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Outline 



 Unstable 

 Nonlinear 

 Complicated dynamics 

 Air flow 

 Coupling 

 Blade dynamics 

 Noisy estimates of position, orientation, velocity, 
angular rate (and perhaps blade and engine speed) 

 

Challenges in helicopter control 



 Just a few examples:  

 Bagnell & Schneider, 2001;  

 LaCivita, Papageorgiou, Messner & Kanade, 2002; 

 Ng, Kim, Jordan & Sastry 2004a (2001); Ng et al., 2004b; 

 Roberts, Corke & Buskey, 2003;  

 Saripalli, Montgomery & Sukhatme, 2003;  

 Shim, Chung, Kim & Sastry, 2003;  

 Doherty et al., 2004;  

 Gavrilets, Martinos, Mettler and Feron, 2002. 

 Varying control techniques: inner/outer loop PID with 
hand or automatic tuning, H1, LQR, … 

 

 

Many success stories in hover and 
forward flight regime 



Example result 

[Ng, Kim, Jordan, Sastry, 2004] 



[Ng, Coates, Tse, et al, 2004] 



One of our first attempts at autonomous flips 
[using similar methods to what worked for ihover] 

Target trajectory: meticulously hand-engineered 
Model: from (commonly used) frequency sweeps data 



 Gavrilets, Martinos, Mettler and Feron, 2002 

 3 maneuvers: split-S, snap axial roll, stall-turn 

 

 This presentation 

 Wide range of aggressive maneuvers 

 Maneuvers in rapid succession 

 Starting point: human expert pilots 

 

Aggressive, non-stationary regimes 



 Hover / stationary flight regimes: 

 Restrict attention to specific flight regime 

 Extensive data collection = collect control inputs, position, 
orientation, velocity, angular rate 

 Build model + model-based controller 

 Successful autonomous flight. 

 Aggressive flight maneuvers --- additional challenges: 

 Task description: What is the target trajectory? 

 Dynamics model: How to build a dynamics model sufficiently 
accurate to enable feedback control through non-stationary 
flight regimes? 

 

 

Stationary vs. aggressive flight 



 Learning a target trajectory 

 Learning a dynamics model 

 Autonomous flight results 

 Aerobatics 

 Auto-rotation landings 

Learning to perform dynamic 
maneuvers: outline 



 Difficult to specify by hand: 

 Required format: position + orientation over time  

 Needs to satisfy helicopter dynamics 

 

 Our solution: 

 Collect demonstrations of desired maneuvers 

 Challenge: extract a clean target trajectory from 
many suboptimal/noisy demonstrations 

Target trajectory 

Abbeel, Coates, Ng, IJRR 2010 



Expert demonstrations:  Airshow 



Learning Trajectory 

• HMM-like generative model 

– Dynamics model used as HMM transition model 

– Demos are observations of hidden trajectory 

• Problem: how do we align observations to hidden 
trajectory? 

Demo 1 

Demo 2 

Hidden 

Abbeel, Coates, Ng, IJRR 2010 



 Dynamic Time Warping (Needleman&Wunsch 
1970, Sakoe&Chiba, 1978) 

 Extended Kalman filter / smoother 

Demo 1 

Demo 2 

Hidden 

Learning Trajectory 

Abbeel, Coates, Ng, IJRR 2010 



Results:  Time-aligned demonstrations 

  White helicopter is inferred “intended” trajectory. 



Results:  Loops 

  Even without prior knowledge, the inferred 
trajectory is much closer to an ideal loop. 

Abbeel, Coates, Ng, IJRR 2010 



 Learning a target trajectory 

 Learning a dynamics model 

 Autonomous flight results 

 Aerobatics 

 Auto-Rotation Landings 

Learning to perform dynamic 
maneuvers: outline 



Baseline dynamics model 

Collect sweeps data to estimate model parameters 

Abbeel, Ganapathi, Ng, NIPS 2006 



Empirical evaluation of standard 
modeling approach 

3G error! 

Abbeel, Coates, Ng, IJRR 2010 



Key observation 

  Errors observed in the “baseline” model are 
clearly consistent after aligning demonstrations. 

Abbeel, Coates, Ng, IJRR 2010 



Key observation 

  Errors observed in the “baseline” model are 
clearly consistent after aligning demonstrations. 

Abbeel, Coates, Ng, IJRR 2010 



Key observation 

 If we fly the same trajectory repeatedly, errors are 
consistent over time once we align the data. 

 

 There are many unmodeled variables that we can’t 
expect our model to capture accurately. 

 

 Air (!), actuator delays, etc. 

 

 If we fly the same trajectory repeatedly, the hidden 
variables tend to be the same each time. 

 

~ muscle memory for human pilots 

Abbeel, Coates, Ng, IJRR 2010 



Trajectory-specific local models 

 Learn locally-weighted model from aligned 
demonstration data 

 

 Since data is aligned in time, we can weight by time to 
exploit repeatability of unmodeled variables. 

 

 For model at time t:  W(t’) = exp(- (t – t’)2 /2 ) 
 

 Obtain a model for each time t into the maneuver by 
running weighted regression for each time t 

 

Abbeel, Coates, Ng, IJRR 2010 



 Learning a target trajectory 

 Learning a dynamics model 

 Autonomous flight results 

 Aerobatics 

 Auto-Rotation Landings 

Learning to perform dynamic 
maneuvers: outline 

Abbeel, Coates, Ng, IJRR 2010 



Experimental Setup 

Microstrain 3DM-GX1 @333Hz 
RPM sensor @20-30Hz 

Sonar  

Offboard Cameras 1280x960@20Hz Extended Kalman Filter 
RHDDP controller 

Controls  
@ 20Hz 

“Position” 

3-axis 
magnetometer,  
accelerometer,  

gyroscope  
(“Orientation”) 

Abbeel, Coates, Quigley, Ng, NIPS 2007 



1. Collect sweeps to build a baseline dynamics model 

2. Our expert pilot demonstrates the airshow several times. 

 

3. Learn a target trajectory. 

4. Learn a dynamics model. 

5. Find the optimal control policy for learned target and 
dynamics model. 

6. Autonomously fly the airshow 

 

7. Learn an improved dynamics model.  Go back to step 4. 

 Learn to fly new maneuvers in < 1hour. 

Experimental procedure  

Abbeel, Coates, Ng, IJRR 2010 



Results:  Autonomous airshow 



Results:  Flight accuracy 



 Apprenticeship learning 

 Learn to perform task from expert demonstrations 

 Enabled by far most advanced helicopter aerobatics 

 

 How about: 

Thus far 



Surgical knot tie 



Surgical knot tie 

van den Berg, Miller, Duckworth, Humphrey, Wan, Fu, Goldberg, Abbeel, ICRA 2010 



 Open loop 

 If careful about initial conditions 

 50% success rate 

 

Surgical knot tie 



 The problem 

 Human demonstrated knot-tie in this rope 

 

 

 

 Robot has to tie a knot in this rope 

Generalizing Trajectories 



Verb demonstration: --- trajectory 

 

 

 

How to perform verb here? 

Train situation: 

 

 

 

Test situation: 

Cartoon Problem Setting 

? 
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Test situation: 

Samples of 
f : R2  R2 

? 

Cartoon Problem Setting 
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Verb demonstration: --- trajectory 

 

 

 

How to perform verb here? 

Train situation: 

 

 

 

Test situation: 

Samples of 
f : R2  R2 

Cartoon Problem Setting 



Learning f : R3  R3 from samples 

 Observations 

 Translations, rotations and scaling are FREE 

 Can be solved efficiently manipulating matrices of 
size of number of examples 



 Solution has form: 

Learning f : R3  R3 from samples 

Wahba, Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics. 1990. 
Evgeniou, Pontil, Poggio, Regularization Networks and Support Vector Machines. Advances in Computational Mathematics. 2000. 
Hastie, Tibshirani, Friedman, Elements of Statistical Learning, Chapter 5. 2008. 



Experiments: Plate Pick-Up 



Experiments: Scooping 



Experiment: Knot-Tie 



Autonomous tying of a knot for a previously 
unseen situation 

Schulman & Abbeel, TBD 2012 

http://www.youtube.com/watch?v=fJcLVE4Tl8k 
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Problem Structure 

Dynamics 

Model 

   Reward 

Function R 

Reinforcement 

Learning / 

Optimal Control 

Controller/

Policy p 

Prescribes action to 
take for each state: 

typically very complex 
Often fairly succinct 



 1964, Kalman posed the inverse optimal control problem 
and solved it in the 1D input case 

 1994, Boyd+al.: a linear matrix inequality (LMI) 
characterization for the general linear quadratic setting  

 2000, Ng and Russell: first MDP formulation, reward 
function ambiguity pointed out and a few solutions 
suggested 

 2004, Abbeel and Ng: inverse RL for apprenticeship 
learning---reward feature matching 

 

Inverse RL History 



 Simulated highway driving 

 Abbeel and Ng, ICML 2004, 

 Syed and Schapire, NIPS 2007 

 

 Aerial imagery based navigation  

 Ratliff, Bagnell and Zinkevich, ICML 2006 

 

 Parking lot navigation 

 Abbeel, Dolgov, Ng and Thrun, IROS 2008 

 

 Urban navigation 

 Ziebart, Maas, Bagnell and Dey, AAAI 2008 

 

Inverse RL Examples 



 Human path planning 

 Mombaur, Truong and Laumond, AURO 2009 

 

 Human goal inference 

 Baker, Saxe and Tenenbaum, Cognition 2009 

 

 Quadruped locomotion 

 Ratliff, Bradley, Bagnell and Chestnutt, NIPS 2007 

 Kolter, Abbeel and Ng, NIPS 2008 

 

Inverse RL Examples (ctd) 



 Reward function trades off 25 features. 

 

 

Quadruped 

Hierarchical max margin [Kolter, Abbeel & Ng, 2008] 



 Demonstrate path across the “training terrain” 

 

 

 Run our apprenticeship learning algorithm to find the 
reward function 

 Receive “testing terrain”---height map.  

 

 

 Find the optimal policy with respect to the learned 
reward function for crossing the testing terrain. 

 

Experimental setup 

Hierarchical max margin [Kolter, Abbeel & Ng, 2008] 



Without learning 



With learned reward function 



 Existing exploration methods performance: 

 

 

 

 

 Safe exploration: 

Safe exploration 

Moldovan & Abbeel, ICML 2012 



Exploration levels in this video (still) human guided 

Safe exploration --- towards: 



 Constraint is NP-hard to work with per distribution over all 
possible worlds 

 We have derived an efficient (conservative) approximation 

Safe exploration – Key idea 

find policy that 
optimizes expected 
exploration bonus 

while if recalled at any 
given time, possible to 
return “home” with 
high probability 

Moldovan & Abbeel, ICML 2012 



Perception and clothes manipulation 

Maitin-Shepard, Cusumano-Towner, Lei & Abbeel, ICRA 2010; Cusumano-Towner, Singh, Miller & Abbeel, ICRA 
2011; Miller, van den Berg, Fritz, Darrell, Goldberg & Abbeel, IJRR 2011; Wang, Miller, Fritz, Darrell & Abbeel, 
ICRA 2011 
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Conclusion 





Thank you. 


