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Networks are everywhere! 

 

 

Human Disease Network 
[Barabasi 2007] 

Gene Regulatory Network 
[Decourty 2008] 

Facebook Network [2010] 

The Internet [2005] 
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Dynamical Processes over networks 
are also everywhere! 
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Why do we care? 

• Social collaboration 

• Information Diffusion 

• Viral Marketing 

• Epidemiology and Public Health 

• Cyber Security 

• Human mobility  

• Games and Virtual Worlds  

• Ecology 

........ 

 

Prakash and Faloutsos 2012 4 



Why do we care? (1: Epidemiology) 

• Dynamical Processes over networks 
[AJPH 2007] 

CDC data: Visualization of 
the first 35 tuberculosis 
(TB) patients and their 
1039 contacts  

Diseases over contact networks 
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Why do we care? (1: Epidemiology) 

• Dynamical Processes over networks 

 
• Each circle is a hospital 
• ~3000 hospitals 
• More than 30,000 patients 
transferred   

[US-MEDICARE 
NETWORK 2005] 
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Problem: Given k units of 
disinfectant, whom to immunize? 
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Why do we care? (1: Epidemiology) 

CURRENT PRACTICE OUR METHOD 

~6x 
fewer! 

[US-MEDICARE 
NETWORK 2005] 
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Why do we care? (2: Online 
Diffusion) 
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> 800m users, ~$1B 
revenue [WSJ 2010] 

 ~100m active users 

> 50m users 

Prakash and Faloutsos 2012 



Why do we care? (2: Online 
Diffusion)  

• Dynamical Processes over networks 

Celebrity 

Buy Versace™! 

Followers 
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Social Media Marketing 
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Why do we care?  
(3: To change the world?) 

• Dynamical Processes over networks 

Social networks and Collaborative Action 
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High Impact – Multiple Settings 

Q. How to squash rumors faster? 

 

Q. How do opinions spread? 

 

 

Q. How to market better? 
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High Impact – Multiple Settings 

Q. How to squash rumors faster? 

 

Q. How do opinions spread? 

 

 

Q. How to market better? 
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epidemic out-breaks 

products/viruses 

transmit s/w patches 
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In this tutorial 
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ANALYSIS 
Understanding 

Given propagation models: 
 
Q1: What is the epidemic  
       threshold? 
Q2: How do viruses  
       compete?  
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In this tutorial 
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Q3: How to immunize and   
       control out-breaks    
       better? 
Q4: How to detect        
       outbreaks? 
Q5: Who are the culprits? 
  

POLICY/ 
ACTION 
Managing 
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In this tutorial 

18 

DATA 
Large real-world 

networks & processes 

Q6: How do cascades look  
       like? 
Q7: How does activity  
       evolve over time? 
Q8: How does external  
       influence act? 
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Outline 

• Motivation 

• Part 1: Understanding Epidemics (Theory) 

• Part 2: Policy and Action (Algorithms) 

• Part 3: Learning Models (Empirical Studies) 

• Conclusion 
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Part 1: Theory 

• Q1: What is the epidemic threshold? 

• Q2: How do viruses compete?  
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A fundamental question 
Strong 
Virus 

Epidemic? 
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example (static graph) 

Weak Virus 

Epidemic? 
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Problem Statement 

 

 

 

 

 

Find, a condition under which 

–  virus will die out exponentially quickly 

–  regardless of initial infection condition 

 

above (epidemic) 

below (extinction) 

# Infected  

time 
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Separate the 
regimes? 
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Threshold (static version) 

Problem Statement 

• Given:  

–Graph G, and  

–Virus specs (attack prob. etc.) 

• Find:  

–A condition for virus extinction/invasion 
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Threshold: Why important? 

• Accelerating simulations 

• Forecasting (‘What-if’ scenarios) 

• Design of contagion and/or topology 

• A great handle to manipulate the spreading 

– Immunization 

– Maximize collaboration 

….. 
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Part 1: Theory 

• Q1: What is the epidemic threshold? 

– Background 

– Result and Intuition (Static Graphs) 

– Proof Ideas (Static Graphs) 

– Bonus: Dynamic Graphs 

• Q2: How do viruses compete?  
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“SIR” model: life immunity 
(mumps) 

• Each node in the graph is in one of three states 

– Susceptible (i.e. healthy) 

– Infected 

– Removed (i.e. can’t get infected again) 
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Prob. δ 

t = 1 t = 2 t = 3 
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Terminology: continued 

• Other virus propagation models (“VPM”) 

– SIS : susceptible-infected-susceptible, flu-like 

– SIRS : temporary immunity, like pertussis 

– SEIR : mumps-like, with virus incubation  

                (E = Exposed) 

….…………. 

• Underlying contact-network – ‘who-can-infect-
whom’ 
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All are about either: 
 
 

• Structured 
topologies (cliques, 
block-diagonals, 
hierarchies, random)  

 
• Specific virus 
propagation models 

 
• Static graphs 
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Part 1: Theory 

• Q1: What is the epidemic threshold? 

– Background 

– Result and Intuition (Static Graphs) 

– Proof Ideas (Static Graphs) 

– Bonus: Dynamic Graphs 

• Q2: How do viruses compete?  

30 Prakash and Faloutsos 2012 



How should the answer look like? 

• Answer should depend on: 

– Graph 

– Virus Propagation Model (VPM) 

 

• But how?? 

– Graph – average degree? max. degree? diameter? 

– VPM – which parameters?  

– How to combine – linear? quadratic? exponential? 
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?diameterdavg   ?/)( max

22 ddd avgavg   ….. 
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Static Graphs: Our Main Result 

• Informally, 

 

 

 

 
•        
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For, 
 any arbitrary topology (adjacency  
   matrix A) 
 any virus propagation model (VPM) in  
   standard literature 
 
the epidemic threshold depends only  
1. on the λ, first eigenvalue of A, and  
2. some constant       , determined by 

the virus propagation model 

                                           λ 

VPMC

                                             

 No 
epidemic if                                                                                                              
λ *         < 1 VPMCVPMC

In Prakash+ ICDM 2011   Prakash and Faloutsos 2012 



Our thresholds for some models 

• s = effective strength 

• s < 1 : below threshold 

Models Effective Strength 
(s) 

Threshold (tipping 
point) 

SIS, SIR, SIRS, SEIR 
s = λ .    

  
 
 

                s = 1  
SIV, SEIV s = λ .    

                    (H.I.V.) s = λ .    
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2121 VVISI
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Our result: Intuition for λ 

“Official” definition: 
• Let A be the adjacency 

matrix. Then λ is the root 
with the largest magnitude of 
the characteristic polynomial 
of A [det(A – xI)]. 

 

• Doesn’t give much intuition! 

 

“Un-official” Intuition  
• λ ~ # paths in the graph 

34 

u 
u ≈     . 

k
kA

      (i, j) = # of paths i  j 
of length k 

kA
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N nodes 

Largest Eigenvalue (λ) 

λ ≈ 2 λ =   N λ = N-1 
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N = 1000 

λ ≈ 2 λ= 31.67 λ= 999 

better connectivity         higher λ  
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Examples: Simulations – SIR 
(mumps)  

 

 

  
(a) Infection profile                 (b) “Take-off” plot 

PORTLAND graph 
31 million links, 6 million nodes 
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Effective Strength Time ticks 
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Examples: Simulations – SIRS 
(pertusis)  

 

Fr
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o
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 o

f 
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n

s 
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ri
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t 

Effective Strength Time ticks  

  
(a) Infection profile                 (b) “Take-off” plot 

PORTLAND graph 
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Part 1: Theory 

• Q1: What is the epidemic threshold? 

– Background 

– Result and Intuition (Static Graphs) 

– Proof Ideas (Static Graphs) 

– Bonus: Dynamic Graphs 

• Q2: How do viruses compete?  
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λ *           < 1 VPMC

Graph-based 

Model-based 

39 

Proof Sketch 

General VPM 
structure 

Topology and 
stability 
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Models and more models 

Model Used for 

SIR Mumps 

SIS Flu 

SIRS Pertussis 

SEIR Chicken-pox 

…….. 

SICR Tuberculosis 

MSIR Measles 

SIV Sensor Stability 

 
 H.I.V. 

………. 

2121 VVISI
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Ingredient 1: Our generalized model 
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Endogenous 
Transitions 

Susceptible Infected 

Vigilant 

Exogenous 
Transitions 

Endogenous 
Transitions 

Endogenous 
Transitions 

Susceptible Infected 

Vigilant 
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Special case: SIR 

Susceptible Infected 

Vigilant 
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Special case: H.I.V.  

2121 VVISI

Multiple Infectious, 
Vigilant states 
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“Terminal” 

“Non-terminal” 
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Ingredient 2: NLDS+Stability 

• View as a NLDS 

– discrete time  

– non-linear dynamical system (NLDS) 

 

 

 
Probability vector 
Specifies the state of 
the system at time t 
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size  

mN x 1 

. 

. 

. 

. 

. 

size N (number of 
nodes in the graph) 

. 

. 

. 

S 

I 

V 

Prakash and Faloutsos 2012 



Ingredient 2: NLDS + Stability 

• View as a NLDS 

– discrete time  

– non-linear dynamical system (NLDS) 

 

 

 
Non-linear function 
Explicitly gives the 
evolution of system 
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size  

mN x 1 

. 

. 

. 

. 

. 

. 

. 
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Ingredient 2: NLDS + Stability 

• View as a NLDS 

– discrete time  

– non-linear dynamical system (NLDS) 

 

• Threshold  Stability of NLDS 
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= probability that node  
    i is not attacked by    
    any of its infectious  
    neighbors 

Special case: SIR 

size  
3N x 1 

I 

R 

S 

I 

R 

S 
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Special case: SIR 

size  
3N x 1 

I 

R 

S 

NLDS 

I 

R 

S 
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Fixed Point 

1 
1 
. 

0 
0 
. 

0 
0 
. 

State when no node is 
infected 
 
Q: Is it stable?  
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Stability for SIR 

Stable 
under threshold 

Unstable 
above threshold 
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λ *           < 1 VPMC

Graph-based 

Model-based 

51 

General VPM 
structure 

Topology and 
stability 

See paper for 
full proof 
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Part 1: Theory 

• Q1: What is the epidemic threshold? 

– Background 

– Result and Intuition (Static Graphs) 

– Proof Ideas (Static Graphs) 

– Bonus: Dynamic Graphs 

• Q2: How do viruses compete?  
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Dynamic Graphs: Epidemic? 

adjacency 
matrix 

8 

8 

Alternating behaviors DAY  
(e.g., work) 
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adjacency 
matrix 

8 

8 

Dynamic Graphs: Epidemic? 

Alternating behaviors NIGHT  
(e.g., home) 
 

54 Prakash and Faloutsos 2012 



• SIS model 
– recovery rate δ 

– infection rate β 

 

• Set of T arbitrary graphs 

 

 

       

 

 

 

Model Description 

day 

N 

N night 

N 

N , weekend….. 

Infected 

Healthy 

X N1 

N3 

N2 

Prob. β 

Prob. δ 
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• Informally, NO  epidemic  if 

                     

       eig (S) =         < 1 
 

 

 

 

Our result: Dynamic Graphs 
Threshold 

Single number!  
Largest eigenvalue of  
The system matrix  S 

In Prakash+, ECML-PKDD 2010 56 

S  = 
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Synthetic MIT Reality 
Mining 

log(fraction infected) 

Time 

BELOW 

AT 

ABOVE ABOVE 

AT 

BELOW  

Infection-profile 
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“Take-off” plots 
Footprint     (# 
infected @ 
“steady state”) 

Our 
threshold 

Our 
threshold 

(log scale) 

NO EPIDEMIC 

EPIDEMIC 

EPIDEMIC 

NO EPIDEMIC 

Synthetic MIT Reality 
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Part 1: Theory 

• Q1: What is the epidemic threshold? 

• Q2: What happens when viruses compete? 

– Mutually-exclusive viruses 

– Interacting viruses 
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Competing Contagions 

iPhone v Android 

Blu-ray v HD-DVD 

Biological common flu/avian flu, pneumococcal inf etc 60 

Attack Retreat v 
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A simple model 

• Modified flu-like  

• Mutual Immunity (“pick one of the two”) 

• Susceptible-Infected1-Infected2-Susceptible 

61 

Virus 1 Virus 2 
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Question: What happens in the end? 
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green: virus 1 
red: virus 2 

Footprint @ Steady State 
      Footprint @ Steady State 

=  ? 

Number of 
Infections 

ASSUME:  
Virus 1 is stronger than Virus 2 Prakash and Faloutsos 2012 



Question: What happens in the end? 
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green: virus 1 
red: virus 2 

Number of 
Infections 

ASSUME:  
Virus 1 is stronger than Virus 2 

Strength  
Strength 

?? 
=    

Strength  
Strength 

2 

Footprint @ Steady State 
       Footprint @ Steady State 
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Question: What happens in the end? 
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green: virus 1 
red: virus 2 

Number of 
Infections 

ASSUME:  
Virus 1 is stronger than Virus 2 

Strength  
Strength 

?? 
=    

Strength  
Strength 

2 

Footprint @ Steady State 
       Footprint @ Steady State 
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Answer: Winner-Takes-All 
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green: virus 1 
red: virus 2 

ASSUME:  
Virus 1 is stronger than Virus 2 

Number of 
Infections 
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Our Result: Winner-Takes-All 

66 In Prakash+ WWW 2012 

Given our model, and any graph, the 
weaker virus always dies-out completely 

1. The stronger survives only if it is above threshold  
2. Virus 1 is stronger than Virus 2, if: 
                   strength(Virus 1) > strength(Virus 2) 
3. Strength(Virus) = λ β / δ   same as before! 

Prakash and Faloutsos 2012 



Real Examples 
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Reddit v Digg Blu-Ray v HD-DVD 

[Google Search Trends data] 
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Part 1: Theory 

• Q1: What is the epidemic threshold? 

• Q2: What happens when viruses compete? 

– Mutually-exclusive viruses 

– Interacting viruses 
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A simple model: SI1|2S 
• Modified flu-like (SIS)  

• Susceptible-Infected1 or 2-Susceptible 

• Interaction Factor ε 

– Full Mutual Immunity: ε = 0 

– Partial Mutual Immunity (competition): ε < 0 

– Cooperation: ε > 0 

69 

Virus 1 Virus 2 

& 
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Question: What happens in the end? 
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ASSUME:  
Virus 1 is stronger than Virus 2 

ε = 0 

Winner takes all 
ε = 1 

Co-exist independently 
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ε = 2 

Viruses cooperate 

What about for 0 < ε <1? 
Is there a point at which both viruses can 

co-exist? 
Prakash and Faloutsos 2012 
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Answer: Yes!  
There is a phase transition 
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ASSUME:  
Virus 1 is stronger than Virus 2 Prakash and Faloutsos 2012 



Answer: Yes!  
There is a phase transition 
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ASSUME:  
Virus 1 is stronger than Virus 2 

 0

 0.2

 0.4

 0.6

 0.8

 20  40  60  80  100  120  140
F

o
o
tp

ri
n

t 
(F

ra
c
ti
o

n
 o

f 
P

o
p
u

la
ti
o

n
)

Time

k1
k2

i1,2

Prakash and Faloutsos 2012 



Answer: Yes!  
There is a phase transition 
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ASSUME:  
Virus 1 is stronger than Virus 2 
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1. The stronger survives only if it is above threshold  
2. Virus 1 is stronger than Virus 2, if: 
                   strength(Virus 1) > strength(Virus 2) 
3. Strength(Virus) σ = N β / δ 

Our Result: Viruses can Co-exist 

74 

Given our model and a fully connected graph, 
there exists an εcritical such that for ε ≥ εcritical, 

there is a fixed point where both viruses 
survive. 

In Beutel+ KDD 2012 Prakash and Faloutsos 2012 



Real Examples 
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Hulu v Blockbuster 

[Google Search Trends data] 
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Real Examples 
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Chrome v Firefox 

[Google Search Trends data] 
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Outline 

• Motivation 

• Part 1: Understanding Epidemics (Theory) 

• Part 2: Policy and Action (Algorithms) 

• Part 3: Learning Models (Empirical Studies) 

• Conclusion 
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Part 2: Algorithms 

• Q3: Whom to immunize? 

• Q4: How to detect outbreaks? 

• Q5: Who are the culprits? 
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? 

? 

Given: a graph A, virus prop. model and budget k;  

Find: k ‘best’ nodes for immunization (removal). 

k = 2 

? 
? 

Full Static Immunization 
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Part 2: Algorithms 

• Q3: Whom to immunize? 

– Full Immunization (Static Graphs) 

– Full Immunization (Dynamic Graphs) 

– Fractional Immunization 

• Q4: How to detect outbreaks? 

• Q5: Who are the culprits? 
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Challenges 

• Given a graph A, budget k, 

   Q1 (Metric) How to measure the ‘shield-
value’ for a set of nodes (S)? 

   Q2 (Algorithm) How to find a set of k nodes 
with highest ‘shield-value’? 
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Proposed vulnerability measure λ 

Increasing λ  
Increasing vulnerability  

λ is the epidemic threshold 

“Safe” “Vulnerable” “Deadly” 

82 Prakash and Faloutsos 2012 
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 Original Graph Without {2, 6} 

Eigen-Drop(S)  

Δ λ = λ  - λs 
 
Δ 

 

A1: “Eigen-Drop”: an ideal shield 
value 
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(Q2) - Direct Algorithm too 
expensive! 

• Immunize k nodes which maximize Δ λ 

                           S = argmax Δ λ 
• Combinatorial! 

• Complexity: 

– Example:  

• 1,000 nodes, with 10,000 edges  

• It takes 0.01 seconds to compute λ 

• It takes 2,615 years to find 5-best nodes!  
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A2: Our Solution 

• Part 1: Shield Value 
–Carefully approximate Eigen-drop (Δ λ) 

–Matrix perturbation theory 

• Part 2: Algorithm 
–Greedily pick best node at each step 

–Near-optimal due to submodularity 

• NetShield (linear complexity) 
–O(nk2+m)   n = # nodes; m = # edges 

85 In Tong+ ICDM 2010 Prakash and Faloutsos 2012 



Our Solution: Part 1 

• Approximate Eigen-drop (Δ λ) 

 

•  Δ λ ≈ SV(S) = 

 

– Result using Matrix perturbation theory 

–u(i) == ‘eigenscore’ 

         ~~  pagerank(i) 
A u = λ . u 

u(i) 
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P1: node importance P2: set diversity 

Original Graph Select by P1 Select by P1+P2 
87 Prakash and Faloutsos 2012 



Our Solution: Part 2: NetShield 

• We prove that:  

   SV(S) is sub-modular (& monotone non-decreasing) 

 

 

 

 

 

• NetShield: Greedily add best node at each step 

 

 

  Corollary: Greedy algorithm works 
  1. NetShield is near-optimal (w.r.t. max SV(S))  
  2. NetShield is O(nk2+m) 

Footnote: near-optimal means SV(S NetShield) >= (1-1/e) SV(S Opt) 88 Prakash and Faloutsos 2012 



Experiment: Immunization quality 
Log(fraction of  
infected  
nodes) 

NetShield 

Degree 

PageRank 

Eigs (=HITS) 

Acquaintance 

Betweeness (shortest path) 

Lower 
is 

better Time 
89 Prakash and Faloutsos 2012 



Part 2: Algorithms 

• Q3: Whom to immunize? 

– Full Immunization (Static Graphs) 

– Full Immunization (Dynamic Graphs) 

– Fractional Immunization 

• Q4: How to detect outbreaks? 

• Q5: Who are the culprits? 
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Full Dynamic Immunization  

• Given:  

  Set of T arbitrary graphs  

 

 

 

 

• Find:  

   k ‘best’ nodes to immunize (remove)  

day 

N 

N night 

N 

N , weekend….. 

In Prakash+ ECML-PKDD 2010 91 Prakash and Faloutsos 2012 



Full Dynamic Immunization  

• Our solution 

– Recall theorem 

– Simple: reduce                 (=    ) 

 

• Goal: max eigendrop   Δ 

 

• No competing policy for comparison 

• We propose and evaluate many policies 

 

Matrix 
Product 

  Δ         = 

day night 

after before λλ λ
λ

λ
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20 
22 
24 
26 
28 
30 
32 
34 

Footprint after k=6 immunizations 

Footprint 

Performance of Policies  

MIT Reality 
Mining 

Lower is 
better 
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Part 2: Algorithms 

• Q3: Whom to immunize? 

– Full Immunization (Static Graphs) 

– Full Immunization (Dynamic Graphs) 

– Fractional Immunization 

• Q4: How to detect outbreaks? 

• Q5: Who are the culprits? 
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Fractional Immunization of Networks 

B. Aditya Prakash, Lada Adamic, Theodore  

Iwashyna (M.D.), Hanghang Tong, Christos  

Faloutsos 

 

Under Submission  

Prakash and Faloutsos 2012 



? 

? 

Given: a graph A, virus prop. model and budget k;  

Find: k ‘best’ nodes for immunization (removal). 

k = 2 

Previously: Full Static Immunization 
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Fractional Asymmetric 
Immunization 

97 

• Fractional Effect [ f(x) =        ] 

• Asymmetric Effect 

# antidotes = 3 

x5.0
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Now: Fractional Asymmetric 
Immunization 
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• Fractional Effect [ f(x) =        ] 

• Asymmetric Effect 

# antidotes = 3 

x5.0
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Fractional Asymmetric 
Immunization 
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• Fractional Effect [ f(x) =        ] 

• Asymmetric Effect 

# antidotes = 3 

x5.0
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Fractional Asymmetric 
Immunization 

Hospital Another 
Hospital 

100 

Drug-resistant Bacteria 
(like XDR-TB)  
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Fractional Asymmetric 
Immunization 

Hospital Another 
Hospital 

101 

= f 
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Fractional Asymmetric 
Immunization 

Hospital Another 
Hospital 

102 

Problem: Given k units of disinfectant, 
how to distribute them to maximize 

hospitals saved? 

Prakash and Faloutsos 2012 



Our Algorithm “SMART-ALLOC” 

CURRENT PRACTICE SMART-ALLOC 

[US-MEDICARE NETWORK 2005] 

103 

• Each circle is a hospital, ~3000 hospitals 

•  More than 30,000 patients transferred   

~6x 
fewer! 

Prakash and Faloutsos 2012 



Running Time 

104 

≈ 

Simulations SMART-ALLOC 

> 1 week 

14 secs 

> 30,000x 
speed-up! 

Wall-Clock 
Time 

Lower 
is 
better 
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Experiments 

105 
K = 200 K = 2000 

PENN-NETWORK SECOND-LIFE 

~5 x ~2.5 x 

Lower 
is 
better 
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Part 2: Algorithms 

• Q3: Whom to immunize? 

• Q4: How to detect outbreaks? 

• Q5: Who are the culprits? 
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Break! 
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Part 2: Algorithms 

• Q3: Whom to immunize? 

• Q4: How to detect outbreaks? 

• Q5: Who are the culprits? 
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Outbreak detection 
• Spot contamination points 

– Minimize time to detection, 
population affected 

– Maximize probability of detection. 

– Minimize sensor placement cost. 

 

Blo
gs 

Po
sts 

Links 
Information 

cascade 
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Outbreak detection 
• Spot `hot blogs’ 

– Minimize time to detection, 
population affected 

– Maximize probability of detection. 

– Minimize sensor placement cost. 

 

Blo
gs 

Po
sts 

Links 
Information 

cascade 
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• J. Leskovec, A. Krause, C. Guestrin, C. 
Faloutsos, J. VanBriesen, N. Glance. "Cost-
effective Outbreak Detection in Networks” 
KDD 2007  
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CELF: Main idea 

• Given: a graph G(V,E) 

– a budget of B sensors  

– data on how contaminations spread over the network:  

• Place the sensors  

• To minimize time to detect outbreak 

   

 

     CELF algorithm uses submodularity  

     and lazy evaluation 
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Blogs: Comparison to heuristics 

Benefit 
(higher=
better) 
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• k PA score  Blog    NP  IL  OLO  OLA 

• 1 0.1283 http://instapundit.com  4593 4636 1890 5255 

• 2 0.1822 http://donsurber.blogspot.com 1534 1206 679 3495 

• 3 0.2224 http://sciencepolitics.blogspot.com 924 576 888 2701 

• 4 0.2592 http://www.watcherofweasels.com 261 941 1733 3630 

• 5 0.2923 http://michellemalkin.com 1839 12642 1179 6323 

• 6 0.3152 http://blogometer.nationaljournal.com  189 2313 3669 9272 

• 7 0.3353 http://themodulator.org  475 717 1844 4944 

• 8 0.3508 http://www.bloggersblog.com 895 247 1244 10201 

• 9 0.3654 http://www.boingboing.net 5776 6337 1024 6183 

• 10 0.3778 http://atrios.blogspot.com 4682 3205 795 3102 

“Best 10 blogs to read” 

NP - number of posts, IL- in-links, OLO- blog out links, OLA- all out links 
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Part 2: Algorithms 

• Q3: Whom to immunize? 

• Q4: How to detect outbreaks? 

• Q5: Who are the culprits? 
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• B. Aditya Prakash, Jilles Vreeken, Christos 
Faloutsos ‘Detecting Culprits in Epidemics: 
Who and How many?’  

 ICDM 2012, Brussels 
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Problem definition 

117 

2-d grid 
‘+’ -> infected 
Who started it? 
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Problem definition 

118 

2-d grid 
‘+’ -> infected 
Who started it? 

Prakash and Faloutsos 2012 

Prior work: 
[Lappas et al. 
2010, Shah et al. 
2011] 



Culprits: Exoneration 
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Culprits: Exoneration 
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Who are the culprits 

• Two-part solution 

– use MDL for number of seeds 

– for a given number: 

• exoneration = centrality + penalty 

• our method uses smallest eigenvector of Laplacian 
submatrix 

 

• Running time = 

– linear! (in edges and nodes)  
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Outline 

• Motivation 

• Part 1: Understanding Epidemics (Theory) 

• Part 2: Policy and Action (Algorithms) 

• Part 3: Learning Models (Empirical Studies) 

• Conclusion 
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Part 3: Empirical Studies 

• Q6: How do cascades look like? 

• Q7: How does activity evolve over time? 

• Q8: How does external influence act? 
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Prakash and Faloutsos 2012 

Cascading Behavior in 
Large Blog Graphs 

 How does information propagate  
over the blogosphere? 

 

Blogs Posts 

Links 
Information 

cascade 

J. Leskovec, M.McGlohon, C. Faloutsos, N. 
Glance, M. Hurst.  Cascading Behavior in 
Large Blog Graphs. SDM 2007. 
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Cascades on the Blogosphere 

Cascade is graph induced by a 
time ordered propagation of 
information (edges) 

Cascades 

B1 B2 

B4 
B3 

a 

b c 

d 

e 

B1 B2 

B4 
B3 

1 

1 

2 

1 3 

1 

d 

e 

b c 

e 

a 

Blogosphere 
blogs + posts 

Blog network 
links among blogs 

Post network 
links among posts 
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Prakash and Faloutsos 2012 

Blog data 
 45,000 blogs participating in cascades 

 All their posts for 3 months (Aug-Sept ‘05) 

 2.4 million posts  

 ~5 million links (245,404 inside the dataset) 

Time [1 day] 

N
u

m
b

e
r 

o
f 

p
o

st
s Number 

of posts 
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Popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 
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Popularity over time 

Post popularity drops-off – exponentially? 

POWER LAW! 

Exponent? 

# in links 
(log) 

days after post 
(log) 
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Popularity over time 

Post popularity drops-off – exponentially? 

POWER LAW! 

Exponent? -1.6  

• close to -1.5: Barabasi’s stack model 

• and like the zero-crossings of a random walk 

# in links 
(log) 

-1.6 

days after post 
(log) 
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-1.5 slope 

Prakash and Faloutsos 2012 130 

J. G. Oliveira & A.-L. Barabási Human Dynamics: The 
Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  

http://www.nd.edu/~networks/HumanDynamics_20Oct05/correspondence_patterns.pdf


Topological Observations 
How do we measure how information flows through 

the network? 

 Common cascade shapes extracted using 
algorithms in [Leskovec, Singh, Kleinberg; PAKDD 2006]. 
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Topological Observations 

Cascade size distributions also follow power law. 

What graph properties do cascades exhibit? 

Observation 2:  The probability of observing a cascade on n 
nodes follows a Zipf distribution: 
 

p(n)       n-2 

Cascade size (# of nodes) 

C
o

u
n

t 

a=-2 
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Topological Observations 
What graph properties do cascades exhibit? 

 Stars and chains also follow a power law, with 
different exponents (star -3.1, chain -8.5). 

Size of chain (# nodes) 

C
o

u
n

t 

Size of star (# nodes) 

C
o

u
n

t 

a=-3.1 a=-8.5 
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Blogs and structure 

• Cascades take on different shapes (sorted by 
frequency): 
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Blogs and structure 

• Cascades take on different shapes (sorted by 
frequency): 

How can we use cascades  

to identify communities? 
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PCA on cascade types 

• Perform PCA on sparse 
matrix. 

• Use log(count+1) 

• Project onto 2 PC… 

.01 

… 

.07 .67 

… 

1.1 2.1 

… 

5.1 

… 

4.2 

… 

.07 3.4 1.1 3.2 boingboing 

.09 2.1 4.6 slashdot 

………… 

~9,000 cascade types 

~4
4

,0
0

0
 b

lo
gs

 

% ->  
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PCA on cascade types 

• Observation: Content of blogs and cascade behavior are 
often related. 

• Distinct clusters for 
“conservative” and 
“humorous” blogs 
(hand-labeling). 

137 Prakash and Faloutsos 2012 

M. McGlohon, J. Leskovec, C. 
Faloutsos, M. Hurst, N. 
Glance. Finding Patterns in 
Blog Shapes and Blog 

Evolution. ICWSM 2007. 
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PCA on cascade types 

• Observation: Content of blogs and cascade behavior are 
often related. 

• Distinct clusters for 
“conservative” and 
“humorous” blogs 
(hand-labeling). 

M. McGlohon, J. Leskovec, C. 
Faloutsos, M. Hurst, N. 
Glance. Finding Patterns in 
Blog Shapes and Blog 

Evolution. ICWSM 2007. 138 Prakash and Faloutsos 2012 



Part 3: Empirical Studies 

• Q6: How do cascades look like? 

• Q7: How does activity evolve over time? 

• Q8: How does external influence act? 
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• Meme (# of mentions in blogs) 
– short phrases Sourced from U.S. politics in 2008 
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“you can put lipstick on a pig”  

“yes we can”  

Rise and fall patterns in social media 

Prakash and Faloutsos 2012 
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Rise and fall patterns in social media 

141 

• Can we find a unifying model, which 
includes these patterns? 

• four classes on YouTube [Crane et al. ’08] 

• six   classes on Meme     [Yang et al. ’11] 
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Rise and fall patterns in social media 

142 

• Answer: YES! 

 

 

 

 

 

 
• We can represent all patterns by single model 
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Main idea - SpikeM 
- 1. Un-informed bloggers (uninformed about rumor) 

- 2. External shock at time nb (e.g, breaking news) 

- 3. Infection (word-of-mouth) 
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Infectiveness of a blog-post at age n: 
  

- Strength of infection (quality of news) 

- Decay function (how infective a blog posting is) 

Time n=0 Time n=nb Time n=nb+1 

β 

b

f (n) = b *n-1.5

f (n)
Power Law 

Prakash and Faloutsos 2012 



-1.5 slope 
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J. G. Oliveira & A.-L. Barabási Human Dynamics: The 
Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  

http://www.nd.edu/~networks/HumanDynamics_20Oct05/correspondence_patterns.pdf




Details 
• Analysis – exponential rise and power-raw fall 
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Liner-log 

Log-log 

 Rise-part 
 

    SI     -> exponential  
SpikeM -> exponential 
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Details 
• Analysis – exponential rise and power-raw fall 
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Liner-log 

Log-log 

 Fall-part 
 

     SI      -> exponential  
SpikeM -> power law 
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Tail-part forecasts 

148 

• SpikeM can capture tail part 
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“What-if” forecasting 

149 

 

 

 

 

 

 

 
 
 

e.g., given  (1) first spike, 

      (2) release date of two sequel movies  

      (3) access volume before the release date 

? ? 

(1) First spike (2) Release date (3) Two weeks before release 
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“What-if” forecasting 

150 

–SpikeM can forecast not only tail-part, but also rise-part! 

 

 

 

 

 

 
 
 

• SpikeM can forecast upcoming spikes 

(1) First spike (2) Release date (3) Two weeks before release 
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Part 3: Empirical Studies 

• Q6: How do cascades look like? 

• Q7: How does activity evolve over time? 

• Q8: How does external influence act? 
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Tweets Diffusion: Problem 
Definition 

• Given:  

– Action log of people tweeting a #hashtag  (         ) 

– A network of users (              ) 

• Find: 

– How external influence varies with #hashtags? 

 

? ? 
? 

? 

?? ?? 
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Results: External Influence vs Time 

time 

“External 
Effects” 

#nowwatching, #nowplaying, #epictweets 

#purpleglasses, #brits, #famouslies 

#oscar, #25jan  

#openfollow, #ihatequotes, #tweetmyjobs 

Can also use for Forecasting, Anomaly 
Detection! 

Bursty, external 
events 

“Word-of-mouth” 
Not trending  

Long-running tags 

“Word-of-mouth” 
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Outline 

• Motivation 

• Part 1: Understanding Epidemics (Theory) 

• Part 2: Policy and Action (Algorithms) 

• Part 3: Learning Models (Empirical Studies) 

• Conclusion 
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Conclusions 

• Epidemic Threshold 

– It’s the Eigenvalue 

• Fast Immunization 

– Max. drop in eigenvalue,  

    linear-time near-optimal algorithm 

• Bursts: SpikeM model 

– Exponential growth,  

    Power-law decay 
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