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Mechanism design theory

• Leonid Hurwicz (1960, 1972)

– communication system, incentive compatibility

• Eric Maskin (1977)

– Nash implementation

• Roger Myerson (1979, 1981)

– Bayesian mechanism design



What can be achieved, in principle, by a 

market system despite agent self interest and 

private information?
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Example: Median Mechanism
(Moulin‟80)
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Example: Median Mechanism
(Moulin‟80)

Choice Set
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Example: Single item auction
(Vickrey‟61)
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Direct Revelation Mechanism

…
M

1

N

agents

types

(Hurwicz’60,’72)

Parkes 15AAAI‟10

payments

f(µ)outcome rule
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Rules of Encounter

• “As distributed systems of computers play an 

increasingly important role in society, it will 

be necessary to consider ways in which 

these machines can be made to interact 

effectively…

Parkes 17AAAI‟10

(Rosenschein and Zlotkin 1994; Ephrati and Rosenschein AAAI„91)



Rules of Encounter

• “As distributed systems of computers play an 

increasingly important role in society, it will 

be necessary to consider ways in which 

these machines can be made to interact 

effectively… Adjusting the rules of public 

behavior (the rules of the game) by which the 

programs must interact can influence the 

private strategies that designers set up in 

their machines.”
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(Rosenschein and Zlotkin 1994; Ephrati and Rosenschein AAAI„91)
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• “… they‟ll pay programmers to develop 

sophisticated models of their opponents‟ 

bidding strategies… put energy into trying to 

discover relevant information about their 

opponents… 

Ultimately, this sort of effort drains 

resources that might be better spent 

elsewhere…”
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Task negotiation
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Task negotiation
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An Economics View

• “… hyper-rationality may actually be [an] 

appropriate model for software agents… 

The whole framework of game theory and 

mechanism design may well find its most 

exciting and practical application with 

computerized agents rather than human 

agents.”
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(Varian 1995)



Early Sponsored Search

• Bids are per click on a search keyword 

• Rank by bid. First price. 
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Autobidders:

Bid minimal 

amount to maintain 

current position

$12

$10

$6

pay $12

(Goto 1998)



Churn…
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7/18/02

(Edelman and Ostrovsky, 2007)



Fix: Generalized Second Price
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$12

$10

$6

pay $10

pay $6

…

(1) user relevance, (2) revenue, (3)  ad quality

Stability (not full SP)

£ ctr1

£ ctr2

£ ctr3

machine

learning



World Design for Self-interested Agents
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Mechanism = Algorithm



Example: Combinatorial Auction
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(Rassenti, Smith and Bulfin, 1982)



Good Progress

• Compact and expressive bidding languages

– e.g., OR-of-XOR (Sandholm‟99), OR* (Fujishima et al.‟99, 

Nisan‟00), LGB (Boutilier & Hoos ‟01)

• Scalable winner determination

– exact algorithms via heuristic search (Fujishima et 

al.‟99, Sandholm‟99)

– tractable special cases (Rothkopf et al.‟98)

• Preference elicitation

– iterative CAs (Parkes & Ungar‟00), learning theory 

(Lahaie & Parkes‟04), querying (Hudson & Sandholm‟03)

– regret-based methods (Hyafil & Boutilier‟06)
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An “EconCS” agenda

• Can‟t just substitute heuristic algorithms into 

mechanisms and retain strategyproofness

• Led to a cottage industry in “algorithmic 

mechanism design”

– Econ: incentive constraints

– CS: computational constraints

• Exciting progress
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(Nisan and Ronen‟99, Lehmann et al.‟99)
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Reasoning about SP mechanisms 

is hard 
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SP

poly time,

best approx

ratio

constrained 

AMD
(Likhodedov and Sandholm‟04, 

Guo & Contizer „08)

econ

optimal
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SP

state-of-art

computational

approach

Heuristic

MD



Example: Dynamic Knapsack 

m concert tickets to sell. probabilistic model

Agent type: quantity, value, [a,d] interval
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t t+1 …
ONLINE STOCHASTIC 

COMBINATORIAL OPTIMIZATION
(van Hentenryck and Bent‟06)

exogoneous

uncertainty

sample

trajectory



OSCO
inputs

model

samples

gt(v1..t) xt
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monotonicity

(P. & Duong „07, Constantin & P.‟09)



inputs

model

samples

xt,pt

critical value

OSCO
gt(v1..t)

PAY
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monotonicity

(P. & Duong „07, Constantin & P.‟09)



check
inputs

model

samples

gt(v1..t)
-

sensitivity 
analysis

critical value

PAY
xt,pt

OSCO
gt(v1..t)
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performance (eff):

81.5% best fixed price

89.5% OSCO + ironing 

95.2% OSCO

(P. & Duong „07, Constantin & P.‟09)

monotonicity
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– can predict properties of the mechanism



Relaxing away from SP…

• We like SP for reasons of
– equity (Roth‟03, Pathak and Sonmez‟08)

– simplify reasoning

– can predict properties of the mechanism

• But it is generally hard to obtain

• And, can be provably bad along other 

dimensions 
• e.g., CAs with complements

(Ausubel & Milgrom‟06, Rastegeri, Condon, & Leyton-Brown‟10)



Approx Incentive Alignment

• A satisfactory answer will:

– allow for comparison of mechanisms

– allow for a larger design space

– still provide predictable behavior



Old Favorite: Min Max Regret

• Regret = best utility – actual utility

• Maximally SP: minimizes max regret across 

agents on every instance 

• ²-SP: max regret · ²



Example: Comb. Exchange

• Airlines buying and selling landing slots
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Example: Comb. Exchange

• Airlines buying and selling landing slots

• pvcg,i = bid – marginal contribution
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Example: Comb. Exchange

• Airlines buying and selling landing slots

• pvcg,i = bid – marginal contribution

• Runs at a deficit in a CE 

• Impose  pi ¸ 0
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Two mechanism rules
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(Parkes, Kalagnanam and Eso „01)

agents

p
a

y
o

ff
re

g
re

t

¢vcg



Two mechanism rules
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(Parkes, Kalagnanam and Eso „01)

agents

Threshold rule

(min max regret)

agents

Small rule

max #(regret=0)

¢vcg¢vcg



Approximate BNE Analysis
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strategy efficiency

(Lubin & Parkes ‟09)

(For BNE, see Vorobeychik & Wellman‟08,

Rabinovich, Gerding, Polukarov & Jennings‟09)



Distributional View: Payoffs
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“reference mechanism”
KL-divergence(¼,¼vcg)

correlates to BNE/EFF



Regret Quantiles
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look at F(regret · ²) and max regret
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From Events to Platforms

• eBay, sponsored search, display advertising 

on Facebook, etc. are all dynamic problems: 

– Dynamic population 

– Learning by agents

– Learning by the mechanism

– Uncertain supply

• Need incentive engineering to coordinate 

“always on” dynamic systems 
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Loosely coupled MDPs



Theory: Dynamic VCG

• Support Optimal MDP policies 

• With dynamic population, static types 

– includes dynamic Cas

– P. & Singh „03, P., Singh & Yanovsky‟04

• With static population, dynamic types

– includes Bayesian optimal learning

– Bergemann & Valimaki ‟08

• Unified view

– Cavallo, P. & Singh‟09
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Skill Acquisition Example
(Cavallo & Parkes‟08)
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0

8 40
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1/2 1/2

¯ = 0.75
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(1-¯) 11.1 = 2.78 + 6 = 8.78
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(1-¯)8 = 2
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Skill Acquisition Example
(Cavallo & Parkes‟08)



Dynamic-VCG: Scaling-up

• Need optimal-in-range policies

¼* 2 arg max¼2¦‟V
¼(s)

) an interesting meta-problem

Parkes 80AAAI‟10

(see Gerding, Stein, Larson, Rogers & Jennings‟10)
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Back to tasks…
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Crowdsourcing Platforms

• Amazon Mechanical Turk 
– online labor market for “human intelligence 

tasks” (e.g., data cleaning)

• InnoCentive (innovation marketplace)

– 150+ seekers, 180,000+ solvers, $$ prizes

– 900+ challenges
– e.g., “Sustainable Packaging for Developing World”

• TopCoder (code development)

– 250,000+ workers, $$ to first and second-best
– e.g., NASA/HBS/LBS “MedKit optimization”
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The Longitude Prize

• Royal Observatory
– founded in 1675 to solve the 

“longitude problem”

– sailors could measure local time 

from sun, with an accurate reference 

time, could compute longitude 
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The Longitude Prize

• Royal Observatory
– founded in 1675 to solve the 

“longitude problem”

– sailors could measure local time 

from sun, with an accurate reference 

time, could compute longitude 

• Won by John Harrison (1693-1776)

– started work in 1730, awarded prize 

at age 79 in 1773
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http://www.nmm.ac.uk/harrison



But rapid integration of partial solutions from 

multiple sources is new
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NetFlix Prize
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Gravity Dinosaur Planet

Bertino+0.21%

Sill+0.14%

Nabutovsky+0.06%

Sill+0.08%

+0.19%

Grand Prize Team
(Jan 2009, share 2/3 prize for final 1% 

improvement)

When Gravity and Dinosaurs Unite

(Fall 2007)

y(x) = g(y1(x),…, yK(x))

meta-features

www.the-ensemble.com ~volinsky/netflix/bpc.html

=10.10% improvement

July 26, 2009

Opera Solutions

Vandelay Industries !

The Ensemble +0.43%

June 26, 2009



DARPA “Red Balloons”

• Launched Oct 29, 2009. 

• Ten 8‟ red balloons, 30.5 m in air

• $40,000 prize (for latitude and longitude)

• Competition @ 10am, December 5, 2009
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DARPA “Red Balloons”

• Launched Oct 29, 2009. 

• Ten 8‟ red balloons, 30.5 m in air

• $40,000 prize (for latitude and longitude)

• Competition @ 10am, December 5, 2009

• Won by 6:52pm!
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MIT: Recursive Incentive Scheme

Parkes AAAI‟10 94

Recruited 5,400 individuals in 36 hours

One-time “supply chain”

+$1000

+$2000

+$500

+$250

+$2000

+$1000

$250+$1000
charity

Anmol Madan, Galen Pickard, Riley Crane, 

Alex ("Sandy") Pentland, Wei Pan 

and Manuel Cebrian



Agent Mech
info action

Agent Mech

perturb

(payments)

senseactions
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Environment Design

(Zhang & Parkes‟08)



Role for AI

AI + crowdsourcing ¼ A New Kind of Firm

Parkes AAAI‟10 100

finally put the AI into 

the mechanical Turk?



Example: TopCoder

• Workers on TC get a score for a submission
– correctness, docs, flexibility, extendability

– combines to an aggregate “coder rating”

Parkes AAAI‟10 101



Example: TopCoder

• Workers on TC get a score for a submission
– correctness, docs, flexibility, extendability

– combines to an aggregate “coder rating”

• Skilled contestants tend to enter early
– an implicit coordination mechanism

– signaling game
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(Archak‟10)



Generalized Task Markets
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(Shahaf & Horvitz‟10)



Example: Language Translation

• 388 participants, 70 countries, random trans. tasks

• Assign tasks to coalitions to maximize final quality 

while respecting capacity constraints

Parkes AAAI‟10 104

(Shahaf & Horvitz‟10)



Example: Policy Teaching

Parkes 107

(Zhang & Parkes‟08, Zhang, Parkes & Chen„09)

MDP observe ¼ perturb R ! R+¢ Target policy ¼T



Example: Policy Teaching
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(R+¢)2 IRL¼‟

R

R‟

R‟+¢ 2 IRL
¼T

IRL Å IRL
¼T

(B)

R‟‟

(Zhang & Parkes‟08, Zhang, Parkes & Chen‟09)

MDP observe ¼ perturb R ! R+¢ Target policy ¼T

Multi-agent Policy Teaching?
(Rabinovich, Dufton, Larson & Jennings‟10)



Wanted: Better User Models
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(Horton  & Chilton‟10)

“target 

earnings” shows 

preference

for amounts 

divisible

by 5 cents



Hutong Karma 



Computational Sustainability through 

“Sharing Markets”
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Sharing Markets

• Goal: use AI and electronic markets to 

transform our use of resources

• Support “microtransactions”. 

• For well functioning systems, need for:
– scrip (Friedman, Halpern & Kash‟06)

– reputation (Friedman, Resnick & Sami‟07) 

– accounting (Seuken, Tang & Parkes‟10)

… and handle complexity!



Hidden Markets
(Seuken, Jain, Tan & Czerwinski ‟10, Seuken, Jain & Parkes‟10)



Hidden Markets
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(Seuken, Jain, Tan & Czerwinski ‟10, Seuken, Jain & Parkes‟10)

xx <> yy <> zzUI Design Market Design
AI AI

AI

1 3

2

Example: P2P backup



Summary

• MD theory is beautiful but severely stretched 

by Internet scale systems

• Provide useful formalism, but to make real 

progress in AI we‟ll need to move beyond

• Emphasized here three things:

– heuristic approaches for MD

– dynamic coordination opportunities

– future: intelligent task and sharing markets 
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