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We typically ...

1. Formalize learning / mining task  

2. Design algorithm / technique to use 

3. Implement the algorithm 

4. Use and distribute the software

Our work today ...

Specialized 
AlgorithmInput OutputTASK 



And do it again ...

Specialized 
Algorithm 3Input Output TASK 3

Specialized 
Algorithm 2Input Output TASK 2

Specialized 
Algorithm 1Input Output TASK 1 



We typically ...

1. Formalize learning / mining task  

2. Design algorithm / technique to use 

3. Implement the algorithm 

4. Use and distribute the software

Specialized 
AlgorithmInput OutputTASK 

Our work today ...

hard



Cannot we simplify this ... ?

1. Formalize learning / mining task  

2. Design algorithm / technique to use 

3. Implement the algorithm 

4. Use and distribute the software

The Challenge 

Specialized 
AlgorithmInput OutputTASK 



Key Point

The key point I want to make is that 
POTENTIALLY we can by adopting a 

Declarative Modeling paradigm 

first steps have been taken ...
 e.g. use of Convex Optimisation



Overview Talk

• The Challenge: 

• from Programming to Modeling for ML/DM

• The what, why and how of Declarative 
Modeling (and Constraint Programming)

• How does this relate to ML/DM ?

• Evidence: a case study in pattern mining  

• Perspective / Discussion



The What, Why and How 
of

Declarative Modeling 



What is declarative modeling ?

array [1..9, 1..9] of var 1..9: sq;
predicate row_diff(int: r) =
     all_different (c in 1..9) (sq[r, c]);
predicate col_diff(int: c) =
     all_different (r in 1..9) (sq[r, c]);
predicate subgrid_diff(int: r, int: c) =
     all_different (i, j in 0..2) (sq[r + i, c + j]);

constraint forall (r in 1..9) (row_diff(r));
constraint forall (c in 1..9) (col_diff(c));
constraint forall (r, c in {1, 4, 7}) (subgrid_diff(r, c))

solve satisfy;

Zinc family of languages

Model Inputs
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Model
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Data = Input 

How does it work ?

 state WHAT the problem is

model
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 MODEL specifies task = constraints 
+ optimization criterion

different SOLVERS possible



Why declarative 
modeling ?

DECLARATIVE 

• few lines of code

• easy to understand, maintain, 
change 

• can be used with multiple 
“solvers”, e.g., exact and approximate

• formal verification possible

PROCEDURAL

• 1000s of lines of code

• hard to understand, maintain or 
change

• solver is built in the program

Here -  CONSTRAINT PROGRAMMING
Also -- ANSWER SET PROGRAMMING



Constraint Programming
Given

• a set of variables V

• the domain D(x) of all variables x in V

• a set of constraints C on values these 
variables can take

Find an assignment of values to variables in V 
that satisfies all constraints in C

 Zinc [Garcia de la Banda et al.CP 06]

 CSP



Constraint Satisfaction
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 var P1, P2, P3, P4: {1,2}; 

constraint P1 != P2;
constraint P3 != P4;
constraint P1 !=1;
 

solve satisfy;



Solvers for CP

Two key ideas 

• propagation of constraints, e.g., from 

D(P1) = {1} and D(P2) = {1,2,3} and P1 != P2  infer      
that 1 ∉ D(P2) and simplify D(P2) = {2,3}

propagator: if D(x) = {d} and x!=y then delete d from D(y)

•  if you cannot propagate, instantiate (or divide) and 
recurse, e.g., 

 call with D(P2)={2}       and      with D(P2)={3}

         P2=2                                  P2=3
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Search
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Constraint Programming

There is a lot more to say

• about types of constraints and domains used 

• about modeling languages 

• about propagators -- how to modify domains 

• about choosing the next variable to instantiate 

• about implementations ...

• about their incorporation in programming languages ...

• about their performance ... 



What about ML/DM ?



Observation 1

Machine learning and data mining are essentially 
constraint satisfaction and optimization 
problems



Data Mining
Given

• a database containing instances or transactions D

the set of instances 

• a hypothesis space or pattern language  L 

• a selection predicate, query or set of constraints Q 

Find Th(Q,L,D) = { h ∈ L | Q(h,D) = true }

[Mannila and Toivonen, 96]



Itemset mining
Given

• a set of items I

• a transaction t ⊆ I.     So,  X = 2I

• D is a set of transactions.

• L =  X = 2I

• a frequency threshold c,  with freq(h,D) = |{ d | d ∈ D, h ⊆ d }| 

 Find Th(Q,L,D) = { h ∈ L | freq(h,D) > c }

  



Machine learning

Given

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a dataset of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E) supervised



Observation 1

Machine learning and data mining are essentially 
constraint satisfaction and optimization 
problems

well-known in ML and DM
good news



Observation 2
Use of solvers is very common in 

statistical learning (and SVMs)

• convex optimization and mathematical 
programming solvers

graphical models 

• knowledge compilation packages and belief 
propagation

An important factor for their success



Observation 2

There has been a paradigm shift in the field of AI from 
programming to solving (Hector Geffner at ECAI 2012)

Today AI uses solvers for crisp computational problems

• SAT,  ASP,  CSP, CP, maxSAT, weighted model counting, ...

• many problems are reduced to these basic problems ... 
and solved efficiently 

Still less common in other areas of DM/ML



Observation 3
There has been an enormous progress in solver technology 
for basic constraint satisfaction and optimization problems 

Solver technology facilitates the development of high-level 
declarative modeling languages 

• specify the WHAT -- not the HOW

Examples include

• ZINC, Essence, Comet, OPL, FO(.), ... 

Very flexible approach ... 

Still less common in DM/ML (except Matlab ?)



Can we design programming languages containing machine 
learning primitives? 

Can a new generation of computer programming languages 
directly support writing programs that learn?

... some subroutines are hand-coded while others are specified as “to be 
learned.”  ...  the programmer declares the inputs and outputs of each “to 
be learned” subroutine, then selects a learning algorithm ... 

Long standing open questions
Tom Mitchell, The Discipline of Machine Learning, 2006



Questions remain open

Though relevant work on 

• probabilistic & adaptive programming languages 

• inductive query languages for data mining [Imielinski and 
Mannila, 95; EU cInQ and IQ projects] 

• inductive logic programming and statistical relational learning   

• Learning based Java [Roth et al. 10] and kLog [Frasconi et al.]

Can we obtain programming languages for ML / DM 

by applying the principles of constraint programming ?



Evidence 
The case of  Pattern mining



Pattern Mining

• which patterns are frequent ?

• which patterns are significant w.r.t. classes ? all patterns ? k-best 
patterns ?

• which pattern set is the best concept-description for the actives ? 
for the inactives ? 

C. pattern set mining

A. frequent pattern 

Th(L, Q,D) = {p � L|Q(p,D) = true}
B. Correlated pattern mining = subgroup discovery

Th(L, Q,D) = argp�Lmaxk �(p,D)

Th(L,Q,D) = {P � L|Q(P,D) = true}



Pattern Mining

• which patterns are frequent ?

• which patterns are significant w.r.t. classes ? all patterns ? k-best 
patterns ?

• which pattern set is the best concept-description for the actives ? 
for the inactives ? 

C. pattern set mining

A. frequent pattern 

Th(L, Q,D) = {p � L|Q(p,D) = true}
B. Correlated pattern mining = subgroup discovery

Th(L, Q,D) = argp�Lmaxk �(p,D)

Th(L,Q,D) = {P � L|Q(P,D) = true}
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A. Frequent Pattern 
Mining



A. Frequent Itemset Mining
Given

• I = {1, · · · , NrI}
set of items

• T = {1, · · · , NrT}
set of transactions identifiers

• D = {(t, I)|t � T , I � I}
Dataset

• Items � I and Trans � T

Find Items such that
|covers(Items,D)| > freq

where covers(Items,D) =
{t � T |(t, I) � D and Items � I}



A.Frequent Itemset Mining
int: Freq; 
int: NrI; 
int: NrT; 

array[1..NrT] of set of 1..NrI: D;
 

var set of 1..NrI: Item;
var set of 1..NrT: Trans;
 

constraint card(Trans) > Freq;
constraint Trans = covers(Item, D);
 

solve satisfy;

function var set of int: cover(Item, D) = 
let {
             var set of int: Trans,
             constraint forall (t in ub(Trans)) 
            (t in Trans ↔ Item subset D[t])‏
} in Trans;

int: Freq; 
int: NrI; 
int: NrT; 

array[1..NrT] of set of 1..NrI: D;
 

var set of 1..NrI: Items;
var set of 1..NrT: Trans;
 

constraint card(Trans) > Freq;
constraint Trans = covers(Items, D);
 

solve satisfy;

function var set of int: cover(Items, D) = 
let {
             var set of int: Trans,
             constraint forall (t in ub(Trans)) 
            (t in Trans ↔ Items subset D[t])‏
} in Trans;

Given

• I = {1, · · · , NrI}
set of items

• T = {1, · · · , NrT}
set of transactions identifiers

• D = {(t, I)|t � T , I � I}
Dataset

• Items � I and Trans � T

Find Items such that
|covers(Items,D)| > freq

where covers(Items,D) =
{t � T |(t, I) � D and Items � I}



Frequent Itemset Mining
int: Freq; 
int: NrI; 
int: NrT; 

array[1..NrT] of set of 1..NrI: D;
 

var set of 1..NrI: Itemset;
var set of 1..NrT: Transset;
 

constraint card(Transset) > Freq;
constraint Transset = covers(Itemset, D);
 

solve satisfy;

function var set of int: cover(Itemset, D) = 
let {
             var set of int: Trans,
             constraint forall (t in ub(Trans))
  (t in Trans ↔ Itemset subset D[t] )‏
} in Trans;

math like notation 

user defined functions and 
constraints

solver independent 
(standardized)

efficiently solvable

int: Freq; 
int: NrI; 
int: NrT; 

array[1..NrT] of set of 1..NrI: D;
 

var set of 1..NrI: Items;
var set of 1..NrT: Trans;
 

constraint card(Trans) > Freq;
constraint Trans = covers(Items, D);
 

solve satisfy;

function var set of int: cover(Items, D) = 
let {
             var set of int: Trans,
             constraint forall (t in ub(Trans)) 
            (t in Trans ↔ Items subset D[t])‏
} in Trans;



Closed Itemset Mining
int: Freq; 
int: NrI; 
int: NrT; 

array[1..NrT] of set of 1..NrI: D;
 

var set of 1..NrI: Items;
var set of 1..NrT: Trans;
 

constraint card(Trans) > Freq;
constraint Trans = covers(Items, D);
constraint Items = cover_inv(Trans, D);
solve satisfy;

function var set of int: cover(Items, D) = 
let {
             var set of int: Trans,
             constraint forall (t in ub(Trans)) 

(t in Trans ↔ Items subset D[t] )‏
} in Trans;

function var set of int: cover_inv(Trans,D)=
 let {
             var set of int: Items,
             constraint forall (i in ub(Items)) 

(i in Items ↔ Trans subset D’[i] )‏
} in Items;
 



* exact coverage : 
t in Trans <-> Items subset D[t]

* freq: 
i in Items -> card(Trans intersect D'[i]) >= Freq

* maximal: 
i in Items <-> card(Trans intersect D'[i]) >= Freq

* closed: 
i in Items <-> Trans subset D'[i]

* delta-closed: 
i in Items <-> card(Trans intersect D'[i]) <= Delta*card(Trans)

Further Constraints

easy to model
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• CP based

• Map to standard Solvers offered by Zinc 

• Like Gecode and Comet

• Gecode -- sound and complete 

• Comet -- local search ...

• CHALLENGE 

• how to encode this efficiently?

 Solver 1 



Encoding in Zinc

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0
�

t

Tt � minsup ⇤i : Ii = 1⇥
�

t

TtDti � minsupiff

Text

int: Freq;
int: NrI; int: NrT;
array [1..NrT] of set of int: D;

array [1..NrI] of var bool: Items;
array [1..NrT] of var bool: Trans;

constraint % encode D: every Trans complement has no supported Items
   forall(t in 1..NrT) (
       Trans[t] <-> sum(i in 1..NrI) ( Items[i]*(1 - (i in D[t])) ) <= 0
   );

constraint % frequency: every Item is supported by sufficently many Trans
   forall(i in 1..NrI) (
       Items[i] -> sum(t in 1..NrT) ( Trans[t]*(i in D[t]) ) >= Freq
   );

solve satisfy;



Resulting Search Strategy akin to 
Zaki’s Eclat [KDD 97]

see 
Guns et al AIJ 11



 Solver 2 

• Use a Data Mining System as solver

• Results with LCM [Uno et al.] within Zinc

• CHALLENGE 

• how to recognize that DM system applies ?

• possibly add post-processing ...



B. Correlated Pattern Mining
= Subgroup Discovery

= Discriminative patterns



Top-k Correlated Pattern Mining
Subgroup Discovery

• D now consists of two datasets, say P and N

• a correlation function �(p,D), e.g., ⇥2

• Th(L, Q,D) = argp�Lmaxk �(p,D)



Modeling perspective

Alternative opt. functions, for example:

with:

int: NrI; int: NrT; int: Freq;
array[1..NrT] of set of int: D;
set of int: pos; set of int: neg;
 

var set of 1..NrI: Items;
var set of 1..NrT: Trans;
 

constraint Trans = cover(Items, D);
constraint Items = cover_inv(Trans, D);
 

solve maximize
           card(Trans intersect pos) – card(Trans intersect neg) 

solve maximize chi2(Trans, pos, neg);

function float: chi2(Trans, pos, neg) 

accuracy



Correlation function

Projection on PN-space
Nijssen KDID



Monotonicity

freq(S) � freq(S � T ) � freq(S �Dom(S))

Traditional pruning/propagation employs upper bound:

remove d from Dom(S) when freq(S) � t and freq(S � {d}) < t

Other propagation – unavoidable item sets also possible – lower bound

freq(S) � freq(S � T ) � freq(S �Dom(S)) = a > 0

then a is a lower bound on freq(S), that is freq(S) � a

Solving using CP can be extremely effective



Illustration
Dom({2})= 
{2,3,4,5,6}



Illustration

Dom({2})= 
{2,3,4,5}



Illustration

Dom({2})= 
{2,3,5}



Illustration

Dom({2})= 
{}



4-support bound

Nijssen et 
al. KDD 09

AIJ 11



2-support bound

Morishita & 
Sese 

SIGMOD98



1-support bound

Text
Han et al. 
ICDM 08



Experiments

900s
timeout

Solving using CP can be extremely effective



C. Pattern Set Mining



Pattern Sets

One is not interested in all solutions to a 
pattern mining task, typically post-processing 
needed

So, why not apply constraint based mining to 
pattern sets directly ?  [Zimmermann 09] 
[Guns et al, IEEE TKDE 11]

Th(L,Q,D) = {P � L|Q(P,D) = true}



Pattern Sets

Consider a set of itemsets 

Can be interpreted as DNF expression

Useful for concept-learning and clustering

{{a, b, c}, {b, d, e}, {c, e, f}}

(a � b � c) ⇥ (b � d � e) ⇥ (c � e � f)

from local to global pattern mining



What are meaningful constraints  ?

Th(L,Q,D) = {P � L|Q(P,D) = true}

• local constraints on I ⌅ P such as freq(I,D) ⇤ minsup

• constraints on all pairs of patterns I1, I2 ⌅ P , e.g.
|covers(I1,D) ⌃ covers(I2,D)| ⇥ t

• global constraints freq(P,D) ⇤ t�

• correlation, top-k, ...

Pattern Sets



k-Pattern Set  Mining (|P|=k)

int: NrI; int         : NrT;  int K;
array[1..NrT] of set of int: D;
set of int: pos; set of int: neg;
% pattern set
array[1..K] of var set of 1..NrI: Items;
constraint lexleq(Items);  % remove symmetries
 
% every pattern is closed 'on the positives'
constraint let { Dp = [D[t] | t in pos] } in
         forall (d in 1..K) (
                  Items[d] = cover_inv(cover(Items[d], Dp), Dp));

  
% accuracy of pattern set
solve maximize
         let { Trans = union(d in 1..K) (cover(Items[d], D)) } in
         card(Trans intersect pos) - card(Trans intersect neg);



Generality
Can model instantiations/versions of:

• Concept learning (k-term DNF learning)

• Conceptual clustering

• k-Tiling

• Redescription mining

• ...



Pattern Mining

• which patterns are frequent ?

• which patterns are significant w.r.t. classes ? all patterns ? k-best 
patterns ?

• which pattern set is the best concept-description for the actives ? 
for the inactives ? 

C. pattern set mining

A. frequent pattern 

Th(L, Q,D) = {p � L|Q(p,D) = true}
B. Correlated pattern mining = subgroup discovery

Th(L, Q,D) = argp�Lmaxk �(p,D)

Th(L,Q,D) = {P � L|Q(P,D) = true}
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http://dtai.cs.kuleuven.be/CP4IM



Perspective



All this is fine but...

what about 

• efficiency and scalability ? 

• other types of data and patterns 
(sequences, trees, graphs ...)  ? relational 

• other DM/ML tasks ? probabilistic, 
statistical learning, kernels / distances ...



Efficiency / Scalability
• Trade-off efficiency / generality

• Current experiments (with ONE solver)

• Often a constant factor slower

• Some cases much faster (correlated)

• Avoid with specialized solvers [Nijssen and Guns, ECMLPKDD 10]

• Feature of Declarative Modeling 

• many solvers available (complete, approximate, ... ) 

• one can even work with portfolio’s (Satzilla)

• Challenge is to build efficient solvers and  translations

The new role of DM/ML scientists if we succeed ?



Task / Representation

Rich representations ~ relational, graphs  ?

Task level ~ unsupervised, regression, clustering, 
probabilistic...  ?

Let us have a look at Statistical Relational Learning

Markov Logic [Domingos et al.]    

ProbLog [De Raedt et al.]

...

kLog [Frasconi et al.]

probabilistic

kernel based



kLOG [Frasconi, Costa, DR, De Grave 12]

Input
Database

Graphicalize

Graphs

Feature 
Generation

Graph 
Kernel

Feature Vectors
Kernel Matrix Classifier

Statistical 
Learner



Surgical excision of CNV may allow stabilisation or improvement of vision .

A biomedical NLP task [Verbeke et al. EMLNP 12]



E/R-MODEL

w

depHead

next

wordID

depRel

lemma

POS-tag

chunktag

wordString

NEGenia

NEUMLS

sentence hasWord

class

sentID

hasCategory

nextS

[Verbeke et al. EMNLP 12]



Relational ....
sentence(s4,4).
hasCategory(s4,'background').
w(w4_1,'Surgical','Surgical',b-np,jj,'O','O').
hasWord(s4,w4_1).
dh(w4_1,w4_2,nmod).
nextW(w4_2,w4_1).
w(w4_2,'excision','excision',i-np,nn,'O','O').
hasWord(s4,w4_2).
dh(w4_2,w4_5,sub).
nextW(w4_3,w4_2).
w(w4_3,'of','of',b-pp,in,'O','O').
hasWord(s4,w4_3).
dh(w4_3,w4_2,nmod).
nextW(w4_4,w4_3).
w(w4_4,'CNV','CNV',b-np,nn,'B-protein','O').
hasWord(s4,w4_4).
dh(w4_4,w4_3,pmod).
nextW(w4_5,w4_4).
w(w4_5,'may','may',b-vp,md,'O','O').
hasWord(s4,w4_5).
dh(w4_5,w4_0,root).
nextW(w4_6,w4_5).

...

lemmaRoot(S,L) :- 
     hasWord(S, I), w(I,_,L,_,_,_,_), dh(I,_,root).

isHeaderSentence(S):-
   hasHeaderWord(S,_).

hasSectionHeader(S,X):-
   nextS(S1,S),
   hasHeaderWord(S1,X),!.
hasSectionHeader(S,X):-
   nextS(S1,S),
   \+isHeaderSentence(S),
   once(hasSectionHeader(S1,X)),!.

relational database ... Prolog 



                                                                                                                                                                                           

s0

s1

s2

s3

next

next

next

s4

s5

s6

 

 

 

s7

 

s8

 

s9

 

title

title

Surgical  excision  of  CNV  may  allow  stabilisation  or  improvement  of  vision.

background

next next                                 

dh(nmod)

dh(sub)

dh(pmod)
  

hasWord
    

  

  

  

Graphicalization
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...
...

...

Transforms relational 
representations into graph 

based ones and derives
features from a grounded E/R 
diagram using graph kernels

w(Surgical,Surgical,jj,O,O)
w4_1

w(excision,excision,nn,O,O)
w4_2

w(of,of,in,O,O)
w4_3

w(CNV,CNV,nn,B-protein,O)
w4_4

w(may,may,md,O,O)
w4_5

w(allow,allow,vb,O,O)
w4_6

w(stabilisation,stabilisation,nn,O,O)
w4_7

w(or,or,cc,O,O)
w4_8

w(improvement,improvement,nn,O,O)
w4_9

w(of,of,in,O,O)
w4_10

w(vision,vision,nn,O,O)
w4_11

w(escpoint,escpoint,o,escpoint,O,O)
w4_12

dh(nmod)

nextW

dh(sub)

nextW

dh(nmod)

nextWdh(pmod)

nextW dh(root)

nextW

dh(vc)

nextW

dh(nmod)
nextW

dh(nmod)

nextW

dh(obj)

nextW

dh(nmod)

nextW
dh(pmod)

nextW

dh(p)

sentence[4]
s4

word(may)

hasCategory(background)



radius = 1

w(Surgical,Surgical,jj,O,O)
w4_1

w(excision,excision,nn,O,O)
w4_2

w(of,of,in,O,O)
w4_3

w(CNV,CNV,nn,B-protein,O)
w4_4

w(may,may,md,O,O)
w4_5

w(allow,allow,vb,O,O)
w4_6

w(stabilisation,stabilisation,nn,O,O)
w4_7

w(or,or,cc,O,O)
w4_8

w(improvement,improvement,nn,O,O)
w4_9

w(of,of,in,O,O)
w4_10

w(vision,vision,nn,O,O)
w4_11

w(escpoint,escpoint,o,escpoint,O,O)
w4_12

dh(nmod)

nextW

dh(sub)

nextW

dh(nmod)

nextW

dh(pmod)

nextW
dh(root)

nextWdh(vc)

nextW

dh(nmod)
nextW

dh(nmod)

nextW

dh(obj)

nextW

dh(nmod)

nextW
dh(pmod)

nextW

dh(p)

sentence[4]
s4

word(may)

hasCategory(background)

distance = 2

...

Extended feature space
kernel computation ... NSPDK [Costa et al ICML 10]

Propositional learning setting
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Task 
 Task MODEL specifies task = 

constraints + optimization criterion



Input
Database

Graphicalize

Graphs

Feature 
Generation

Graph 
Kernel

Feature Vectors
Kernel Matrix Classifier

Statistical 
Learner

Task 

CHALLENGE
Define the KERNEL declaratively

Define the LOSS function ... and SOLVE

As for many other ML/DM systems ?

kLOG



What if we succeed ?



We typically ...

1. Formalize learning / mining task  

2. Design algorithm / technique to use 

3. Implement the algorithm 

4. Use and distribute the software

Specialized 
AlgorithmInput OutputTASK 

Our work today ...

hard



The user/application perspective...

1. Formalize learning / mining task

2. Model the problem  

3. Select the right solvers

4. Use and distribute the software

Specialized 
AlgorithmInputTASK 

Our work tomorrow ...

easy

More opportunities for re-use ... 

A de facto standard language for DM / ML as Zinc ?



The scientist’s perspective...

Designing modeling languages

Studying task properties 

Studying translations

Producing and adapting solvers

InputTASK 

Our work tomorrow ...

more fun

Larger impact of results in larger framework ?



TASK 

Output 

DATA 

Model

Inpu

 SOLVERs  OUTPU

Input

Output

Conclusions
Declarative modeling languages for ML / DM has high 
potential 

 
T
r
a
n
s
l
a
t
e

Embedding in programming languages may provide an 
answer to Mitchell’s question



Conclusions
All the necessary ingredients are available to realize declarative 
modeling languages for ML/DM

• machine learning & data mining

• declarative modeling and constraint programming 

• programming language technology

• should work for unsupervised, clustering ... as well

So let’s do it ...



Questions ?


