

Rheinische Friedrich-Wilhelms-Universität Bonn

Semantic Segmentation with Second-Order Pooling

João Carreira^{1,2}, Rui Caseiro¹, Jorge Batista¹, Cristian Sminchisescu²

¹ Institute of Systems and Robotics, University of Coimbra ² Faculty of Mathematics and Natural Science, University of Bonn

Example from Pascal VOC segmentation dataset

Our bottom-up pipeline:

Li, Carreira, Sminchisescu, CVPR 2010, IJCV2011

- 1. Sample candidate object regions (figure-ground)
- 2. Region description and classification
- 3. Construct full image labeling from regions

Key: generate good object candidates, not superpixels

CPMC: Constrained Parametric Min-Cuts for Automatic Object Segmentation, Carreira and Sminchisescu, CVPR 2010, PAMI 2012

- 1. Sample candidate object regions (figure-ground)
- 2. Region description and classification
- 3. Construct full image labeling from regions

- 1. Sample candidate object regions (figure-ground)
- 2. Region description and classification
- 3. Construct full image labeling from regions

- 2. Region description and classification
- 3. Construct full image labeling from regions

- 2. Region description and classification
- 3. Construct full image labeling from regions

- 2. Region description and classification
- 3. Construct full image labeling from regions

- 1. Sample candidate object regions
- 2. Region description and classification
- 3. Construct full image labeling from regions

Bottom-up formulation:

- 1. Sample candidate object regions (figure-ground)
- 2. Region description and classification
- 3. Construct full image labeling from regions

Bottom-up formulation:

- 1. Sample candidate object regions (figure-ground)
- 2. <u>Region description and classification</u> This work!
- 3. Construct full image labeling from regions

Describing Free-form Regions

Currently, most successful approaches use variations of Bag of Words (BOW) and HOG

- Require expensive classifiers with non-linear kernels
- Used in sliding-window detection and in image classification

Are there descriptors better suited for regions (segments)?

SIFT

Region descriptor

avg/max

coded features

inside region

Most research so far focused on coding

Hard Vector Quantization, Kernel Codebook encoding, Sparse Coding, Fisher encoding, Locality-constrained Linear Coding... Sivic03, Csurka04, Philbin08, Gemert08, Yang09, Perronnin10, Wang10, (...)

Pooling has received far less attention

Given N local feature descriptors $x_1, ..., x_N$ extracted inside region

MaxAverage $g_{max} = \max_{i} x_i$ $g_{avg} = \frac{1}{N} \sum_{i}^{N} x_i$

Can we pursue richer statistics for pooling ?

Can we pursue richer statistics for pooling ?

$$\boldsymbol{g}_{avg} = \frac{1}{N} \sum_{i}^{N} \boldsymbol{x}_{i}$$

 $\boldsymbol{g}_{max} = \max_{i} \boldsymbol{x}_{i}$

Given N local feature descriptors $x_1, ..., x_N$ extracted inside region

Can we pursue richer statistics for pooling ?

Capture correlations

Can we pursue richer statistics for pooling ?

Capture correlations

Dimensionality = $(local descriptor size)^2$

Can we pursue richer statistics for pooling ?

Capture correlations

Dimensionality = $(local descriptor size)^2$

What can we say about these matrices ?

$$\boldsymbol{G}_{avg} = \frac{1}{N} \sum_{i}^{N} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{i}^{\mathrm{T}}$$
$$\boldsymbol{G}_{max} = \max_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{i}^{\mathrm{T}}$$

What can we say about these matrices ?

... so we can simply keep upper triangle

What can we say about these matrices ?

$$\boldsymbol{G}_{avg} = \frac{1}{N} \sum_{i}^{N} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{i}^{\mathrm{T}}$$
$$\boldsymbol{G}_{max} = \max_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{i}^{\mathrm{T}}$$

Symmetric Positive Definite (SPD)

Symmetric

SPD matrices have rich geometry: they form a Riemannian manifold

What can we say about these matrices ?

$$G_{avg} = \frac{1}{N} \sum_{i}^{N} x_i \cdot x_i^{\mathrm{T}}$$
$$G_{max} = \max_{i} x_i \cdot x_i^{\mathrm{T}}$$

Symmetric Positive Definite (SPD)

Symmetric

SPD matrices have rich geometry: they form a Riemannian manifold

. Linear classifiers ignore this additional geometry

Embedding SPD Manifold in Euclidean Space

Usual solution is to flatten the manifold by projecting to local tangent spaces

Only valid in a local neighborhood, in general

Embedding SPD Manifold in an Euclidean Space

Usual solution is to flatten the manifold by projecting to local tangent spaces

. Only valid in a local neighborhood, in general

By using special, Log-Euclidean metric, it is possible to directly embed entire manifold

(Arsigny et al. 07)

$$\boldsymbol{G}_{log} = \log(\boldsymbol{G})$$

Sequence of Operations 1. Second-Order **Avg** Pooling: $\log\left(\frac{1}{N}\sum_{i}^{N} x_{i} \cdot x_{i}^{T}\right)$ $\max_{i} x_{i} \cdot x_{i}^{\mathrm{T}}$ Second-Order Max Pooling: 2. Select upper triangle and convert to vector 3. Power normalize (Perronnin et al 2010)

 $x = \operatorname{sign}(x) \cdot |x|^h$, with $h \in [0,1]$

Sequence of Operations **1.** Second-Order Avg Pooling: $\log\left(\frac{1}{N}\sum_{i}^{N} x_{i} \cdot x_{i}^{T}\right)$ Second-Order Max Pooling: $\max_{i} x_{i} \cdot x_{i}^{T}$

- 2. Select upper triangle and convert to vector
- 3. Power normalize

Feed resulting descriptor to linear classifier

Additionally we use better local descriptors with pooling methods

Local Feature Enrichment (1/2) Relative Position

Local Feature Enrichment (2/2) Pixel Color

Ground truth regions

Ground truth regions

Linear classification accuracy

Ground truth regions

Linear classification accuracy

	1MaxP	1AvgP	2MaxP	2AvgP	Log 2AvgP
SIFT	16.61	33.92			
eSIFT	26.00	43.33			

=max/avg

Ground truth regions

Linear classification accuracy

	1MaxP	1AvgP	2MaxP	2AvgP	Log 2AvgP
SIFT	16.61	33.92	38.74	48.74	
eSIFT	26.00	43.33	50.16	54.30	

Ground truth regions

Linear classification accuracy

	1MaxP	1AvgP	2MaxP	2AvgP	Log 2AvgP
SIFT	16.61	33.92	38.74	48.74	54.17
eSIFT	26.00	43.33	50.16	54.30	63.85

Semantic Segmentation in the Wild Pascal VOC 2011

Semantic Segmentation in the Wild								
This Pascal VOC 2011								
work!	work!!							
comp6 comp5					omp5			
	O ₂ P	Berkeley	BONN- FGT	BONN- SVR	BROOKES	NUS-C	NUS-S	
Mean Score	47.6	40.8	41.4	43.3	31.3	35.1	37.7	
N classes hest	13	1	2	4	0	0	1	

 O_2P best on 13 out of 21 categories: background, aeroplane, boat, bus, motorbike, car, train, cat, dog, horse, potted plant, sofa, person

Semantic Segmentation in the Wild Pascal VOC 2011

Semantic Segmentation in the Wild Pascal VOC 2011

Caltech 101

Important testbed for coding and pooling techniques

Caltech 101

Important testbed for coding and pooling techniques

- No segments, spatial pyramid instead
- . Linear classification

Caltech 101

Important testbed for coding and pooling techniques

	SIFT-O ₂ P	eSIFT-O ₂ P	SPM ¹	LLC ²	EMK ³	MP ⁴
Accuracy	79.2	80.8	64.4	73.4	74.5	77.3

- 1. Lazebnik et al. '06
- 2. Wang et al. '10
- 3. Bo & Sminchisescu '10
- 4. Boureau et al. '11

Conclusions

- Second-order pooling with Log-Euclidean tangent space mappings
- Practical aggregation-based descriptors without unsupervised learning stage (no codebooks)
- High recognition performance on free-form regions using linear classifiers
- Semantic Segmentation on VOC 2011 superior to state-of-the-art with models 20,000x faster

Code available online

Thank you!

