On-Line Learning

Nicolò Cesa-Bianchi

Univ. di Milano

Summary

- 1 Prediction with expert advice
- 2 Linear classification
- 3 Kernel-based on-line learning
- Online SVM and active learning
- 5 From mistake to risk bounds

Summary

1 Prediction with expert advice

- 2 Linear classification
- 3 Kernel-based on-line learning
- 4 Online SVM and active learning
- 5 From mistake to risk bounds

Background

- Theory of repeated games (Hannan, 1956; Blackwell, 1956)
- Compression of individual sequences (Lempel and Ziv, 1976)
- Gambling and portfolio selection (Cover, 1965 and 1991)
- Pattern classification (Novikov, 1962; Littlestone, 1989)

Unifying framework

Prediction with expert advice

• A forecaster predicts a binary sequence one bit at the time

- A forecaster predicts a binary sequence one bit at the time
- At each step t = 1, 2, ... the forecaster predicts the t-th bit knowing the previous t 1 bits

0100010110?...

- A forecaster predicts a binary sequence one bit at the time
- At each step t = 1, 2, ... the forecaster predicts the t-th bit knowing the previous t 1 bits

0100010110?...

• After the prediction is made, the t-th bit is observed and the forecaster finds out whether a mistake was made

- A forecaster predicts a binary sequence one bit at the time
- At each step t = 1, 2, ... the forecaster predicts the t-th bit knowing the previous t 1 bits

0100010110?...

• After the prediction is made, the t-th bit is observed and the forecaster finds out whether a mistake was made

Goal

Bound the number of prediction mistakes without making any statistical assumptions on the way the data sequence is generated

• Want a nonstatistical framework where good forecasters can be distinguished from bad forecasters

- Want a nonstatistical framework where good forecasters can be distinguished from bad forecasters
- Any forecaster must use some map of the form

past observations \rightarrow predictions

- Want a nonstatistical framework where good forecasters can be distinguished from bad forecasters
- Any forecaster must use some map of the form

past observations \rightarrow predictions

• For each forecaster, there exists a bit sequence on which a mistake is made at each step

- Want a nonstatistical framework where good forecasters can be distinguished from bad forecasters
- Any forecaster must use some map of the form

past observations \rightarrow predictions

• For each forecaster, there exists a bit sequence on which a mistake is made at each step

Competitive analysis

Compare the performance of the forecaster to that of a set of *reference forecasters* (experts)

A simple example

Forecaster competes against three experts on sequence 1101

A simple example

Forecaster competes against three experts on sequence 1101

	t = 1	t = 2	t = 3	t = 4	Mistakes
Expert 1	1	1	1	1	$M_1 = 1$
Expert 2	0	1	1	0	$M_2 = 3$
Expert 3	1	0	1	0	$M_3 = 3$
Forecaster	1	0	1	1	M = 2
Bit sequence	1	1	0	1	

A simple example

Forecaster competes against three experts on sequence 1101

	t = 1	t = 2	t = 3	t = 4	Mistakes
Expert 1	1	1	1	1	$M_1 = 1$
Expert 2	0	1	1	0	$M_2 = 3$
Expert 3	1	0	1	0	$M_3 = 3$
Forecaster	1	0	1	1	M = 2
Bit sequence	1	1	0	1	

Goal (refined)

Predict each sequence almost as well as the best expert for that sequence

A more general prediction model

Predict an unknown sequence y₁, y₂, ... ∈ y (outcome space)

A more general prediction model

- Predict an unknown sequence y₁, y₂, ... ∈ y
 (outcome space)
- Predictions \hat{p} are chosen from \mathcal{X} (decision space)

A more general prediction model

- Predict an unknown sequence y₁, y₂, ... ∈ y
 (outcome space)
- Predictions \hat{p} are chosen from \mathcal{X} (decision space)
- Forecasters are scored with their cumulative loss

 $\ell(\widehat{p}_1, y_1) + \ell(\widehat{p}_2, y_2) + \dots$

where $\ell : \mathfrak{X} \times \mathfrak{Y} \to \mathbb{R}$ is a loss function

A more general prediction model

- Predict an unknown sequence y₁, y₂, ... ∈ y
 (outcome space)
- Predictions \hat{p} are chosen from \mathcal{X} (decision space)
- Forecasters are scored with their cumulative loss

 $\ell(\widehat{p}_1, y_1) + \ell(\widehat{p}_2, y_2) + \dots$

where $\ell : \mathfrak{X} \times \mathfrak{Y} \to \mathbb{R}$ is a loss function

Example

• Zero-one loss:
$$\mathfrak{X} = \mathfrak{Y} = \{0, 1\}$$
 and $\ell(\widehat{p}, \mathfrak{y}) = \mathbb{I}_{\{\widehat{p} \neq \mathfrak{y}\}}$

A more general prediction model

- Predict an unknown sequence y₁, y₂,... ∈ y
 (outcome space)
- Predictions \hat{p} are chosen from \mathcal{X} (decision space)
- Forecasters are scored with their cumulative loss

 $\ell(\widehat{p}_1, y_1) + \ell(\widehat{p}_2, y_2) + \dots$

where $\ell : \mathfrak{X} \times \mathfrak{Y} \to \mathbb{R}$ is a loss function

Example

- Zero-one loss: $\mathfrak{X} = \mathfrak{Y} = \{0, 1\}$ and $\ell(\widehat{p}, y) = \mathbb{I}_{\{\widehat{p} \neq y\}}$
- Quadratic loss: $\mathfrak{X} = \mathfrak{Y} = [0, 1]$ and $\ell(\widehat{p}, y) = (\widehat{p} y)^2$

A more general prediction model

- Predict an unknown sequence y₁, y₂, ... ∈ y
 (outcome space)
- Predictions \hat{p} are chosen from \mathcal{X} (decision space)
- Forecasters are scored with their cumulative loss

 $\ell(\widehat{p}_1, y_1) + \ell(\widehat{p}_2, y_2) + \dots$

where $\ell : \mathfrak{X} \times \mathfrak{Y} \to \mathbb{R}$ is a loss function

Example

- Zero-one loss: $\mathfrak{X} = \mathfrak{Y} = \{0, 1\}$ and $\ell(\widehat{p}, y) = \mathbb{I}_{\{\widehat{p} \neq y\}}$
- Quadratic loss: $\mathfrak{X} = \mathfrak{Y} = [0, 1]$ and $\ell(\widehat{p}, y) = (\widehat{p} y)^2$
- Absolute loss: $\mathfrak{X} = [0, 1], \mathfrak{Y} = \{0, 1\}$ and $\ell(\widehat{p}, y) = |\widehat{p} y|$

On-line prediction with expert advice

Measure performance relatively to a set of N experts

At each step t = 1, 2, ...

On-line prediction with expert advice

- At each step $t = 1, 2, \ldots$
 - $\textbf{0} \ \ \text{Get predictions (advice)} \ \textbf{f}_{1,t},\ldots,\textbf{f}_{N,t} \in \mathfrak{X} \ \text{of the experts}$

On-line prediction with expert advice

- At each step $t = 1, 2, \ldots$
 - **①** Get predictions (advice) $f_{1,t}, \dots, f_{N,t} \in \mathcal{X}$ of the experts
 - **2** Compute prediction $\widehat{p}_t \in \mathcal{X}$

On-line prediction with expert advice

- At each step $t = 1, 2, \ldots$
 - **①** Get predictions (advice) $f_{1,t}, \dots, f_{N,t} \in \mathcal{X}$ of the experts
 - **2** Compute prediction $\hat{p}_t \in \mathcal{X}$
 - Outcome $y_t \in \mathcal{Y}$ is revealed

On-line prediction with expert advice

- At each step $t = 1, 2, \ldots$
 - **①** Get predictions (advice) $f_{1,t}, \dots, f_{N,t} \in \mathcal{X}$ of the experts
 - **2** Compute prediction $\hat{p}_t \in \mathcal{X}$
 - Solution $y_t \in \mathcal{Y}$ is revealed
 - Forecaster incurs loss $l(\hat{p}_t, y_t)$ and each expert i incurs loss $l(f_{i,t}, y_t)$

On-line prediction with expert advice

Measure performance relatively to a set of N experts

- At each step $t = 1, 2, \ldots$
 - **①** Get predictions (advice) $f_{1,t}, \dots, f_{N,t} \in \mathcal{X}$ of the experts
 - **2** Compute prediction $\hat{p}_t \in \mathcal{X}$
 - Outcome $y_t \in \mathcal{Y}$ is revealed
 - Forecaster incurs loss $l(\hat{p}_t, y_t)$ and each expert i incurs loss $l(f_{i,t}, y_t)$

Note

Experts are viewed as abstract entities, generating predictions in an unspecified way

$r_{i,t} = \ell(\widehat{p}_t, y_t) - \ell(f_{i,t}, y_t)$

$$\begin{split} r_{i,t} &= \ell(\widehat{p}_{t}, y_{t}) - \ell(f_{i,t}, y_{t}) \\ R_{i,n} &= \sum_{t=1}^{n} r_{i,t} = \sum_{t=1}^{n} \ell(\widehat{p}_{t}, y_{t}) - \sum_{t=1}^{n} \ell(f_{i,t}, y_{t}) \end{split}$$

$$\begin{split} r_{i,t} &= \ell(\widehat{p}_{t}, y_{t}) - \ell(f_{i,t}, y_{t}) \\ R_{i,n} &= \sum_{t=1}^{n} r_{i,t} = \sum_{t=1}^{n} \ell(\widehat{p}_{t}, y_{t}) - \sum_{t=1}^{n} \ell(f_{i,t}, y_{t}) \end{split}$$

We want to design consistent forecasters, i.e. such that

$$\lim_{n\to\infty}\frac{1}{n}\left(\max_{i=1,\dots,N}R_{i,n}\right)=0$$

for any sequence of outcomes and all choices of expert advice

Weighted average forecasters

• Assume decision space \mathfrak{X} is a convex subset of a linear space

Weighted average forecasters

Assume decision space X is a convex subset of a linear space
If R_{i,t-1} is big, then we should predict more like expert i

$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} \mu(R_{i,t-1}) f_{i,t}}{\sum_{j=1}^{N} \mu(R_{j,t-1})}$$

where μ is some positive monotone increasing function

Weighted average forecasters

Assume decision space X is a convex subset of a linear space
If R_{i,t-1} is big, then we should predict more like expert i

$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} \mu(R_{i,t-1}) f_{i,t}}{\sum_{j=1}^{N} \mu(R_{j,t-1})}$$

where µ is some positive monotone increasing function
This is the weighted average forecaster

Potential-based forecasters

• Choose $\mu = \phi'$ where $\phi : \mathbb{R} \to \mathbb{R}$ is s.t. $\phi, \phi' \ge 0$ and ϕ'' exists

Potential-based forecasters

• Choose $\mu = \phi'$

where $\phi : \mathbb{R} \to \mathbb{R}$ is s.t. $\phi, \phi' \ge 0$ and ϕ'' exists

• Weighted average forecaster is then

$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} \varphi'(R_{i,t-1}) f_{i,t}}{\sum_{j=1}^{N} \varphi'(R_{j,t-1})}$$

Potential-based forecasters

• Choose $\mu = \phi'$

where $\phi : \mathbb{R} \to \mathbb{R}$ is s.t. $\phi, \phi' \ge 0$ and ϕ'' exists

• Weighted average forecaster is then

$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} \varphi'(R_{i,t-1}) f_{i,t}}{\sum_{j=1}^{N} \varphi'(R_{j,t-1})}$$

Definition

Potential function $\Phi : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$

$$\Phi(\mathbf{R}) = \psi\left(\sum_{i=1}^{N} \varphi(R_i)\right)$$

where $\psi:\mathbb{R}\to\mathbb{R}$ is such that $\psi\geqslant 0,\psi'>0,\psi''\leqslant 0$

Blackwell condition

• Using the potential, the prediction at time t gets rewritten as

$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} \nabla \Phi(R_{i,t-1})_{i} f_{i,t}}{\sum_{j=1}^{N} \nabla \Phi(R_{j,t-1})_{j}}$$

Blackwell condition

• Using the potential, the prediction at time t gets rewritten as

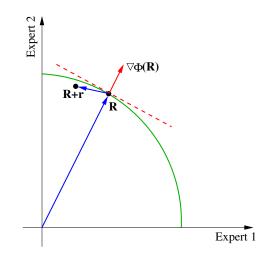
$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} \nabla \Phi(R_{i,t-1})_{i} f_{i,t}}{\sum_{j=1}^{N} \nabla \Phi(R_{j,t-1})_{j}}$$

• If the loss is convex, then the following holds

 $\nabla \Phi(\mathbf{R}_{t-1})^{\top} \mathbf{r}_t \leqslant 0$ (Blackwell condition)

Prediction with expert advice

Gradient descent interpretation



Polynomial potential

Potential function

$$\Phi_{p}(\mathbf{R}) = \left(\sum_{i=1}^{N} (R_{i})_{+}^{p}\right)^{2/p} = \|(\mathbf{R})_{+}\|_{p}^{2} \qquad \text{for } p \ge 2$$

Polynomial potential

Potential function

$$\Phi_{p}(\mathbf{R}) = \left(\sum_{i=1}^{N} (R_{i})_{+}^{p}\right)^{2/p} = \|(\mathbf{R})_{+}\|_{p}^{2} \qquad \text{for } p \ge 2$$

Prediction

$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} \phi'(R_{i,t-1}) f_{i,t}}{\sum_{j=1}^{N} \phi'(R_{j,t-1})} = \frac{\sum_{i=1}^{N} (R_{i,t-1})_{+}^{p-1} f_{i,t}}{\sum_{j=1}^{N} (R_{j,t-1})_{+}^{p-1}}$$

Exponential potential

Potential function

$$\Phi_{\eta}(\mathbf{R}) = \frac{1}{\eta} \ln \left(\sum_{i=1}^{N} e^{\eta R_{i}} \right) \qquad \text{for } \eta > 0$$

Exponential potential

Potential function

$$\Phi_{\eta}(\mathbf{R}) = \frac{1}{\eta} \ln \left(\sum_{i=1}^{N} e^{\eta R_i} \right) \qquad \text{for } \eta > 0$$

• Prediction:

$$\widehat{p}_{t} = \frac{\sum_{i=1}^{N} e^{\eta \left(\widehat{L}_{t-1} - L_{i,t-1}\right)} f_{i,t}}{\sum_{j=1}^{N} e^{\eta \left(\widehat{L}_{t-1} - L_{i,t-1}\right)}} = \frac{\sum_{i=1}^{N} e^{-\eta L_{i,t-1}} f_{i,t}}{\sum_{j=1}^{N} e^{-\eta L_{i,t-1}}}$$

Regret bounds

Loss ℓ is convex and takes values in [0, 1]

• Polynomial potential with $p = 2 \ln N$

$$\max_{i=1,\dots,N} \frac{\mathsf{R}_{i,n}}{n} \leqslant \sqrt{\frac{(2e)}{n} \ln N}$$

Regret bounds

Loss ℓ is convex and takes values in [0, 1]

• Polynomial potential with $p = 2 \ln N$

$$\max_{i=1,\dots,N} \frac{\mathsf{R}_{i,n}}{n} \leqslant \sqrt{\frac{(2e)}{n} \ln N}$$

 $\bullet\,$ Exponential potential with time-varying parameter η_t

$$\max_{i=1,\dots,N} \frac{R_{i,n}}{n} \leqslant \sqrt{\frac{2}{n} \ln N} + \sqrt{\frac{\ln N}{8n}}$$

Regret bounds

Loss ℓ is convex and takes values in [0, 1]

• Polynomial potential with $p = 2 \ln N$

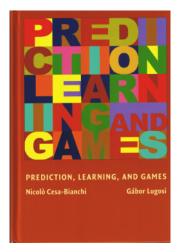
$$\max_{i=1,\dots,N} \frac{\mathsf{R}_{i,n}}{n} \leqslant \sqrt{\frac{(2e)}{n} \ln \mathsf{N}}$$

 $\bullet\,$ Exponential potential with time-varying parameter η_t

$$\max_{i=1,\dots,N} \frac{\mathsf{R}_{i,n}}{n} \leqslant \sqrt{\frac{2}{n} \ln N} + \sqrt{\frac{\ln N}{8n}}$$

The regret of any forecaster must satisfy:

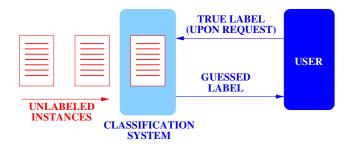
$$\max_{i=1,\dots,N} \frac{R_{i,n}}{n} = \left(1 - o(1)\right) \sqrt{\frac{2}{n} \ln N}$$



Summary

- Prediction with expert advice
- 2 Linear classification
- 3 Kernel-based on-line learning
- ④ Online SVM and active learning
- 5 From mistake to risk bounds

On-line classification



Nicolò Cesa-Bianchi (Univ. di Milano)

• Stream of data instances encoded as vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \in \mathbb{R}^d$

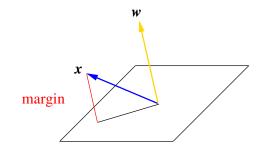
- Stream of data instances encoded as vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \in \mathbb{R}^d$
- A binary label $y_t \in \{-1, 1\}$ associated to each x_t

- Stream of data instances encoded as vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \in \mathbb{R}^d$
- A binary label $y_t \in \{-1, 1\}$ associated to each x_t
- A linear classifier $w_{t-1} \in \mathbb{R}^d$ predicts label y_t of x_t with

 $\widehat{p}_t = s_{\text{GN}}(\boldsymbol{w}_{t-1}^\top \boldsymbol{x}_t) \qquad \boldsymbol{w}_{t-1} \in \mathbb{R}^d$

- Stream of data instances encoded as vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \in \mathbb{R}^d$
- A binary label $y_t \in \{-1, 1\}$ associated to each x_t
- A linear classifier $w_{t-1} \in \mathbb{R}^d$ predicts label y_t of x_t with

 $\widehat{p}_t = \text{sgn}(\boldsymbol{w}_{t-1}^\top \boldsymbol{x}_t) \qquad \boldsymbol{w}_{t-1} \in \mathbb{R}^d$



Linear classifiers (cont.)

If $\hat{p}_t \neq y_t$ then mistake at step t

Goal

On any arbitrary sequence $(x_1, y_1), (x_2, y_2), \dots$ perform not much worse than the best fixed linear classifier

Direct application of experts' framework

One expert for each linear classifier

• Consider the class \mathcal{F} of all linear classifiers $\hat{p}_t = s_{GN}(u^\top x_t)$ for $u \in \mathbb{R}^d$ with ||u|| bounded

Nicolò Cesa-Bianchi (Univ. di Milano)

Direct application of experts' framework

One expert for each linear classifier

- Consider the class \mathcal{F} of all linear classifiers $\hat{p}_t = s_{GN}(u^\top x_t)$ for $u \in \mathbb{R}^d$ with ||u|| bounded
- A covering of \mathcal{F} has size exponential in d

Direct application of experts' framework

One expert for each linear classifier

- Consider the class \mathcal{F} of all linear classifiers $\hat{p}_t = s_{GN}(u^\top x_t)$ for $u \in \mathbb{R}^d$ with ||u|| bounded
- A covering of \mathcal{F} has size exponential in d
- Running the weighted average forecaster on the covering requires managing an exponential number of weights

A reduction to prediction with expert advice

One expert for each attribute

• Allocate d experts F₁,..., F_d

A reduction to prediction with expert advice

One expert for each attribute

- Allocate d experts F₁,..., F_d
- On instance $\mathbf{x}_t = (\mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,d})$ expert F_j predicts $\mathbf{x}_{t,j}$

A reduction to prediction with expert advice

One expert for each attribute

- Allocate d experts F₁,..., F_d
- On instance $\mathbf{x}_t = (\mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,d})$ expert F_j predicts $\mathbf{x}_{t,j}$
- Regret $\mathbf{r}_t = \mathbf{y}_t \mathbf{x}_t \, \mathbb{I}_{\{\widehat{p}_t \neq \mathbf{y}_t\}}$

A reduction (cont.)

• Weighted average forecaster for binary classification

$$\mathbf{w}_{t-1} = \nabla \Phi(\mathbf{R}_{t-1})$$
 $\widehat{\mathbf{p}}_t = \operatorname{sgn}(\mathbf{w}_{t-1}^\top \mathbf{x}_t)$

A reduction (cont.)

• Weighted average forecaster for binary classification

$$\boldsymbol{w}_{t-1} = \nabla \Phi(\boldsymbol{R}_{t-1}) \qquad \widehat{p}_t = s_{GN}(\boldsymbol{w}_{t-1}^\top \boldsymbol{x}_t)$$

• We need Blackwell condition $w_{t-1}^{\top} r_t \leq 0$ to hold

A reduction (cont.)

• Weighted average forecaster for binary classification

$$\boldsymbol{w}_{t-1} = \nabla \Phi(\boldsymbol{R}_{t-1}) \qquad \widehat{p}_t = \operatorname{sgn}(\boldsymbol{w}_{t-1}^\top \boldsymbol{x}_t)$$

• We need Blackwell condition $w_{t-1}^{\top} r_t \leqslant 0$ to hold • Indeed,

$$\boldsymbol{w}_{t-1}^{\top} \boldsymbol{r}_{t} = \boldsymbol{y}_{t} \, \boldsymbol{w}_{t-1}^{\top} \boldsymbol{x}_{t} \, \mathbb{I}_{\{\widehat{\boldsymbol{p}}_{t} \neq \boldsymbol{y}_{t}\}} = \begin{cases} 0 & \text{if } \mathbb{I}_{\{\widehat{\boldsymbol{p}}_{t} \neq \boldsymbol{y}_{t}\}} = 0 \\ < 0 & \text{otherwise} \end{cases}$$

since $\mathbb{I}_{\{\widehat{p}_t \neq y_t\}} = 1$ iff $\operatorname{sgn}(\boldsymbol{w}_{t-1}^\top \boldsymbol{x}_t) \neq y_t$

A reduction (cont.)

• Weighted average forecaster for binary classification

$$\boldsymbol{w}_{t-1} = \nabla \Phi(\boldsymbol{R}_{t-1}) \qquad \widehat{p}_t = \operatorname{sgn}(\boldsymbol{w}_{t-1}^\top \boldsymbol{x}_t)$$

• We need Blackwell condition $w_{t-1}^{\top} r_t \leq 0$ to hold • Indeed,

$$\boldsymbol{w}_{t-1}^{\mathsf{T}} \boldsymbol{r}_{t} = \boldsymbol{y}_{t} \, \boldsymbol{w}_{t-1}^{\mathsf{T}} \boldsymbol{x}_{t} \, \mathbb{I}_{\{\hat{p}_{t} \neq \boldsymbol{y}_{t}\}} = \begin{cases} 0 & \text{if } \mathbb{I}_{\{\hat{p}_{t} \neq \boldsymbol{y}_{t}\}} = 0 \\ < 0 & \text{otherwise} \end{cases}$$

since $\mathbb{I}_{\{\hat{p}_t \neq y_t\}} = 1$ iff $s_{GN}(w_{t-1}^\top x_t) \neq y_t$

• The potential-based analysis can be adapted to bound the regret against any fixed linear classifier

Formulation as an incremental algorithm

We want to express $w_t = \nabla \Phi(\mathbf{R}_t)$ recursively as $w_t = F(w_{t-1})$

Formulation as an incremental algorithm

We want to express $w_t = \nabla \Phi(\mathbf{R}_t)$ recursively as $w_t = F(w_{t-1})$

Definition

A potential $\Phi : \mathbb{R}^d \to \mathbb{R}$ is Legendre if Φ is strictly convex, differentiable, and has a convex domain (and ...)

Formulation as an incremental algorithm

We want to express $w_t = \nabla \Phi(\mathbf{R}_t)$ recursively as $w_t = F(w_{t-1})$

Definition

A potential $\Phi : \mathbb{R}^d \to \mathbb{R}$ is Legendre if Φ is strictly convex, differentiable, and has a convex domain (and ...)

If a potential is Legendre, then $\nabla \Phi$ is invertible

$$\boldsymbol{w}_{t} = \nabla \Phi(\boldsymbol{R}_{t}) = \nabla \Phi(\boldsymbol{R}_{t-1} + \boldsymbol{r}_{t}) = \nabla \Phi((\nabla \Phi)^{-1}(\boldsymbol{w}_{t-1}) + \boldsymbol{r}_{t})$$

Formulation as an incremental algorithm

We want to express $w_t = \nabla \Phi(\mathbf{R}_t)$ recursively as $w_t = F(w_{t-1})$

Definition

A potential $\Phi : \mathbb{R}^d \to \mathbb{R}$ is Legendre if Φ is strictly convex, differentiable, and has a convex domain (and ...)

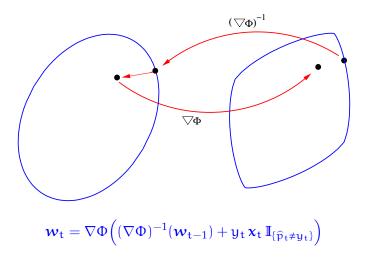
If a potential is Legendre, then $\nabla \Phi$ is invertible

$$\boldsymbol{w}_{t} = \nabla \Phi(\boldsymbol{R}_{t}) = \nabla \Phi(\boldsymbol{R}_{t-1} + \boldsymbol{r}_{t}) = \nabla \Phi((\nabla \Phi)^{-1}(\boldsymbol{w}_{t-1}) + \boldsymbol{r}_{t})$$

Update rule

$$\boldsymbol{w}_{t} = \nabla \Phi \Big((\nabla \Phi)^{-1} (\boldsymbol{w}_{t-1}) + \boldsymbol{y}_{t} \boldsymbol{x}_{t} \mathbb{I}_{\{ \widehat{p}_{t} \neq \boldsymbol{y}_{t} \}} \Big)$$

Incremental formulation (cont.)



Application to polynomial potential

• Polynomial potential $\Phi_{p}(\cdot) = \left\|\cdot\right\|_{p}^{2}$ is Legendre

$$\left(\nabla_{\frac{1}{2}} \|\mathbf{u}\|_{p}^{2}\right)_{i} = \frac{\operatorname{SGN}(\mathbf{u}_{i}) \|\mathbf{u}_{i}\|_{p}^{p-1}}{\|\mathbf{u}\|_{p}^{p-2}} \quad \left(\nabla_{\frac{1}{2}} \|\mathbf{u}\|_{p}^{2}\right)^{-1} = \nabla_{\frac{1}{2}} \|\mathbf{u}\|_{q}^{2}$$

where **q** is such that 1/p + 1/q = 1

Application to polynomial potential

• Polynomial potential $\Phi_{p}(\cdot) = \|\cdot\|_{p}^{2}$ is Legendre

$$\left(\nabla_{\frac{1}{2}} \|\mathbf{u}\|_{p}^{2}\right)_{i} = \frac{\operatorname{sGN}(u_{i}) |u_{i}|^{p-1}}{\|\mathbf{u}\|_{p}^{p-2}} \quad \left(\nabla_{\frac{1}{2}} \|\mathbf{u}\|_{p}^{2}\right)^{-1} = \nabla_{\frac{1}{2}} \|\mathbf{u}\|_{q}^{2}$$

where **q** is such that 1/p + 1/q = 1

• When p = 2 we have $\nabla \Phi_2(\mathbf{R}) = \mathbf{R}$

Application to polynomial potential

• Polynomial potential $\Phi_{p}(\cdot) = \left\|\cdot\right\|_{p}^{2}$ is Legendre

$$\left(\nabla_{\frac{1}{2}} \|\boldsymbol{u}\|_{p}^{2}\right)_{i} = \frac{s_{GN}(u_{i}) |u_{i}|^{p-1}}{\|\boldsymbol{u}\|_{p}^{p-2}} \quad \left(\nabla_{\frac{1}{2}} \|\boldsymbol{u}\|_{p}^{2}\right)^{-1} = \nabla_{\frac{1}{2}} \|\boldsymbol{u}\|_{q}^{2}$$

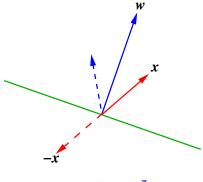
where **q** is such that 1/p + 1/q = 1

- When p = 2 we have $\nabla \Phi_2(\mathbf{R}) = \mathbf{R}$
- The update rule then is simply

$$\boldsymbol{w}_{t} = \boldsymbol{w}_{t-1} + \boldsymbol{y}_{t} \boldsymbol{x}_{t} \mathbb{I}_{\{\widehat{p}_{t} \neq \boldsymbol{y}_{t}\}}$$

the Perceptron algorithm (Rosenblatt, 1952)

The Perceptron algorithm



 $\boldsymbol{w}_{t} = \boldsymbol{w}_{t-1} + \boldsymbol{y}_{t} \boldsymbol{x}_{t} \mathbb{I}_{\{\widehat{p}_{t} \neq \boldsymbol{y}_{t}\}}$

Application to the exponential potential

• The exponential potential $\Phi_{\exp}(\mathbf{R}) = e^{\mathbf{R}_1} + \dots + e^{\mathbf{R}_d}$ is Legendre

Application to the exponential potential

• The exponential potential $\Phi_{\exp}(\mathbf{R}) = e^{R_1} + \dots + e^{R_d}$ is Legendre

• The update rule is

$$w'_{i,t} = w'_{i,t-1} e^{\eta r_{i,t-1}}$$

Application to the exponential potential

The exponential potential Φ_{exp}(**R**) = e^{R1} + ··· + eRd is Legendre
The update rule is

$$w'_{i,t} = w'_{i,t-1} e^{\eta r_{i,t-1}}$$
$$w_{i,t} = \frac{w'_{i,t}}{\sum_{k=1}^{d} w'_{k,t}}$$

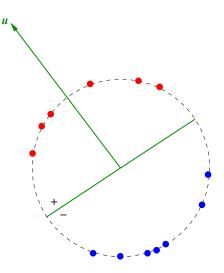
Application to the exponential potential

The exponential potential Φ_{exp}(**R**) = e^{R1} + ··· + eRd is Legendre
The update rule is

$$w'_{i,t} = w'_{i,t-1} e^{\eta r_{i,t-1}} w_{i,t} = \frac{w'_{i,t}}{\sum_{k=1}^{d} w'_{k,t}}$$

• This is the Winnow algorithm (Littlestone, 1988)

The linearly separable case



Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

$$\frac{p-1}{2} \left(X_p \left\| \mathbf{u} \right\|_q \right)^2$$

poly. potential

q is such that 1/p + 1/q = 1

Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

$$\frac{p-1}{2} \left(X_p \left\| \mathbf{u} \right\|_q \right)^2$$

 $(1 + o(1)) \ln(2d) (X_{\infty} ||\mathbf{u}||_{1})^{2}$

exp. potential

poly. potential

q is such that 1/p + 1/q = 1

Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

$$\frac{p-1}{2} \left(X_{p} \left\| \mathbf{u} \right\|_{q} \right)^{2}$$
o(1)) ln(2d) $\left(X_{\infty} \left\| \mathbf{u} \right\|_{1} \right)^{2}$

poly. potential

exp. potential

q is such that 1/p + 1/q = 1

(1 +

 Bound for exp. potential assumes tuning (previous knowledge of X_∞ and choice of ||u||₁)

Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

$$\frac{p-1}{2} \left(X_{p} \left\| \mathbf{u} \right\|_{q} \right)^{2}$$
$$\left(1 + o(1) \right) \ln(2d) \frac{\left(X_{\infty} \left\| \mathbf{u} \right\|_{1} \right)^{2}}{\left(X_{\infty} \left\| \mathbf{u} \right\|_{1} \right)^{2}}$$

poly. potential

exp. potential

q is such that 1/p + 1/q = 1

- Bound for exp. potential assumes tuning (previous knowledge of X_{∞} and choice of $||\mathbf{u}||_1$)
- Both bounds depend on pairs of dual norms: $\|\mathbf{x}\|_p \|\mathbf{u}\|_q$ vs. $\|\mathbf{x}\|_{\infty} \|\mathbf{u}\|_1$

Comparison between poly. and exp. potential

Mistake bounds for linearly separable sequences

$$\frac{p-1}{2} \left(X_{p} \left\| \mathbf{u} \right\|_{q} \right)^{2}$$

$$\left(1 + o(1) \right) \ln(2d) \left(X_{\infty} \left\| \mathbf{u} \right\|_{1} \right)^{2}$$

poly. potential

exp. potential

q is such that 1/p + 1/q = 1

- Bound for exp. potential assumes tuning (previous knowledge of X_∞ and choice of ||u||₁)
- Both bounds depend on pairs of dual norms: $\|\mathbf{x}\|_p \|\mathbf{u}\|_q$ vs. $\|\mathbf{x}\|_{\infty} \|\mathbf{u}\|_1$
- For $p \approx 2 \ln d$ the bounds are essentially equal

Comparison for spherical potential

• Consider a sequence $(x_1, y_1), (x_2, y_2) \dots$ such that $x_t \in \{-1, 1\}^d$ and $y_t = s_{GN}(x_{1,t})$

Comparison for spherical potential

- Consider a sequence $(x_1, y_1), (x_2, y_2) \dots$ such that $x_t \in \{-1, 1\}^d$ and $y_t = s_{GN}(x_{1,t})$
- Then $\mathbf{u} = (1, 0, \dots, 0)$ is an optimal classifier (no loss)

Comparison for spherical potential

- Consider a sequence $(x_1, y_1), (x_2, y_2) \dots$ such that $x_t \in \{-1, 1\}^d$ and $y_t = s_{GN}(x_{1,t})$
- Then $\mathbf{u} = (1, 0, \dots, 0)$ is an optimal classifier (no loss)
- Moreover,

$$(\|\mathbf{u}\|_2 X_2)^2 = d$$
 and $(\|\mathbf{u}\|_1 X_{\infty})^2 = 1$

Comparison for spherical potential

- Consider a sequence $(x_1, y_1), (x_2, y_2) \dots$ such that $x_t \in \{-1, 1\}^d$ and $y_t = s_{GN}(x_{1,t})$
- Then $\mathbf{u} = (1, 0, \dots, 0)$ is an optimal classifier (no loss)
- Moreover,

 $(\|\mathbf{u}\|_{2} X_{2})^{2} = d$ and $(\|\mathbf{u}\|_{1} X_{\infty})^{2} = 1$

• Then mistake bounds are

dpolynomial potential, p = 2 $4\ln(2d)$ exponential potential

an exponential advantage (verified by experiments)

Comparison for spherical potential

- Consider a sequence $(x_1, y_1), (x_2, y_2) \dots$ such that $x_t \in \{-1, 1\}^d$ and $y_t = s_{GN}(x_{1,t})$
- Then $\mathbf{u} = (1, 0, \dots, 0)$ is an optimal classifier (no loss)
- Moreover,

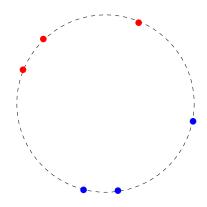
 $(\|\mathbf{u}\|_{2} X_{2})^{2} = d$ and $(\|\mathbf{u}\|_{1} X_{\infty})^{2} = 1$

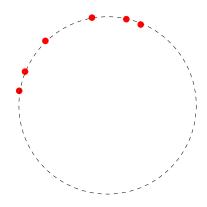
• Then mistake bounds are

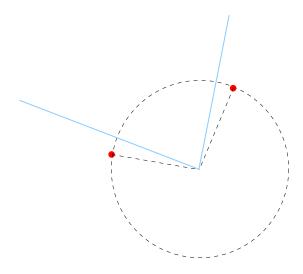
d polynomial potential, p = 24 ln(2d) exponential potential

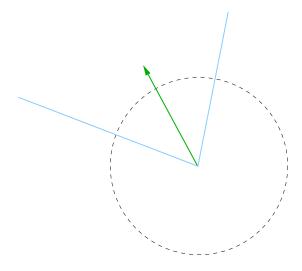
an exponential advantage (verified by experiments)

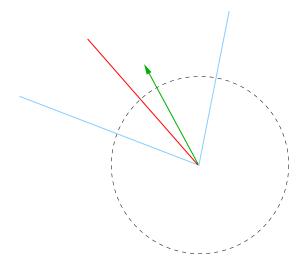
• Opposite situation when instances \mathbf{x}_t are sparse and best expert \mathbf{u} is dense

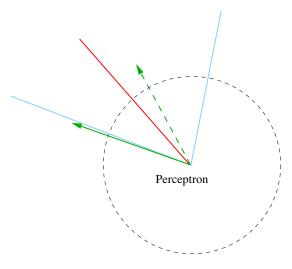


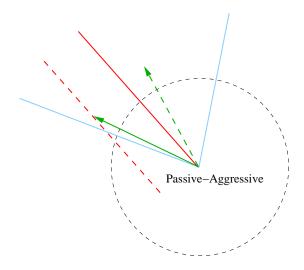


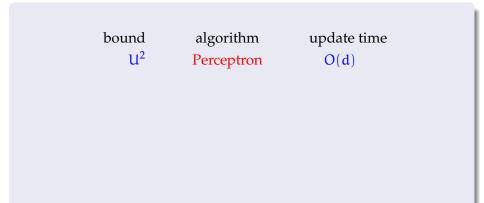












bound	algorithm	update time
U ²	Perceptron	O(d)
U ²	Passive-Aggressive	O(d)

bound	algorithm	update time
U ²	Perceptron	O(d)
U ²	Passive-Aggressive	O(d)
dU ln U	2nd order Perceptron	$O(d^2)$

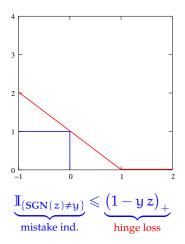
bound	algorithm	update time
U ²	Perceptron	O(d)
U ²	Passive-Aggressive	O(d)
dU ln U	2nd order Perceptron	$O(d^2)$
d ² ln U	Ellipsoid	$O(d^3)$

On any sequence of examples such that $y_t \mathbf{u}^\top \mathbf{x}_t \ge 1$ with $\|\mathbf{u}\| = \mathbf{U}$

bound	algorithm	update time
U ²	Perceptron	O (d)
U ²	Passive-Aggressive	O (d)
dU ln U	2nd order Perceptron	$O(d^2)$
d ² ln U	Ellipsoid	$O(d^3)$
d ln U	Volumetric center	$O(d^{3.5})$

bound	algorithm	update time
U ²	Perceptron	O(d)
U ²	Passive-Aggressive	O(d)
dU ln U	2nd order Perceptron	$O(d^2)$
d ² ln U	Ellipsoid	$O(d^3)$
d ln U	Volumetric center	$O(d^{3.5})$
d ln U	Geometric center	$O(d^4)$

The nonseparable case



- Computing an hyperplane minimizing the number of misclassified examples is NP-hard
- The hinge loss is a convex upper bound of the mistake indicator function

Perceptron's performance is compared to the hinge loss of the single best linear classifier $u \in \mathbb{R}^d$ in hindsight

Perceptron's performance is compared to the hinge loss of the single best linear classifier $u \in \mathbb{R}^d$ in hindsight

For any $\mathbf{u} \in \mathbb{R}^d$ and any sequence $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)$ define total hinge loss $D_{\mathbf{u}} = \sum_{t} (1 - y_t \mathbf{u}^\top \mathbf{x}_t)_+$

Perceptron's performance is compared to the hinge loss of the single best linear classifier $u \in \mathbb{R}^d$ in hindsight

For any $\mathbf{u} \in \mathbb{R}^d$ and any sequence $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)$ define total hinge loss $D_{\mathbf{u}} = \sum_{t} (1 - y_t \mathbf{u}^\top \mathbf{x}_t)_+$

On any sequence of examples, the number of mistakes made by the Perceptron is at most

$$\inf_{\mathbf{u}\in\mathbb{R}^{d}}\left(\mathsf{D}_{\mathbf{u}}+\|\mathbf{u}\|^{2}+\|\mathbf{u}\|\sqrt{\mathsf{D}_{\mathbf{u}}}\right)$$

Perceptron's performance is compared to the hinge loss of the single best linear classifier $u \in \mathbb{R}^d$ in hindsight

For any $\mathbf{u} \in \mathbb{R}^d$ and any sequence $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)$ define total hinge loss $D_{\mathbf{u}} = \sum_{t} (1 - y_t \mathbf{u}^\top \mathbf{x}_t)_+$

On any sequence of examples, the number of mistakes made by the Perceptron is at most

$$\inf_{\mathbf{u}\in\mathbb{R}^{d}}\left(\mathsf{D}_{\mathbf{u}}+\|\mathbf{u}\|^{2}+\|\mathbf{u}\|\sqrt{\mathsf{D}_{\mathbf{u}}}\right)$$

Similar to the SVM functional

$$\inf_{\mathbf{u}\in\mathbb{R}^{d}}\left(\mathsf{D}_{\mathbf{u}}+\|\mathbf{u}\|^{2}\right)$$

Summary

- Prediction with expert advice
- 2 Linear classification
- 3 Kernel-based on-line learning
 - 4 Online SVM and active learning
 - 5 From mistake to risk bounds

On-line learning with kernels

 $\bullet \ \ Feature \ map \ \varphi: \mathbb{R}^d \to RKHS$

~~~~

### On-line learning with kernels

- Feature map  $\varphi: \mathbb{R}^d \to RKHS$
- Kernel  $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$

### On-line learning with kernels

- Feature map  $\phi : \mathbb{R}^d \to \text{RKHS}$
- Kernel  $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$
- Assume a linear algorithm learns *w* such that

$$w = \sum_{i} \alpha_{i} x_{t_{i}}$$

### On-line learning with kernels

- Feature map  $\phi : \mathbb{R}^d \to \text{RKHS}$
- Kernel  $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$
- Assume a linear algorithm learns *w* such that

$$w = \sum_{i} \alpha_{i} x_{t_{i}}$$

• Then we can learn  $w = \sum_{i} \alpha_i \phi(\mathbf{x}_{t_i})$  in the RKHS because

$$\begin{split} \operatorname{sgn}(\langle w, \phi(\mathbf{x}) \rangle) &= \operatorname{sgn}\left(\sum_{i} y_{t_{i}} \left\langle \phi(\mathbf{x}_{t_{i}}), \phi(\mathbf{x}) \right\rangle\right) \\ &= \operatorname{sgn}\left(\sum_{i} y_{t_{i}} \operatorname{K}(\mathbf{x}_{t_{i}}, \mathbf{x})\right) \end{split}$$

~~~~

Checking applicability of kernels

Let
$$\mathbf{R}_t = \sum_t y_t x_t \mathbb{I}_{\{\widehat{p}_t \neq y_t\}}$$

• Winnow
$$w_{i,t} = rac{e^{\eta R_{i,t}}}{\displaystyle \sum_{k=1}^{d} e^{\eta R_{k,t}}}$$

Checking applicability of kernels

Let
$$\mathbf{R}_t = \sum_t y_t \mathbf{x}_t \mathbb{I}_{\{\widehat{p}_t \neq y_t\}}$$

• Winnow
$$w_{i,t} = \frac{e^{\eta R_{i,t}}}{\sum_{k=1}^{d} e^{\eta R_{k,t}}}$$

• p-norm Perceptron $w_{i,t} = \frac{s_{GN}(R_{i,t}) |R_{i,t}|^{p-1}}{\|R_t\|_p^{p-2}}$

Checking applicability of kernels

Let
$$\mathbf{R}_t = \sum_t y_t \mathbf{x}_t \mathbb{I}_{\{\widehat{p}_t \neq y_t\}}$$

• Winnow
$$w_{i,t} = \frac{e^{\eta R_{i,t}}}{\sum_{k=1}^{d} e^{\eta R_{k,t}}}$$

• p-norm Perceptron $w_{i,t} = \frac{\operatorname{sgn}(R_{i,t}) |R_{i,t}|^{p-1}}{\|R_t\|_p^{p-2}}$
• Perceptron $w_t = R_t$

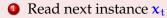
Checking applicability of kernels

Let
$$\mathbf{R}_t = \sum_t y_t \mathbf{x}_t \mathbb{I}_{\{\widehat{p}_t \neq y_t\}}$$

• Winnow
$$w_{i,t} = \frac{e^{\eta R_{i,t}}}{\sum_{k=1}^{d} e^{\eta R_{k,t}}}$$

• p-norm Perceptron $w_{i,t} = \frac{\text{SGN}(R_{i,t}) |R_{i,t}|^{p-1}}{\|R_t\|_p^{p-2}}$
• Perceptron $w_t = R_t$

Perceptron's potential is spherical \rightarrow rotational invariance



- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = sgn\left(\sum_{\boldsymbol{v} \in \mathcal{L}} K(\boldsymbol{v}, \boldsymbol{x}_t)\right)$

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN} \left(\sum_{v \in \mathcal{L}} K(v, x_t) \right)$
- Obtain true label y_t

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN} \left(\sum_{\boldsymbol{v} \in \mathcal{L}} K(\boldsymbol{v}, \boldsymbol{x}_t) \right)$
- Obtain true label yt
- **9** If $\hat{p}_t \neq y_t$ (mistake) then store new support $(y_t x_t)$ in \mathcal{L}

Start with empty cache \mathcal{L} of examples **Loop:**

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN} \left(\sum_{\boldsymbol{v} \in \mathcal{L}} K(\boldsymbol{v}, \boldsymbol{x}_t) \right)$
- Obtain true label y_t
- If $\hat{p}_t \neq y_t$ (mistake) then store new support $(y_t x_t)$ in \mathcal{L}

Mistake bounds hold in the whole RKHS

Can we control the rate of mistakes when at most $B < \infty$ supports are used?

Can we control the rate of mistakes when at most $B < \infty$ supports are used?

Fact

Using at most B supports, any learner makes an unbounded number of mistakes on a sequence that is perfectly classified by some $\mathbf{u} \in \mathbb{R}^d$ with zero hinge loss and $\|\mathbf{u}\| = \sqrt{B+1}$

Can we control the rate of mistakes when at most $B < \infty$ supports are used?

Fact

Using at most B supports, any learner makes an unbounded number of mistakes on a sequence that is perfectly classified by some $\mathbf{u} \in \mathbb{R}^d$ with zero hinge loss and $\|\mathbf{u}\| = \sqrt{B+1}$

• Thus $B \ge U^2$ is necessary to compete against \mathbf{u} of length U

Can we control the rate of mistakes when at most $B < \infty$ supports are used?

Fact

Using at most B supports, any learner makes an unbounded number of mistakes on a sequence that is perfectly classified by some $\mathbf{u} \in \mathbb{R}^d$ with zero hinge loss and $\|\mathbf{u}\| = \sqrt{B+1}$

- Thus $B \ge U^2$ is necessary to compete against **u** of length U
- Can we compete against any u with ||u|| ≤ U using B = (1 + ε)U² supports?

A randomized perceptron

Randomized Budget Perceptron

Parameter: size B of cache for supports Start with empty cache \mathcal{L}

A randomized perceptron

Randomized Budget Perceptron

Parameter: size B of cache for supports Start with empty cache \mathcal{L} **Loop:**

Read next instance x_t

Randomized Budget Perceptron

Parameter: size B of cache for supports Start with empty cache \mathcal{L} **Loop:**

Read next instance x_t

2 Predict
$$y_t$$
 with $\hat{p}_t = \operatorname{sgn}\left(\sum_{\boldsymbol{v} \in \mathcal{L}} \boldsymbol{v}^\top \boldsymbol{x}_t\right)$

Randomized Budget Perceptron

Parameter: size B of cache for supports Start with empty cache \mathcal{L} **Loop:**

- Read next instance x_t
- Predict y_t with $\hat{p}_t = s_{GN} \left(\sum_{v \in \mathcal{L}} v^\top x_t \right)$
- Obtain true label yt

Randomized Budget Perceptron

Parameter: size B of cache for supports Start with empty cache \mathcal{L} **Loop:**

- Read next instance x_t
- Predict y_t with $\hat{p}_t = s_{GN} \left(\sum_{v \in \mathcal{L}} v^\top x_t \right)$
- Obtain true label yt
- If $\hat{p}_t \neq y_t$ then:

Randomized Budget Perceptron

Parameter: size B of cache for supports Start with empty cache \mathcal{L} **Loop:**

- Read next instance x_t
- Predict y_t with $\hat{p}_t = sgN\left(\sum_{v \in \mathcal{L}} v^\top x_t\right)$
- Obtain true label y_t
- If $\hat{p}_t \neq y_t$ then:
 - If $|\mathcal{L}| = B$, then throw away a random support from \mathcal{L}

Randomized Budget Perceptron

Parameter: size B of cache for supports Start with empty cache \mathcal{L} **Loop:**

- Read next instance x_t
- Predict y_t with $\hat{p}_t = sgN\left(\sum_{v \in \mathcal{L}} v^\top x_t\right)$
- Obtain true label y_t
- If $\hat{p}_t \neq y_t$ then:
 - If $|\mathcal{L}| = B$, then throw away a random support from \mathcal{L}
 - **2** Add $y_t x_t$ to \mathcal{L}

Randomized Budget Perceptron

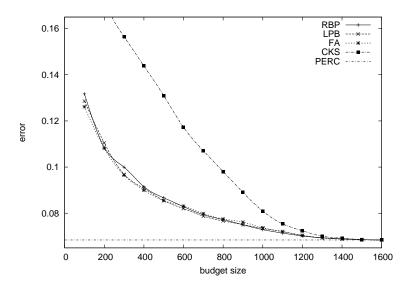
Parameter: size B of cache for supports Start with empty cache \mathcal{L} **Loop:**

- Read next instance x_t
- Predict y_t with $\hat{p}_t = \text{sgn}\left(\sum_{v \in \mathcal{L}} v^\top x_t\right)$
- Obtain true label yt
- If $\hat{p}_t \neq y_t$ then:
 - If $|\mathcal{L}| = B$, then throw away a random support from \mathcal{L}
 - **a** Add $y_t x_t$ to \mathcal{L}

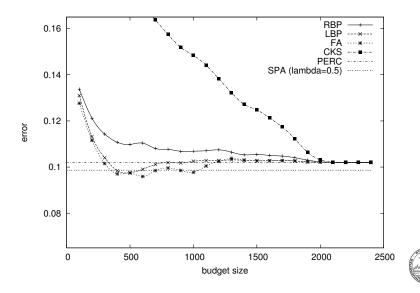
Result:

Bound on mistakes scales roughly with $1+1/\epsilon$

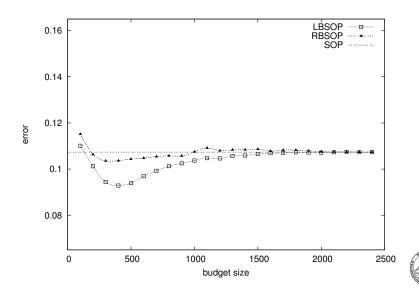
Empirical performance — stationary



Empirical performance — nonstationary



Empirical performance 2nd order — nonstationary



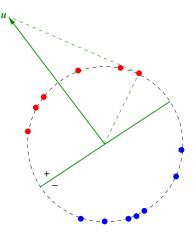
Nicolò Cesa-Bianchi (Univ. di Milano)

Summary

- Prediction with expert advice
- 2 Linear classification
- 3 Kernel-based on-line learning
- Online SVM and active learning
 - 5 From mistake to risk bounds

Online SVM and active learning Online approximation of SVM hyperplane

The SVM hyperplane is the shortest **u** such that $y_t \mathbf{u}^\top \mathbf{x}_t \ge 1$ for all t



Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1**Loop:**

Read next instance x_t

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1**Loop:**

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN}(w^T x_t)$

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1**Loop:**

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN}(w^T x_t)$
- Obtain true label y_t

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1**Loop:**

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN}(w^T x_t)$
- Obtain true label yt
- **9** If margin smaller than $c(1 \alpha)/\sqrt{k}$ then:

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1**Loop:**

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN}(w^T x_t)$
- Obtain true label yt
- If margin smaller than $c(1 \alpha)/\sqrt{k}$ then:

 $\mathbf{0} \ \mathbf{w}' = \mathbf{w} + \mathbf{y}_{\mathrm{t}} \mathbf{x}_{\mathrm{t}} / \sqrt{\mathrm{k}}$

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1**Loop:**

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN}(w^T x_t)$
- Obtain true label yt
- If margin smaller than $c(1 \alpha)/\sqrt{k}$ then:

$$w' = w + y_t x_t / \sqrt{k} w = w' / ||w'|| \qquad k \leftarrow k + 1$$

Online approximation of SVM hyperplane (cont.)

The ALMA algorithm

Parameter: $0 < \alpha \leq 1$ Set mistake counter k = 1**Loop:**

- Read next instance x_t
- **2** Predict y_t with $\hat{p}_t = s_{GN}(w^T x_t)$
- Obtain true label yt
- If margin smaller than $c(1-\alpha)/\sqrt{k}$ then:

0
$$w' = w + y_t x_t / \sqrt{k}$$

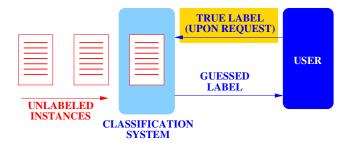
2 $w = w' / ||w'||$ $k \leftarrow k + 1$

Result

Finds separating **u** with $\|\mathbf{u}\| \leq \|\mathbf{u}_{\text{svm}}\|/(1-\alpha)$ after at most $(\|\mathbf{u}_{\text{svm}}\|/\alpha)^2$ updates

Nicolò Cesa-Bianchi (Univ. di Milano)

Selective sampling



Nicolò Cesa-Bianchi (Univ. di Milano)

A selective sampling classifier

• Classify next instance \mathbf{x}_{t} with $s_{GN}(\mathbf{w}^{\top}\mathbf{x}_{t})$

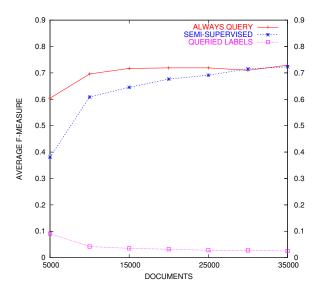
A selective sampling classifier

N_t = number of labels sampled so far

A selective sampling classifier

- Classify next instance \mathbf{x}_t with $\operatorname{sgn}(\mathbf{w}^{\top}\mathbf{x}_t)$
- **2** If $|w^{\top} x_t| \leq ||x_t|| \sqrt{\frac{c \ln t}{N_t}}$ then query label y_t of x_t
 - **)** If label queried then use (x_t, y_t) to update w
- N_t = number of labels sampled so far
- w updated with the 2nd order Perceptron update rule

Empirical performance on RCV1



Summary

- Prediction with expert advice
- 2 Linear classification
- 3 Kernel-based on-line learning
- 4 Online SVM and active learning
- 5 From mistake to risk bounds

• Linear classifiers $H(\mathbf{x}) = s_{GN}(\mathbf{w}^{\top}\mathbf{x})$

- Linear classifiers $H(\mathbf{x}) = s_{GN}(\mathbf{w}^{\top}\mathbf{x})$
- Examples (x_t, y_t) are i.i.d. according to a fixed and unknown probability distribution on $\mathbb{R}^d \times \{-1, +1\}$

- Linear classifiers $H(\mathbf{x}) = s_{GN}(\mathbf{w}^{\top}\mathbf{x})$
- Examples (x_t, y_t) are i.i.d. according to a fixed and unknown probability distribution on $\mathbb{R}^d \times \{-1, +1\}$
- $risk(H) = \mathbb{P}(H(x) \neq y)$

- Linear classifiers $H(\mathbf{x}) = s_{GN}(\mathbf{w}^{\top}\mathbf{x})$
- Examples (x_t, y_t) are i.i.d. according to a fixed and unknown probability distribution on $\mathbb{R}^d \times \{-1, +1\}$
- $risk(H) = \mathbb{P}(H(x) \neq y)$
- Learning algorithm

$$(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n) \longrightarrow \boxed{A} \longrightarrow \widehat{H} : \mathbb{R}^d \to \{-1, +1\}$$

 \widehat{H} is (random) hypothesis output by learner

The ensemble of hypotheses

• Run an incremental learner on the training set

- Run an incremental learner on the training set
- Everytime $H(\mathbf{x}_t) \neq y_t$, H is changed by the update rule

- Run an incremental learner on the training set
- Everytime $H(\mathbf{x}_t) \neq y_t$, H is changed by the update rule
- This process generates an ensemble of classifiers

 H_0, H_1, \ldots, H_n

- Run an incremental learner on the training set
- Everytime $H(x_t) \neq y_t$, H is changed by the update rule
- This process generates an ensemble of classifiers

 H_0, H_1, \ldots, H_n

Goals

Bound the average risk of the ensemble in terms of the size of the ensemble

- Run an incremental learner on the training set
- Everytime $H(\mathbf{x}_t) \neq y_t$, H is changed by the update rule
- This process generates an ensemble of classifiers

 H_0, H_1, \ldots, H_n

Goals

- Bound the average risk of the ensemble in terms of the size of the ensemble
- Find an element of the ensemble whose risk is close to the ensemble average

Step 1: bound the average risk

The difference

$$\mathsf{risk}(\mathsf{H}_{\mathsf{t}-1}) - \mathbb{I}_{\{\mathsf{H}_{\mathsf{t}-1}(\mathbf{x}_{\mathsf{t}})\neq \mathsf{y}_{\mathsf{t}}\}}$$

is a martingale difference sequence because

$$\mathbb{E}\left[\operatorname{risk}(\mathsf{H}_{t-1}) - \mathbb{I}_{\{\mathsf{H}_{t-1}(\mathbf{x}_t) \neq \mathsf{y}_t\}} \middle| (\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_{t-1}, \mathbf{y}_{t-1})\right] = 0$$

Step 1: bound the average risk

The difference

$$\mathsf{risk}(\mathsf{H}_{\mathsf{t}-1}) - \mathbb{I}_{\{\mathsf{H}_{\mathsf{t}-1}(\mathbf{x}_{\mathsf{t}})\neq \mathsf{y}_{\mathsf{t}}\}}$$

is a martingale difference sequence because

$$\mathbb{E}\left[\texttt{risk}(H_{t-1}) - \mathbb{I}_{\{H_{t-1}(\mathbf{x}_{t})\neq y_{t}\}} \,\middle|\, (\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{t-1}, y_{t-1})\right] = 0$$

The associated martingale is

$$\sum_{t=1}^{n} \left(\mathbf{risk}(\mathbf{H}_{t-1}) - \mathbb{I}_{\{\mathbf{H}_{t-1}(\mathbf{x}_{t})\neq\mathbf{y}_{t}\}} \right)$$
$$\iff \underbrace{\frac{1}{n} \sum_{t=1}^{n} \mathbf{risk}(\mathbf{H}_{t-1})}_{\text{average risk}} - \underbrace{\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}_{\{\mathbf{H}_{t-1}(\mathbf{x}_{t})\neq\mathbf{y}_{t}\}}}_{\text{fraction of mistakes}}$$

Bernstein's bound

If Z_1, Z_2, \ldots is a martingale difference sequence with increments bounded by 1 and

$$V_n = \sum_{t=1}^n \mathbb{E} \left[Z_t^2 \mid Z_1, \dots, Z_{t-1} \right]$$

then for all S, K > 0

$$\mathbb{P}\left(\sum_{t=1}^{n} Z_{n} \geqslant S, \quad V_{n} \leqslant K\right) \leqslant exp\left(-\frac{S^{2}}{2(S/3+K)}\right)$$

Application of Bernstein's bound

Since
$$0 \leq \mathbb{I}_{\{H(\mathbf{x})\neq y\}} \leq 1$$
,

$$\begin{aligned} &\operatorname{var}\left[\mathbb{I}_{\{H_{t-1}(\mathbf{x}_{t}), y_{t}\}} \mid (\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{t-1}, y_{t-1})\right] \\ &\leq \mathbb{E}\left[\operatorname{risk}(H_{t-1}) \mid (\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{t-1}, y_{t-1})\right] \end{aligned}$$

Application of Bernstein's bound

Since
$$0 \leq \mathbb{I}_{\{H(\mathbf{x})\neq y\}} \leq 1$$
,

$$\begin{aligned} &\operatorname{var}\left[\mathbb{I}_{\{H_{t-1}(\mathbf{x}_{t}), y_{t}\}} \mid (\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{t-1}, y_{t-1})\right] \\ &\leq \mathbb{E}\left[\operatorname{risk}(H_{t-1}) \mid (\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{t-1}, y_{t-1})\right] \end{aligned}$$

Applying Bernstein's gives

$$\frac{1}{n} \sum_{t=1}^{n} \operatorname{risk}(H_{t-1}) \quad \leqslant \quad \frac{M_n}{n} + \frac{c}{n} \left(\ln M_n + \sqrt{M_n \ln M_n} \right) \quad \text{w.h.p.}$$
Where $\frac{M_n}{n} = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}_{\{H_{t-1}(\mathbf{x}_t) \neq Y_t\}}$ is the fraction of mistakes

Step 2: pick a good classifier in the ensemble

- Start from the ensemble H_0, H_1, \ldots, H_n
- Do the following:
 - test each H_t on $(x_{t+1}, y_{t+1}), ..., (x_n, y_n)$
 - 2 pick $\hat{H} = H_{t^*}$ minimizing a penalized risk estimate

Step 2: pick a good classifier in the ensemble

- Start from the ensemble H_0, H_1, \ldots, H_n
- Do the following:
 - test each H_t on $(\mathbf{x}_{t+1}, \mathbf{y}_{t+1}), \dots, (\mathbf{x}_n, \mathbf{y}_n)$
 - 2 pick $\hat{H} = H_{t^*}$ minimizing a penalized risk estimate

Guaranteed bound

$$\operatorname{risk}(\widehat{H}) \quad \leqslant \quad \frac{M_n}{n} + \frac{c}{n} \left((\ln n)^2 + \sqrt{M_n \ln n} \right) \qquad \text{w.h.p.}$$

Conclusions

• A game-theoretic foundation for on-line learning

Conclusions

- A game-theoretic foundation for on-line learning
- Performance guarantees for several variants of the basic model

Conclusions

- A game-theoretic foundation for on-line learning
- Performance guarantees for several variants of the basic model
- Learning with structured outputs builds naturally on these results

