
Declarative Modeling for
Machine Learning and Data Mining

 Lab for Declarative Languages and Artificial Intelligence

Joint work with especially
Tias Guns and Siegfried Nijssen and Paolo Frasconi

and the EU FET ICON project

(c) Luc De Raedt

We typically ...

1. Formalize learning / mining task

2. Design algorithm / technique to use

3. Implement the algorithm

4. Use and distribute the software

Our work today ...

Specialized
AlgorithmInput OutputTASK

And do it again ...

Specialized
Algorithm 3Input Output TASK 3

Specialized
Algorithm 2Input Output TASK 2

Specialized
Algorithm 1Input Output TASK 1

We typically ...

1. Formalize learning / mining task

2. Design algorithm / technique to use

3. Implement the algorithm

4. Use and distribute the software

Specialized
AlgorithmInput OutputTASK

Our work today ...

hard

Cannot we simplify this ... ?

1. Formalize learning / mining task

2. Design algorithm / technique to use

3. Implement the algorithm

4. Use and distribute the software

The Challenge

Specialized
AlgorithmInput OutputTASK

Key Point

The key point I want to make is that
POTENTIALLY we can by adopting a

Declarative Modeling paradigm

first steps have been taken ...
 e.g. use of Convex Optimisation

Overview Talk

• The Challenge:

• from Programming to Modeling for ML/DM

• The what, why and how of Declarative
Modeling (and Constraint Programming)

• How does this relate to ML/DM ?

• Evidence: a case study in pattern mining

• Perspective / Discussion

The What, Why and How
of

Declarative Modeling

What is declarative modeling ?

array [1..9, 1..9] of var 1..9: sq;
predicate row_diff(int: r) =
 all_different (c in 1..9) (sq[r, c]);
predicate col_diff(int: c) =
 all_different (r in 1..9) (sq[r, c]);
predicate subgrid_diff(int: r, int: c) =
 all_different (i, j in 0..2) (sq[r + i, c + j]);

constraint forall (r in 1..9) (row_diff(r));
constraint forall (c in 1..9) (col_diff(c));
constraint forall (r, c in {1, 4, 7}) (subgrid_diff(r, c))

solve satisfy;

Zinc family of languages

Model Inputs

TASK

Output

DATA

Model

Inpu

 SOLVERs OUTPU

Input

Output

Data = Input

How does it work ?

 state WHAT the problem is

model

T
r
a
n
sl
a
t
e

 MODEL specifies task = constraints
+ optimization criterion

different SOLVERS possible

Why declarative
modeling ?

DECLARATIVE

• few lines of code

• easy to understand, maintain,
change

• can be used with multiple
“solvers”, e.g., exact and approximate

• formal verification possible

PROCEDURAL

• 1000s of lines of code

• hard to understand, maintain or
change

• solver is built in the program

Here - CONSTRAINT PROGRAMMING
Also -- ANSWER SET PROGRAMMING

Constraint Programming
Given

• a set of variables V

• the domain D(x) of all variables x in V

• a set of constraints C on values these
variables can take

Find an assignment of values to variables in V
that satisfies all constraints in C

 Zinc [Garcia de la Banda et al.CP 06]

 CSP

Constraint Satisfaction

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

 var P1, P2, P3, P4: {1,2};

constraint P1 != P2;
constraint P3 != P4;
constraint P1 !=1;

solve satisfy;

Solvers for CP

Two key ideas

• propagation of constraints, e.g., from

D(P1) = {1} and D(P2) = {1,2,3} and P1 != P2 infer
that 1 ∉ D(P2) and simplify D(P2) = {2,3}

propagator: if D(x) = {d} and x!=y then delete d from D(y)

• if you cannot propagate, instantiate (or divide) and
recurse, e.g.,

 call with D(P2)={2} and with D(P2)={3}

 P2=2 P2=3

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = {1,2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = {1,2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

choose P3 = 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1 }
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1 }
D(P4) = { 2}

P1 != P2

P3 != P4

P1 != 1

& backtrack

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

choose P3 = 2

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = { 2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = { 2}
D(P4) = {1 }

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions

 1

 2

2 1 2 1

Constraint Programming

There is a lot more to say

• about types of constraints and domains used

• about modeling languages

• about propagators -- how to modify domains

• about choosing the next variable to instantiate

• about implementations ...

• about their incorporation in programming languages ...

• about their performance ...

What about ML/DM ?

Observation 1

Machine learning and data mining are essentially
constraint satisfaction and optimization
problems

Data Mining
Given

• a database containing instances or transactions D

the set of instances

• a hypothesis space or pattern language L

• a selection predicate, query or set of constraints Q

Find Th(Q,L,D) = { h ∈ L | Q(h,D) = true }

[Mannila and Toivonen, 96]

Itemset mining
Given

• a set of items I

• a transaction t ⊆ I. So, X = 2I

• D is a set of transactions.

• L = X = 2I

• a frequency threshold c, with freq(h,D) = |{ d | d ∈ D, h ⊆ d }|

 Find Th(Q,L,D) = { h ∈ L | freq(h,D) > c }

Machine learning

Given

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a dataset of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E) supervised

Observation 1

Machine learning and data mining are essentially
constraint satisfaction and optimization
problems

well-known in ML and DM
good news

Observation 2
Use of solvers is very common in

statistical learning (and SVMs)

• convex optimization and mathematical
programming solvers

graphical models

• knowledge compilation packages and belief
propagation

An important factor for their success

Observation 2

There has been a paradigm shift in the field of AI from
programming to solving (Hector Geffner at ECAI 2012)

Today AI uses solvers for crisp computational problems

• SAT, ASP, CSP, CP, maxSAT, weighted model counting, ...

• many problems are reduced to these basic problems ...
and solved efficiently

Still less common in other areas of DM/ML

Observation 3
There has been an enormous progress in solver technology
for basic constraint satisfaction and optimization problems

Solver technology facilitates the development of high-level
declarative modeling languages

• specify the WHAT -- not the HOW

Examples include

• ZINC, Essence, Comet, OPL, FO(.), ...

Very flexible approach ...

Still less common in DM/ML (except Matlab ?)

Can we design programming languages containing machine
learning primitives?

Can a new generation of computer programming languages
directly support writing programs that learn?

... some subroutines are hand-coded while others are specified as “to be
learned.” ... the programmer declares the inputs and outputs of each “to
be learned” subroutine, then selects a learning algorithm ...

Long standing open questions
Tom Mitchell, The Discipline of Machine Learning, 2006

Questions remain open

Though relevant work on

• probabilistic & adaptive programming languages

• inductive query languages for data mining [Imielinski and
Mannila, 95; EU cInQ and IQ projects]

• inductive logic programming and statistical relational learning

• Learning based Java [Roth et al. 10] and kLog [Frasconi et al.]

Can we obtain programming languages for ML / DM

by applying the principles of constraint programming ?

Evidence
The case of Pattern mining

Pattern Mining

• which patterns are frequent ?

• which patterns are significant w.r.t. classes ? all patterns ? k-best
patterns ?

• which pattern set is the best concept-description for the actives ?
for the inactives ?

C. pattern set mining

A. frequent pattern

Th(L, Q,D) = {p � L|Q(p,D) = true}
B. Correlated pattern mining = subgroup discovery

Th(L, Q,D) = argp�Lmaxk �(p,D)

Th(L,Q,D) = {P � L|Q(P,D) = true}

Pattern Mining

• which patterns are frequent ?

• which patterns are significant w.r.t. classes ? all patterns ? k-best
patterns ?

• which pattern set is the best concept-description for the actives ?
for the inactives ?

C. pattern set mining

A. frequent pattern

Th(L, Q,D) = {p � L|Q(p,D) = true}
B. Correlated pattern mining = subgroup discovery

Th(L, Q,D) = argp�Lmaxk �(p,D)

Th(L,Q,D) = {P � L|Q(P,D) = true}

We h
ave

 been
 using o

ff-th
e-s

helf
CP SO

LVERS fo
r th

ese

task
s, c

f. G
uns, N

ijss
en, De R

aed
t [A

AAI 10, AIJ 1
1]

One so
lver

 for al
l of th

ese

Easy
 to

 co
mbine d

iffe
ren

t co
nstra

ints

Now lookin
g at

 modelin
g le

vel

KDD 08

KDD 09

IEEE TKDE 11

A. Frequent Pattern
Mining

A. Frequent Itemset Mining
Given

• I = {1, · · · , NrI}
set of items

• T = {1, · · · , NrT}
set of transactions identifiers

• D = {(t, I)|t � T , I � I}
Dataset

• Items � I and Trans � T

Find Items such that
|covers(Items,D)| > freq

where covers(Items,D) =
{t � T |(t, I) � D and Items � I}

A.Frequent Itemset Mining
int: Freq;
int: NrI;
int: NrT;

array[1..NrT] of set of 1..NrI: D;

var set of 1..NrI: Item;
var set of 1..NrT: Trans;

constraint card(Trans) > Freq;
constraint Trans = covers(Item, D);

solve satisfy;

function var set of int: cover(Item, D) =
let {
 var set of int: Trans,
 constraint forall (t in ub(Trans))
 (t in Trans ↔ Item subset D[t])‏
} in Trans;

int: Freq;
int: NrI;
int: NrT;

array[1..NrT] of set of 1..NrI: D;

var set of 1..NrI: Items;
var set of 1..NrT: Trans;

constraint card(Trans) > Freq;
constraint Trans = covers(Items, D);

solve satisfy;

function var set of int: cover(Items, D) =
let {
 var set of int: Trans,
 constraint forall (t in ub(Trans))
 (t in Trans ↔ Items subset D[t])‏
} in Trans;

Given

• I = {1, · · · , NrI}
set of items

• T = {1, · · · , NrT}
set of transactions identifiers

• D = {(t, I)|t � T , I � I}
Dataset

• Items � I and Trans � T

Find Items such that
|covers(Items,D)| > freq

where covers(Items,D) =
{t � T |(t, I) � D and Items � I}

Frequent Itemset Mining
int: Freq;
int: NrI;
int: NrT;

array[1..NrT] of set of 1..NrI: D;

var set of 1..NrI: Itemset;
var set of 1..NrT: Transset;

constraint card(Transset) > Freq;
constraint Transset = covers(Itemset, D);

solve satisfy;

function var set of int: cover(Itemset, D) =
let {
 var set of int: Trans,
 constraint forall (t in ub(Trans))
 (t in Trans ↔ Itemset subset D[t])‏
} in Trans;

math like notation

user defined functions and
constraints

solver independent
(standardized)

efficiently solvable

int: Freq;
int: NrI;
int: NrT;

array[1..NrT] of set of 1..NrI: D;

var set of 1..NrI: Items;
var set of 1..NrT: Trans;

constraint card(Trans) > Freq;
constraint Trans = covers(Items, D);

solve satisfy;

function var set of int: cover(Items, D) =
let {
 var set of int: Trans,
 constraint forall (t in ub(Trans))
 (t in Trans ↔ Items subset D[t])‏
} in Trans;

Closed Itemset Mining
int: Freq;
int: NrI;
int: NrT;

array[1..NrT] of set of 1..NrI: D;

var set of 1..NrI: Items;
var set of 1..NrT: Trans;

constraint card(Trans) > Freq;
constraint Trans = covers(Items, D);
constraint Items = cover_inv(Trans, D);
solve satisfy;

function var set of int: cover(Items, D) =
let {
 var set of int: Trans,
 constraint forall (t in ub(Trans))

(t in Trans ↔ Items subset D[t])‏
} in Trans;

function var set of int: cover_inv(Trans,D)=
 let {
 var set of int: Items,
 constraint forall (i in ub(Items))

(i in Items ↔ Trans subset D’[i])‏
} in Items;

* exact coverage :
t in Trans <-> Items subset D[t]

* freq:
i in Items -> card(Trans intersect D'[i]) >= Freq

* maximal:
i in Items <-> card(Trans intersect D'[i]) >= Freq

* closed:
i in Items <-> Trans subset D'[i]

* delta-closed:
i in Items <-> card(Trans intersect D'[i]) <= Delta*card(Trans)

Further Constraints

easy to model

TASK

Output

DATA

Model

Inpu

 SOLVERs OUTPU

Input

Output

Data = Input

How does it work ?

 Only state WHAT the problem is

model

T
r
a
n
s
l
a
t
e

 MODEL specifies task = constraints
+ optimization criterion

• CP based

• Map to standard Solvers offered by Zinc

• Like Gecode and Comet

• Gecode -- sound and complete

• Comet -- local search ...

• CHALLENGE

• how to encode this efficiently?

 Solver 1

Encoding in Zinc

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0
�

t

Tt � minsup ⇤i : Ii = 1⇥
�

t

TtDti � minsupiff

Text

int: Freq;
int: NrI; int: NrT;
array [1..NrT] of set of int: D;

array [1..NrI] of var bool: Items;
array [1..NrT] of var bool: Trans;

constraint % encode D: every Trans complement has no supported Items
 forall(t in 1..NrT) (
 Trans[t] <-> sum(i in 1..NrI) (Items[i]*(1 - (i in D[t]))) <= 0
);

constraint % frequency: every Item is supported by sufficently many Trans
 forall(i in 1..NrI) (
 Items[i] -> sum(t in 1..NrT) (Trans[t]*(i in D[t])) >= Freq
);

solve satisfy;

Resulting Search Strategy akin to
Zaki’s Eclat [KDD 97]

see
Guns et al AIJ 11

 Solver 2

• Use a Data Mining System as solver

• Results with LCM [Uno et al.] within Zinc

• CHALLENGE

• how to recognize that DM system applies ?

• possibly add post-processing ...

B. Correlated Pattern Mining
= Subgroup Discovery

= Discriminative patterns

Top-k Correlated Pattern Mining
Subgroup Discovery

• D now consists of two datasets, say P and N

• a correlation function �(p,D), e.g., ⇥2

• Th(L, Q,D) = argp�Lmaxk �(p,D)

Modeling perspective

Alternative opt. functions, for example:

with:

int: NrI; int: NrT; int: Freq;
array[1..NrT] of set of int: D;
set of int: pos; set of int: neg;

var set of 1..NrI: Items;
var set of 1..NrT: Trans;

constraint Trans = cover(Items, D);
constraint Items = cover_inv(Trans, D);

solve maximize
 card(Trans intersect pos) – card(Trans intersect neg)

solve maximize chi2(Trans, pos, neg);

function float: chi2(Trans, pos, neg)

accuracy

Correlation function

Projection on PN-space
Nijssen KDID

Monotonicity

freq(S) � freq(S � T) � freq(S �Dom(S))

Traditional pruning/propagation employs upper bound:

remove d from Dom(S) when freq(S) � t and freq(S � {d}) < t

Other propagation – unavoidable item sets also possible – lower bound

freq(S) � freq(S � T) � freq(S �Dom(S)) = a > 0

then a is a lower bound on freq(S), that is freq(S) � a

Solving using CP can be extremely effective

Illustration
Dom({2})=
{2,3,4,5,6}

Illustration

Dom({2})=
{2,3,4,5}

Illustration

Dom({2})=
{2,3,5}

Illustration

Dom({2})=
{}

4-support bound

Nijssen et
al. KDD 09

AIJ 11

2-support bound

Morishita &
Sese

SIGMOD98

1-support bound

Text
Han et al.
ICDM 08

Experiments

900s
timeout

Solving using CP can be extremely effective

C. Pattern Set Mining

Pattern Sets

One is not interested in all solutions to a
pattern mining task, typically post-processing
needed

So, why not apply constraint based mining to
pattern sets directly ? [Zimmermann 09]
[Guns et al, IEEE TKDE 11]

Th(L,Q,D) = {P � L|Q(P,D) = true}

Pattern Sets

Consider a set of itemsets

Can be interpreted as DNF expression

Useful for concept-learning and clustering

{{a, b, c}, {b, d, e}, {c, e, f}}

(a � b � c) ⇥ (b � d � e) ⇥ (c � e � f)

from local to global pattern mining

What are meaningful constraints ?

Th(L,Q,D) = {P � L|Q(P,D) = true}

• local constraints on I ⌅ P such as freq(I,D) ⇤ minsup

• constraints on all pairs of patterns I1, I2 ⌅ P , e.g.
|covers(I1,D) ⌃ covers(I2,D)| ⇥ t

• global constraints freq(P,D) ⇤ t�

• correlation, top-k, ...

Pattern Sets

k-Pattern Set Mining (|P|=k)

int: NrI; int : NrT; int K;
array[1..NrT] of set of int: D;
set of int: pos; set of int: neg;
% pattern set
array[1..K] of var set of 1..NrI: Items;
constraint lexleq(Items); % remove symmetries

% every pattern is closed 'on the positives'
constraint let { Dp = [D[t] | t in pos] } in
 forall (d in 1..K) (
 Items[d] = cover_inv(cover(Items[d], Dp), Dp));

% accuracy of pattern set
solve maximize
 let { Trans = union(d in 1..K) (cover(Items[d], D)) } in
 card(Trans intersect pos) - card(Trans intersect neg);

Generality
Can model instantiations/versions of:

• Concept learning (k-term DNF learning)

• Conceptual clustering

• k-Tiling

• Redescription mining

• ...

Pattern Mining

• which patterns are frequent ?

• which patterns are significant w.r.t. classes ? all patterns ? k-best
patterns ?

• which pattern set is the best concept-description for the actives ?
for the inactives ?

C. pattern set mining

A. frequent pattern

Th(L, Q,D) = {p � L|Q(p,D) = true}
B. Correlated pattern mining = subgroup discovery

Th(L, Q,D) = argp�Lmaxk �(p,D)

Th(L,Q,D) = {P � L|Q(P,D) = true}

We h
ave

 been
 using o

ff-th
e-s

helf
CP SO

LVERS fo
r th

ese

task
s, c

f. G
uns, N

ijss
en, De R

aed
t [A

AAI 10, AIJ 1
1]

One so
lver

 for al
l of th

ese

Easy
 to

 co
mbine d

iffe
ren

t co
nstra

ints

Now lookin
g at

 modelin
g le

vel

KDD 08

KDD 09

IEEE TKDE 11

http://dtai.cs.kuleuven.be/CP4IM

Perspective

All this is fine but...

what about

• efficiency and scalability ?

• other types of data and patterns
(sequences, trees, graphs ...) ? relational

• other DM/ML tasks ? probabilistic,
statistical learning, kernels / distances ...

Efficiency / Scalability
• Trade-off efficiency / generality

• Current experiments (with ONE solver)

• Often a constant factor slower

• Some cases much faster (correlated)

• Avoid with specialized solvers [Nijssen and Guns, ECMLPKDD 10]

• Feature of Declarative Modeling

• many solvers available (complete, approximate, ...)

• one can even work with portfolio’s (Satzilla)

• Challenge is to build efficient solvers and translations

The new role of DM/ML scientists if we succeed ?

Task / Representation

Rich representations ~ relational, graphs ?

Task level ~ unsupervised, regression, clustering,
probabilistic... ?

Let us have a look at Statistical Relational Learning

Markov Logic [Domingos et al.]

ProbLog [De Raedt et al.]

...

kLog [Frasconi et al.]

probabilistic

kernel based

kLOG [Frasconi, Costa, DR, De Grave 12]

Input
Database

Graphicalize

Graphs

Feature
Generation

Graph
Kernel

Feature Vectors
Kernel Matrix Classifier

Statistical
Learner

Surgical excision of CNV may allow stabilisation or improvement of vision .

A biomedical NLP task [Verbeke et al. EMLNP 12]

E/R-MODEL

w

depHead

next

wordID

depRel

lemma

POS-tag

chunktag

wordString

NEGenia

NEUMLS

sentence hasWord

class

sentID

hasCategory

nextS

[Verbeke et al. EMNLP 12]

Relational
sentence(s4,4).
hasCategory(s4,'background').
w(w4_1,'Surgical','Surgical',b-np,jj,'O','O').
hasWord(s4,w4_1).
dh(w4_1,w4_2,nmod).
nextW(w4_2,w4_1).
w(w4_2,'excision','excision',i-np,nn,'O','O').
hasWord(s4,w4_2).
dh(w4_2,w4_5,sub).
nextW(w4_3,w4_2).
w(w4_3,'of','of',b-pp,in,'O','O').
hasWord(s4,w4_3).
dh(w4_3,w4_2,nmod).
nextW(w4_4,w4_3).
w(w4_4,'CNV','CNV',b-np,nn,'B-protein','O').
hasWord(s4,w4_4).
dh(w4_4,w4_3,pmod).
nextW(w4_5,w4_4).
w(w4_5,'may','may',b-vp,md,'O','O').
hasWord(s4,w4_5).
dh(w4_5,w4_0,root).
nextW(w4_6,w4_5).

...

lemmaRoot(S,L) :-
 hasWord(S, I), w(I,_,L,_,_,_,_), dh(I,_,root).

isHeaderSentence(S):-
 hasHeaderWord(S,_).

hasSectionHeader(S,X):-
 nextS(S1,S),
 hasHeaderWord(S1,X),!.
hasSectionHeader(S,X):-
 nextS(S1,S),
 \+isHeaderSentence(S),
 once(hasSectionHeader(S1,X)),!.

relational database ... Prolog

s0

s1

s2

s3

next

next

next

s4

s5

s6

s7

s8

s9

title

title

Surgical excision of CNV may allow stabilisation or improvement of vision.

background

next next

dh(nmod)

dh(sub)

dh(pmod)

hasWord

Graphicalization

kLOG

Input
Database

Graphicalize

Graphs

Feature
Generation

Graph
Kernel

Feature Vectors
Kernel Matrix Classifier

Statistical
Learner

...
...

...

Transforms relational
representations into graph

based ones and derives
features from a grounded E/R
diagram using graph kernels

w(Surgical,Surgical,jj,O,O)
w4_1

w(excision,excision,nn,O,O)
w4_2

w(of,of,in,O,O)
w4_3

w(CNV,CNV,nn,B-protein,O)
w4_4

w(may,may,md,O,O)
w4_5

w(allow,allow,vb,O,O)
w4_6

w(stabilisation,stabilisation,nn,O,O)
w4_7

w(or,or,cc,O,O)
w4_8

w(improvement,improvement,nn,O,O)
w4_9

w(of,of,in,O,O)
w4_10

w(vision,vision,nn,O,O)
w4_11

w(escpoint,escpoint,o,escpoint,O,O)
w4_12

dh(nmod)

nextW

dh(sub)

nextW

dh(nmod)

nextWdh(pmod)

nextW dh(root)

nextW

dh(vc)

nextW

dh(nmod)
nextW

dh(nmod)

nextW

dh(obj)

nextW

dh(nmod)

nextW
dh(pmod)

nextW

dh(p)

sentence[4]
s4

word(may)

hasCategory(background)

radius = 1

w(Surgical,Surgical,jj,O,O)
w4_1

w(excision,excision,nn,O,O)
w4_2

w(of,of,in,O,O)
w4_3

w(CNV,CNV,nn,B-protein,O)
w4_4

w(may,may,md,O,O)
w4_5

w(allow,allow,vb,O,O)
w4_6

w(stabilisation,stabilisation,nn,O,O)
w4_7

w(or,or,cc,O,O)
w4_8

w(improvement,improvement,nn,O,O)
w4_9

w(of,of,in,O,O)
w4_10

w(vision,vision,nn,O,O)
w4_11

w(escpoint,escpoint,o,escpoint,O,O)
w4_12

dh(nmod)

nextW

dh(sub)

nextW

dh(nmod)

nextW

dh(pmod)

nextW
dh(root)

nextWdh(vc)

nextW

dh(nmod)
nextW

dh(nmod)

nextW

dh(obj)

nextW

dh(nmod)

nextW
dh(pmod)

nextW

dh(p)

sentence[4]
s4

word(may)

hasCategory(background)

distance = 2

...

Extended feature space
kernel computation ... NSPDK [Costa et al ICML 10]

Propositional learning setting

kLOG

Input
Database

Graphicalize

Graphs

Feature
Generation

Graph
Kernel

Feature Vectors
Kernel Matrix Classifier

Statistical
Learner

kLOG

Input
Database

Graphicalize

Graphs

Feature
Generation

Graph
Kernel

Feature Vectors
Kernel Matrix Classifier

Statistical
Learner

Task
 Task MODEL specifies task =

constraints + optimization criterion

Input
Database

Graphicalize

Graphs

Feature
Generation

Graph
Kernel

Feature Vectors
Kernel Matrix Classifier

Statistical
Learner

Task

CHALLENGE
Define the KERNEL declaratively

Define the LOSS function ... and SOLVE

As for many other ML/DM systems ?

kLOG

What if we succeed ?

We typically ...

1. Formalize learning / mining task

2. Design algorithm / technique to use

3. Implement the algorithm

4. Use and distribute the software

Specialized
AlgorithmInput OutputTASK

Our work today ...

hard

The user/application perspective...

1. Formalize learning / mining task

2. Model the problem

3. Select the right solvers

4. Use and distribute the software

Specialized
AlgorithmInputTASK

Our work tomorrow ...

easy

More opportunities for re-use ...

A de facto standard language for DM / ML as Zinc ?

The scientist’s perspective...

Designing modeling languages

Studying task properties

Studying translations

Producing and adapting solvers

InputTASK

Our work tomorrow ...

more fun

Larger impact of results in larger framework ?

TASK

Output

DATA

Model

Inpu

 SOLVERs OUTPU

Input

Output

Conclusions
Declarative modeling languages for ML / DM has high
potential

T
r
a
n
s
l
a
t
e

Embedding in programming languages may provide an
answer to Mitchell’s question

Conclusions
All the necessary ingredients are available to realize declarative
modeling languages for ML/DM

• machine learning & data mining

• declarative modeling and constraint programming

• programming language technology

• should work for unsupervised, clustering ... as well

So let’s do it ...

Questions ?

