Continuous Markov Random Fields for Robust Stereo Estimation

Koichiro Yamaguchi^{1,2} Tamir Hazan¹ David McAllester¹ Raquel Urtasun¹

¹ TTI-Chicago

² Toyota Central R&D Labs., Inc.

TOYOTA CENTRAL R&D LABS., INC.

Goal

Dense stereo for high-resolution real-world images

Middlebury low-resolution dataset [Scharstein and Szeliski 2001]

- Low resolution
- Laboratory environment

State-of-the-art algorithms Average error:2 – 3 %

KITTI Vision Benchmark Suite [Geiger, et al. 2012]

High-resolution realistic dataset

Difficulties

- Large number of disparity labels
- Textureless regions
- Strong slants

Related Work

Pixel-based MRF

Very local smoothness at pixel level

Slanted-plane MRF [Birchfield and Tomasi 1999]

Set of superpixels

Continuous MRF is computationally challenging [Bleyer, et al. 2010] 1 hour for low-resolution Middlebury image

Our Approach

Novel model for slanted-plane MRF

Introduce boundary labels and junction feasibility

Inference using Particle Convex Belief Propagation

Perform with reasonable running time

Our model

Random Variables

Superpixels (UCM [Arbelaez, et al. 2011] and SLIC [Achanta, et al. 2010]) Segment variable $\mathbf{y}_i = (\alpha_i, \beta_i, \gamma_i)$

Slanted 3D plane of segment

Continuous variable

Boundary variable *o*_{*ij*}

Relationship between segments

4 states

 $E(\mathbf{y}, \mathbf{o}) \equiv E_{color}(\mathbf{o}) + E_{match}(\mathbf{y}, \mathbf{o}) + E_{compatibility}(\mathbf{y}, \mathbf{o}) + E_{junction}(\mathbf{o})$

y : set of all 3D slanted planeso : set of all boundary variables

 $E(\mathbf{y}, \mathbf{o}) \equiv E_{\text{color}}(\mathbf{o}) + E_{\text{match}}(\mathbf{y}, \mathbf{o}) + E_{\text{compatibility}}(\mathbf{y}, \mathbf{o}) + E_{\text{junction}}(\mathbf{o})$ Color similarity energy

 $E(\mathbf{y}, \mathbf{o}) \equiv E_{color}(\mathbf{o}) + E_{match}(\mathbf{y}, \mathbf{o}) + E_{compatibility}(\mathbf{y}, \mathbf{o}) + E_{junction}(\mathbf{o})$ Matching energy

Agreement with result of input disparity map

Computed by any matching method (Modified semi-global matching)

Truncated quadratic function
$$\phi_i^{\text{TP}}(\mathbf{p}, \mathbf{y}_i, K) = \min \left(|\mathcal{D}(\mathbf{p}) - \hat{d}_i(\mathbf{p}, \mathbf{y}_i)|, K \right)^2$$

Disparity map Slanted plane

 $E(\mathbf{y}, \mathbf{o}) \equiv E_{color}(\mathbf{o}) + E_{match}(\mathbf{y}, \mathbf{o}) + E_{compatibility}(\mathbf{y}, \mathbf{o}) + E_{junction}(\mathbf{o})$ Compatibility energy

 $E(\mathbf{y}, \mathbf{o}) \equiv E_{color}(\mathbf{o}) + E_{match}(\mathbf{y}, \mathbf{o}) + E_{compatibility}(\mathbf{y}, \mathbf{o}) + \frac{E_{junction}(\mathbf{o})}{Junction \, energy}$

Hybrid MRF

defined over continuous variables y and discrete variables o

Inference / Learning

Use training algorithm based on primal-dual approximate inference [Hazan and Urtasun 2010]

Experiments

Middlebury high-resolution images [Scharstein and Pal 2007]

- Laboratory environment
- High-resolution (1239x1038 pixels)
- 5 train / 9 test images

KITTI dataset [Geiger, et al. 2012]

- Real-world stereo dataset
- Accurate ground truth
- High-resolution (1237x374 pixels)
- 10 train / 174 validation / 195 test images

Evaluation - Middlebury

Comparison on Middlebury high-resolution dataset

Result Example - Middlebury

Result Example - Middlebury

Evaluation - **KITTI**

Result Examples - KITTI

Training Set Size

Evaluation on validation set of KITTI dataset

Importance of Energy Terms

Evaluation on validation set of KITTI dataset

Conclusion

Novel slanted-plane MRF model

Estimate jointly occlusion boundaries and depth

Inference in hybrid MRF

Use particle convex belief propagation

Experiments on high resolution imagery

Outperform existing method

Future work

- Improve superpixel segmentation
- Investigate other potentials