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Basics: Oddbal Paradigm, P300, BCI Speller
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I Segments of the signals are called epochs or single-trials.
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I In BCI epochs are typically strongly overlapping. (Non-target epochs are
not shaded in this �gure.)



Univariate Features: Averages and Single-Trials
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I ERPs can be voluntarily modulated according to an experimental
condition, here selective attention to certain target stimuli.

I The potential measured 220ms post-stimulus at Cz is a
one-dimensional observation variable: a univariate feature.
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Receiver Operator Characteristics (ROC) and AUC
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I Area Under the ROC Curve (AUC): Measure of separation of two univariate
distributions

I Applied to output of a binary classifer: AUC is a bias-independent perfor-
mance measure.



Receiver Operator Characteristics (ROC) and AUC
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I With all trials of our example data set, the AUC is ≈ 0.7.



Receiver Operator Characteristics (ROC) and AUC
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I For random values, the AUC is about 0.5.



Receiver Operator Characteristics (ROC) and AUC
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I If the classes are perfectly separated, the AUC is 1 (or 0 if the sign is
reversed).



From Uni- to Multivariate Features

For improved classi�cation of EEG single-trials, we need to accumulate
more information in the features.

I sample ERP signals at multiple time points/intervals
→ temporal feature

I join signals from multiple channels
→ spatial feature

I do both things
→ spatio-temporal feature



Multi-channel Epochs
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The Virtue of Multivariate Spatial Features
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I Here, w = [4/3 − 2/3]> is a simple spatial �lter.
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ERPs in a Head Plot
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Interlude: Representation as Matrix
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ERPs in a Grid Plot
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ERP Topographies
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ERP Topographies
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AUC Matrix: Selection of Channels and Time Intervals
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I Each cell in the matrix is one uni-variate feature.

I Let's combine them to multi-variate features!



Multivariate ERP Features
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Multivariate ERP Features
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Multivariate ERP Features
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Representation of Multivariate Distributions: Scatter Plot
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Representation of Multivariate Distributions: Scatter Plot
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Representation of Multivariate Distributions: Scatter Plot
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Representation of Multivariate Distributions: Scatter Plot
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Representation of Multivariate Distributions: Scatter Plot
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Representation of Multivariate Distributions (2)
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Two Univariate Gaussian Distributions

Component #1

µ-σ µ µ+σ

Component #2

µ-σ µ µ+σ



Two-Dimensional Gaussians - Correlated or Uncorrelated
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I Two-dimensional Gaussian distributions N (µ,Σ) may have
uncorrelated (Σ diagonal) or correlated components.

I This cannot be decided from the marginal distributions (univariate
components).



Correlated or Uncorrelated? Mind Spatial Smearing!

I Raw EEG scalp potentials are known to be associated with a large
spatial scale owing to volumne conduction.

I In a simulation of Nunez et al [1] only half the contribution to one
scalp electrode comes from sources within a 3 cm radius.
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Gaussian Distributions
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Eigenvalue Decomposition

Given a matrix C ∈ Rp×p symmetric and pos. de�nite (satis�ed for
covariance matrices), there exists an orthonormal matrix V ∈ O(p) and
diagonal matrix D ∈ Diag(p), such that

C = VDV>



Characterization of Gaussian Distributions

Assume samples x1, . . . ,xn ∈ Rp are modeled as N (µ̂, Σ̂).

Eigenvalue decomposition of the empirical covariance matrix:

Σ̂ = VDV>, with orthonormal V and diagonal D.

(b)
I Eigenvectors are columns

of V = [v1, . . . ,vp].

I Eigenvalues are diagonal
elements di of D.

I
√
di = std(v>i X)

I In N (µ,Σ) typically µ is
considered to be the ideal true
value and Σ noise.

I The vector of Eigenvalues is
called Eigenvalue spectrum



Distribution of ERP Features

For classi�cation, we have to consider the distribution of the features.
According to our model (ERPs are constant across trials):

x(k)(t) = p1(t) + n(k)(t) for trials k of condition 1

x(k)(t) = p2(t) + n(k)(t) for trials k of condition 2

with Gaussian noise: n(·)(t) ∼ N (0,Σ).
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For features of ERP data:

I µ1: ERP of condition 1

I µ2: ERP of condition 2

I Σ: noise: non-phase-locked
activity (independent of
condition)

[Blankertz et al, NeuroImage 2011]



Nearest Centroid Classi�er (NCC)

(a) Let us assume a simple setting of a classi�cation problem with little
information: Only the means (or centroids) µ1 and µ2 of the two
distributions are known.

(a)

(b) This leads to a linear separation of the space with the separation line
(or hyperplane in higher dimensions) intersecting perpendicularly the line
connecting the centroids in the middle. (c) Mathematical formalism.
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Linear Disciminant Analysis

(a) Means as before, but distributions according to real EEG data.

(a)

(b) In Linear Discriminant Analysis, a common covariance matrix for
both classes is estimated, which describes the (class-independent) noise.
(c) Correspondence to NCC.
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Linear Discriminant Analysis

Linear Discriminant Analysis is based on the following assumptions:

1. Features of each class are Gaussian distributed.

2. Gaussians of all classes have the same covariance matrix.

3. True class distributions are known.

Based on probability theory, the optimal classi�er under these conditions
can be derived:

Given two Gaussian distributions N (µ1,Σ) and N (µ2,Σ), LDA is
de�ned by the normal vector

w = Σ−1(µ2 − µ1) and bias b = w>(µ1 + µ2)/2. (1)

On the subsequent slides, we discuss the assumptions.



Mean and Eigenvalue Spectrum for a P300 Data Set
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Distribution of the Noise

Scatter plots of projections on PCs:
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The Structure of the Noise

target non-target

 pc #1:  std= 54.2 µV  pc #2:  std= 26.6 µV

 pc #3:  std= 15.4 µV  pc #4:  std= 11.6 µV

 pc #1:  std= 55.5 µV  pc #2:  std= 26.8 µV

 pc #3:  std= 15.1 µV  pc #4:  std= 10.6 µV
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For Comparison: Covariances in Handwritten Digits
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Validation of Classi�cation Procedures

To validate the performance of a classi�er, one needs to have a

I training set on which all parameters of the model are estimated
(weights of the classi�er; selection of features etc.), and a

I validation set on which the performance is calculated.

These sets of samples have to be disjoint and INDEPENDENT.

See [Lemm et al, NeuroImage 2011] details on validation.



Loss Function for Unbalanced Classes

Orange class: N1 = 900 samples, blue class: N2 = 100 samples.
Weighted error: errweighted = 1

2 (err|class 1 + err|class 2)

Examples of weighted and unweighted error � bias of classi�er is varied:

Error
Unweighted: 26.6%
Weighted: 22.4%
ROC-based: 16.7%

Error
Unweighted: 12.8%
Weighted: 29.8%
ROC-based: 16.7%

Error
Unweighted: 9.8%
Weighted: 41.9%
ROC-based: 16.7%



Application of (Purely) Temporal Features

Single channel data does (in most cases) not contain su�cient
information for a competitive classi�cation. An application of temporal

features is to investigate the spatial distribution of discriminative
information:
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For each single channel the
classi�cation performance is
determined for temporal features
with LDA by cross validation. The
resulting error values can be
visualized as scalp topography.

Here, two foci are discernible,
probably related to visual and
cognitive areas.



Application of (Purely) Spatial Features

Spatial features can be used to investigate the distribution along time of
discriminative information:
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The classi�cation error of
spatial features was
determined for each time
interval of 30 ms duration,
shifted from 0 to 1000 ms.

In some settings, classi�cation of spatial feature may already yield
powerful classi�cation, given an appropriate selection of the time interval.



Application of (Purely) Spatial Features

Spatial features can be used to investigate the distribution along time of
discriminative information:

 

 

[a
.u

.]
−0.2

−0.1

0

0.1

0.2 LDA trained on spatial
features extracted from the
time interval 380�410 ms.
The resulting weight vector
can be visualized as a
topography and can be
regarded as a spatial �lter.

In some settings, classi�cation of spatial feature may already yield
powerful classi�cation, given an appropriate selection of the time interval.



Results of Classifying Spatial Features

Classifying on spatial features corresponding to the prominent
discriminative components to error rates between 14% and 31%:
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Classi�cation of Spatio-Temporal Features

Advancing from temporal or spatial features to spatio-temporal features
means increasing the information.

Accordingly, a better classi�cation performance is to be expected.

But in our example data set, the classi�cation error increases from

I 14% for the spatial feature at the best interval to

I 25% for spatio-temporal features

when classifying with LDA.

??
??

??
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Bias in Estimating Covariance Matrices

For LDA we need estimates for the distribution parameters:

I µ̂ = 1
n

∑n
k=1 xk empirical mean

I Σ̂ = 1
n−1

∑n
k=1(xk − µ̂)(xk − µ̂)> emp. covariance matrix

But, if the number of samples n is not large relative to the dimension d,
the estimation, in particular Σ̂, is error-prone.

This may a�ect classi�cation with LDA badly.

There is a systematical bias in the empirical covariance matrix:

I Large Eigenvalues of Σ̂ are too large

I Small Eigenvalues of Σ̂ are too small

assuming x1, . . . ,xn ∈ Rd are drawn from N (µ,Σ).
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Bias in Estimating Covariances (2)

Simulation for d = 200:
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A Remedy for the Estimation Bias

A simple way that counteracts the bias is shrinkage:
The empirical covariance matrix Σ̂ is modi�ed to be more spherical:

Σ̃(γ) = (1− γ)Σ̂ + γνI

for a γ ∈ [0, 1] and ν de�ned as average Eigenvalue trace(Σ̂)/d.

Σ(0.5)
∼

Σ
^

νΙ

Next, we check that shrinkage serves the
intended purpose. Covariance matrices
are described by their Eigenvectors and
Eigenvalues. So, we have to investigate,
what happens to those, when we change
over from the empirical covariance
matrix Σ̂.



Properties of the Shrunk Covariance Matrix

From the Eigenvalue decomposition of the empirical covariance matrix
Σ̂ = VDV> with orthonormal V and diagonal D, we get an Eigenvalue
decomposition of Σ̃(γ) = (1− γ)Σ̂ + γνI like this:

Σ̃(γ) = (1− γ)VDV> + γνI

= (1− γ)VDV> + γνVIV>

= V ((1− γ)D + γνI)︸ ︷︷ ︸
diagonal matrix

V>

We see that

I Σ̂ and Σ̃(γ) have the same Eigenvectors (columns of V)

I Extreme Eigenvalues (large/small) are shrunk/extended towards the
average Eigenvalue ν as di 7→ (1− γ)di + γν

I γ = 0 means no shrinkage: Σ̃(0) = Σ̂

I γ = 1 corresponds to spherical covariances matrices: Σ̃(1) = νI
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Regularized Linear Discriminant Analysis

This technique can be used to enhance LDA to work better in the case of
a low number-of-samples to dimensionality ratio. The empirical
covariance matrix Σ̂ is replaced by a shrunk covariance matrix Σ̃(γ):

wγ := Σ̃(γ)−1(µ2 − µ1)

Here, γ is a hyper parameter that has to be selected between 0 and 1.

I γ = 0 yields w0 = Σ̂−1(µ2 − µ1), i.e. unregularized LDA

I γ = 1 yields w1 = µ2 − µ1, i.e. NCC

Before addressing the choice of γ, let us look at the impact of the
shrinkage parameter.



Impact of Shrinkage as Trade-o�

LDA with shrinkage: w = Σ̃(γ)−1(µ2−µ1); Σ̃(γ) = (1−γ)Σ̂+γνI

(LDA)

(NCC)



Impact of Shrinkage as Trade-o�

With increasing shrinkage, the spatial �lters (classi�er) look smoother, but
classi�cation may degrade with too much shrinkage.
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Regularized LDA at Work

Cross-validation results for di�erent sizes of training data (250, 500,
2000) for di�erent values of the regularization parameter γ (x-axis).
Features vectors have 250 dimensions.
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Optimal Selection of Shrinkage Parameter

LDA with shrinkage of the covariance matrix has one free parameter (γ),
also called hyperparameter, that needs to be selected. There is no general
way to do it.

Let x1, . . . ,xn ∈ Rd be n feature vectors and let µ̂ = 1
n

∑n
k=1 xk be the

empirical mean.

Aim: get a better estimate of the true covariance matrix Σ (especially in
case n < d) than the sample covariance matrix
Σ̂ = 1

n−1
∑n

k=1(xk − µ̂)(xk − µ̂)> by selecting a γ in

Σ̃(γ) := (1− γ)Σ̂ + γνI.



Optimal Selection of Shrinkage Parameter

The approach of [Ledoit & Wolf, J Multivar Anal, 2004] is to minimize

||Σ̃(γ)−Σ||2F with ||·||2F being the Frobenius norm.

We denote by (xk)i resp. (µ̂)i the i-th element of the vector xk resp. µ̂
and de�ne the correlation coe�cient of feature i and j in trial k:

zij(k) = ((xk)i − (µ̂)i) ((xk)j − (µ̂)j)

Denoting by sij the element in the i-th row and j-th column of the matrix

Σ̂− νI, the optimal shrinkage parameter γ? = argminγ ||Σ̃(γ)−Σ||2F can
be analytically calculated as [Schäfer & Strimmer 2005]

γ? =
n

(n− 1)2

∑d
i,j=1 vark(zij(k))∑d

i,j=1 s
2
ij

.

Shrinkage-LDA: use Σ̃(γ?) instead of Σ̂.



Classi�cation with Shrinkage-LDA
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Classi�cation on Single Components and Combined
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Combined

Classi�cation (with N = 750 training samples) on seven di�erent single
components (d = 55) yields errors between 14% and 31%.

LDA on the concatenated feature (d = 7 · 55 = 385) performs with 25%
worse, although information is added: over�tting.

Shrinkage-LDA: only 4% error.

[Blankertz et al, NeuroImage 2011]
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Linear Model of EEG: Forward Model

I Assumption: The contribution of a current source s(t) to the scalp
potentials x(t) = [x1, . . . , xk]

> is linear in s(t):

x(t) = [a1s(t), . . . , aks(t)]
> = a s(t)

I The proportionality factors in vector a are typically unknown and
depend on the spatial distribution and orientation of the current
source and the conductivity distribution of the anatomy.



Linear Model of EEG: Forward Model (2)

I Now, we consider several sources with distribution vectors a1, . . . ,ak.

I Potentials are additive. De�ning the matrix A as being composed of
the vectors a1, . . . ,ak (i.e., A = [a1, . . . ,ak]), the Forward Model
is

x(t) = A s(t) = a1 s(t) + a2 s(t) + . . .ak s(t)

I Contributions not captured by this model are considered as noise,
n(t), typically assumed to be Gaussian distributed.

I This gives a simple linear model representing the electrophysics of
EEG:

x(t) = A s(t) + n(t)



Linear Model of EEG: Backward Model

More generally, recovering of sources is the backward model:

ŝ(t) = W>x(t)

Given a forward model A, taking W> as A# = (A>A)−1A>, the
pseudo inverse of A, is the least mean squares estimator:

arg minV
∑
t

||V>As(t)− s(t)||2 = A#

Note that, even for invertible A a backward model captures also the
portion of the noise that is collinear with the source estimates.

ŝ(t) = s(t) + W>n(t).
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Linear Model of EEG

LDA, PCA, ...

sources EEG extracted
components

forward model backward model

Each column of A is a spatial pattern: propagation of a source to sensors
Each row of W> is a spatial �lter: weighting of EEG channels.



Patterns and Filters in the Linear Model of EEG

LDA, PCA, ...

sources EEG extracted
components

forward model backward model

Pattern:
propagation of
one source

Filter:
extraction of
one component



Recap: Classi�cation of (Purely) Spatial Features
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The weight vector of an LDA
trained on spatial features
can be visualized as a
topography and can be
regarded as a spatial �lter.

For the interpretation of spatial �lters there is a caveat, that we will
discuss next.



Interpretation of Spatial Filters

Let's assume we have a mixture of two sources (ignoring the noise here)

x = a1s1 + a2s2

and the task is to �nd a spatial �lter w to recover s1. Applying the �lter
to x yields

w>x = w>a1s1 + w>a2s2

Case 1: a>1 a2 = 0 (untypical). Then w = a1 does the job: For
orthorgonal propagation vectors, the best �lter corresponds to the
propagation direction of the source, i.e., a pattern.

Case 2: a>1 a2 6= 0 (typical). To recover s1, the �lter w needs to be
chosen such that w>a2 = 0, i.e., the �lter w is orthogonal to a2.



Interpretation of Spatial Filters (2)

In the typical case (a>1 a2 6= 0), the best �lter w to recover source s1 also
depends on the interfering source s2, as it must be orthogonal to its
propagation vector a2.

Example. We would like to extract

I s1, the cognitive P300 component

but there is interference from

I s2, the visual area.

The best �lter to recover the P300 component (s1) depends also on the
interfering source of the visual area (s2). In particular, the spatial map of
the �lter probably shows strong weights over occipital area, although the
P300 component originates from the central region.



Understanding Spatial Filters
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Understanding Spatial Filters

(a)

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8

potential at FCz  [µV]

po
te

nt
ia

l a
t C

P
z 

 [µ
V

]

with little disturbance

(b)

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8

potential at FCz  [µV]

po
te

nt
ia

l a
t C

P
z 

 [µ
V

]

with disturbance from Oz

Two channel classi�cation of (a): 15% error, (b): 37% error

When disturbing channel Oz is added to the data (3D): 16% error. Here,
channel Oz is required for good classi�cation although itself is not discrim-
inative.
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