Decomposition and Acquisition of Light Transport under Spatially Varying Lighting

> Dikpal Reddy Ravi Ramamoorthi Brian Curless

University of California, Berkeley

Funding acknowledgment: ONR PECASE

Distant illumination

Light is distant and diffuse at the scene

- Angular variation at the scene
- Little/no spatial variation

image credit: ict.usc.edu

Spatially varying illumination

Light focuses on the scene

- Spatial variation at the scene
- Small range of angles

Examples

Many applications

- Structured light
- Image/video projection
- Augmented Reality

image credit: volkswagen

Projector-camera system

Light transport

Input: projector pattern Output: camera image

Projector pattern

Camera image

Light transport

Diffuse scene: subsurface scattering, interreflection

Camera image

Transport matrix

Transport matrix

2D slice of the 4D light transport at the scanline

Acquisition

Acquire 360000 x 16384 matrix with 1060 patterns

$\frac{\text{Reconstructed}}{\text{SNR} = 27.2 \text{ dB}}$

Original

Acquisition

Acquire 360000 x 16384 matrix with 1060 patterns

$\frac{\text{Reconstructed}}{\text{SNR} = 24.7 \text{ dB}}$

Original

Decomposition

Reconstructed

╋

╋

Direct

Near

Decomposition

Reconstructed

+

╋

Direct

Near

Contributions

Decompose light transport into physical components – Direct, Near Range (subsurface), Far (interreflections)

Efficiently acquire the component transports

- Varying bandwidth in projector's frequency-space
- Use minimal number proposed by the model

Acquisition and storage

- Distant illumination:
 - transport matrix is locally low-rank
 - Fuchs et al. 2007, Peers et al. 2009
 - Wang et al. 2009, O'Toole et al. 2010
- Spatially varying illumination
 - brute force, ignores diffuse inter-reflections
 - Masselus et al. 2003,
 - Sen et al. 2005, Garg et al. 2006

Decomposition

- Direct global separation
 - Nayar et al. 2006
 - separates floodlit images, not light transport
- Component separation
 - O' Toole et al. 2012
 - iterative process for a single image

Acquisition & Decomposition

Direct : single bounce (mainly)

• Diagonal matrix, large magnitude

Direct

D

Near-range: subsurface effects, local interreflection

• Banded diagonal matrix, sparse

Far-range: diffuse interreflection

• Dense, small magnitude, low frequency

Localized in space – 1 unknown at each camera pixel

1 high-freq. sinusoidal pattern

Compute

Direct

Global

Localized in frequency – $4k_{fx}k_{fy}$ unknowns

Use all 4k_{fx}k_{fy} sinusoidal patterns for measurement

W² unknowns at each camera pixel

W² sinusoidal patterns placed 1/W apart

Far-range interference

Overlap of few patterns with far-range bandwidth

Far-range

Near-range measurements

Drop such sinusoidal patterns

Sparsity prior

System of equations is underdetermined

Projector pattern

b+

-

Camera image

Frequency-space

Direct

Near-range

Far-range

Number of measurements: Direct

1 unknown

1 pattern sufficient

P_x

Projector pixel support

Sinusoidal sampling

Number of measurements: Near

W² unknowns.

Less than W² patterns sufficient

Projector pixel support

Sinusoidal sampling

Number of measurements: Far

4k_{fx}k_{fv} unknowns. 4k_{fx}k_{fv} patterns sufficient **k**_v ^{*} k_v ≜ k_{fy} k_{fx} k_x k_x Sinusoidal sampling Frequency support

Number of measurements: All

Direct

Near-range

Far-range

Results

Acquire 16384 x 16384 matrix with 788 patterns

Comparisons

16dB

3dB

Limitations

Projector-camera correspondence

- Currently a preprocessing step
- Joint correspondence and transport estimation
- Tough for specular objects

Diffuse scenes

- Works well for diffuse scenes
- Specular and transparent scenes don't follow lowfrequency interreflections

Conclusions

Decomposition of transport

- Separates physically meaningful components
- Simple compact model for direct, near, far

Efficient acquisition of transport

- Simple projector-camera setup
- Close to optimal number of patterns

Thank you