Motion Capture of Hands in Action using Discriminative Salient Points

Luca Ballan Aparna Taneja Jürgen Gall Luc Van Gool Marc Pollefeys

Scene recorded from multiple viewing angles

Template Model

Scene recorded from multiple viewing angles

Scene Motion (angles and positions)

Full 3D Geometry of the Scene

Related Work: Hand Motion Capture

Related Work: Hand Motion Capture

[Hamer et al. '09]

[Oikonomidis et al. '11]

Hand interacting with an object

Assumption: Hand can be segmented from the object based on color

The Problem

Hands cannot be distinguished based on color

- Multiple occlusions
- Self-similarities

How do we deal with this?

Assumption: Each trackable element of the scene can be modelled as an articulated deformable object

Assumption: Each trackable element of the scene can be modelled as an articulated deformable object

Mesh representing the object at a reference pose

Multiview Stereo

[Geiger et al. 10] [Ballan et al. 06]

Mesh representing the

object at a reference pose

Linear Blend Skinning:

the motion of a vertex

the linear combination of all the motions that the vertex would undergo if rigidly attached to every bone, one at a time

Smooth deformation of the surface

NOT sufficient

An additional stronger cue needs to be used!

- Edges might disappear due to color similarities
- Optical flow might not be able to compensate

Salient Points

Salient Points

\Rightarrow		=	0	
	Thumb		Pinky	
	Nail		Nail	

- Cannot discriminate between nails of different fingers
- Tracking does not help due to the frequent occlusions

Salient Points

Video frame

Missing detections

False detections

Video frame

 $\underset{\xi}{\operatorname{argmin}} \sum \|\operatorname{Proj}(v_i(\xi)) - \underline{p_i}\|^2$ **Reprojection error** of the founded correspondences

- Non-Linear Least Square
- Differentiable

Minimization using Levenberg Marquardt

Optimization

Alternating optimization scheme

- Generate mesh at pose ξ
- Solve for the correspondences
- Solve for the pose

$$\sum \|\operatorname{Proj}(v_i(\xi)) - p_i\|^2$$

Optimization

Alternating optimization scheme

- \rightarrow Generate mesh at pose ξ
 - Solve for the correspondences
 - Solve for the pose

 $\sum \|\operatorname{Proj}(v_i(\xi)) - p_i\|^2$

Re-initialization using simulated annealing (needed twice in all our

experiments)

Collisions and Self-Intersections

Results

FINGER TIPS TOUCHING

CAM #6 (Result overlaid on Input Video)

CAM #4 (INPUT VIDEO) CAM #4 (Result)

How to handle additional Objects

HOLDING AND PASSING A BALL

CAM #3 (Result overlaid on Input Video)

CAM #5 (INPUT VIDEO)

CAM #5 (Result)

TAKING OFF A RING

CAM #5 (Result overlaid on Input Video)

CAM #7 (INPUT VIDEO) CAM #7 (RESULT)

PAPER FOLDING

CAM #7 (Result overlaid on Input Video)

CAM #8 (INPUT VIDEO) CAM #8 (Result)

Conclusions

We proposed a method to estimate the articulated motion of hands interacting with objects

many DOF (up to 78) occlusions

usage of multiple cues (edges, optical flow, **salient points**)

collisionsself-intersections

Distance fields

self-similarities

Solve the association problem as a **Bipartite Graph Matching** problem

Quantitative evaluation:	Joints position		
	error $\ \cdot\ _1$		
[Our Approach]	1.5mm		3x more accurate than
[Oikonomidis et al. '11]	4.7mm		the state of the art

