMn +

√
Mn lnMn

)
w.h.p.

Where
Mn

n
=

1
n

n∑
t=1

I{Ht−1(xt),Yt} is the fraction of mistakes
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From mistake to risk bounds

Step 2: pick a good classifier in the ensemble

Start from the ensemble H0,H1, . . . ,Hn

Do the following:
1 test each Ht on (xt+1,yt+1), . . . , (xn,yn)
2 pick Ĥ = Ht∗ minimizing a penalized risk estimate

Guaranteed bound

risk(Ĥ) 6
Mn

n
+
c

n

(
(lnn)2 +

√
Mn lnn

)
w.h.p.
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From mistake to risk bounds

Conclusions

A game-theoretic foundation for on-line learning

Performance guarantees for several variants of the basic model
Learning with structured outputs builds naturally on these results
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